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Abstract. This paper deals with the structural analysis problem of dy-
namic lumped process high-index DAEmodels. We consider two methods
for index reduction of such models by differentiation: Pryce’s method and
the symbolic differential elimination algorithm rifsimp. Discussion and
comparison of these methods are given via a class of fundamental process
simulation examples. In particular, the efficiency of the Pryce method is
illustrated as a function of the number of tanks in process design.
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1 Introduction

Differential-algebraic equations (DAE) systems arise naturally when modelling
many dynamic systems. Dynamic process models and their properties form the
background of any process control activity including model analysis, model pa-
rameter and structure estimation, diagnosis, regulation or optimal control. In
particular, the structural analysis of dynamic lumped process models forms an
important step in the model building procedure [1], and it is used for the deter-
mination of the solvability properties of the model. Furthermore, the dynamic
lumped process models often require the consistent initial conditions and solu-
tion of high-index differential-algebraic systems.

The index is a notion used in the theory of DAEs for measuring the distance
from a DAE to its related ODE. High-index DAE systems need prolongation (dif-
ferentiation) to reveal all the system’s constraints, and to determine consistent
initial conditions. The key steps include identifying all hidden constraints on for-
mal power series solutions in the neighborhood of a given point, and are required
to prepare the system for numerical integration. So for such differential systems,
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prolongation is unavoidable. In the present work, Pryce developed a Taylor series
method based on his structural analysis method [2,3] and on Pantelides’ work
in [4]. Pantelides’ method gives a systematic way to reduce high-index systems
of differential-algebraic equations to lower index, by selectively adding differen-
tiated forms of the equations already present in the system. It is implemented
in several significant equation-based simulation programs such as gPROMS [5],
Modelica [6] and EMSO [7]. However, the algorithm can fail in some instances.
Pryce’s structural analysis is based on solving an assignment problem, which
can be formulated as an integer linear programming problem. It finds all the
constraints for a large class of ODE using only prolongation, which can be con-
sidered as fast prolongation method. Corless et al. show Pryce’s method can be
extended to give a polynomial cost method for numerical solution of differential
algebraic equations [8]. Wu et al. give a differential algebraic interpretation of
Pryce’s method for ODE, which generalizes to a certain class of PDE for finding
missing constraints [9]. Mani shows how pre-symbolic simplification can usefully
extend the applicability of the Pryce method on models produced by MapleSim
[10].

In [11,12], Leitold et al. propose the structural analysis of process models
using their representation graphs for the determination of the most important
solvability property of lumped dynamic models: the differential index. Their
graph-theoretical method depends on the change in the relative position of un-
derspecified and overspecified subgraphs and has an effect to the value of the
differential index for complex models. If these subgraphs move further from their
original positions the value of differential index increases. In this paper, we con-
sider other approaches for the structural analysis of dynamic lumped process
models for high-index DAE systems. In particular, we consider Pryce’s method
and the symbolic differential elimination package rifsimp. Pryce’s method is a
robust and reliable method for remedying the drawback of the approach [11,12]
and doing so automatically. This is a powerful way to determine the index of the
system, its number of degrees of freedom, and exactly which components should
be given initial values. The key idea is taken from Pryce’s signature-method. The
nice feature of the work is a simple and straightforward method for analysing
the structure of a differential algebraic system.

The rest of this paper is organized as follows. Section 2 describes Pryce’s
method and introduces the symbolic differential elimination package rifsimp in
Maple. Section 3 gives the structural analysis of simple process models using
these approaches. Section 4 gives some experimental results. The final section
concludes this paper.

2 Preliminaries

In this section, we give a brief review of Pryce’s method and some remarks, and
present the symbolic differential elimination with Maple’s rifsimp package.
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2.1 Pryce’s method

We review below the main steps of Pryce’s structural analysis and the corre-
sponding algorithm following [2,3]. We consider an input system of n equations
f = 0, where f = (f1, f2 · · · , fn) in n dependent variables x1(t), x2(t), · · · , xn(t).

Step 1. Form the n× n signature matrix Σ = σij of the DAE, where

σij =











highest order of derivative to which the variable

xj appears in equation fi,

or −∞ if the variable does not occur.

Step 2. Solve an assignment problem to find a HVT (highest value transversal),
which is a subset of indices (i, j) describing just one element in each row and
each column, such that

∑

σij is maximized and finite.

Step 3. Determine the offsets of the problem, which are the vectors c =
(ci)1≤i≤n,d = (dj)1≤j≤n, the smallest such that dj − ci ≥ σij , for all 1 ≤ i ≤
n, 1 ≤ j ≤ n with equality on the HVT. This problem can be formulated as an
integer linear programming problem (LPP) in the variables c = (c1, c2, · · · , cn)
and d = (d1, d2, · · · , dn):

Minimize z =
∑

j

dj −
∑

i

ci, (1a)

where dj − ci ≥ σij for all (i, j), (1b)

ci ≥ 0 for all i. (1c)

The structural index is then defined as

ν = maxi ci +

{

0 for all dj > 0

1 for some dj = 0.

The structural index is no less that the differential index on first order DAE.

Step 4. Form the n× n system Jacobian matrix J where

Jij =

{

∂fi
∂((dj−ci)th derivative of xj)

if this derivative is present in fi

0 otherwise.

Step 5. Choose a consistent point. If J is non-singular at that point, then the
solution can be computed with Taylor series or numerical homotopy continuation
techniques in a neighborhood of that point.

Remark 1. The computation of c and d only involves the information on dif-
ferential order and is consequently very fast in Step 3 of Pryce’s method. This
problem is dual to the assignment problem. The time complexity of the assign-
ment problem can be done at polynomial cost by using the Hungarian Method
[13]. Generally, such problems can be solved very efficiently in practice.
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Remark 2. After we obtain the number of prolongation steps ci for each equation
from Step 3 of Pryce’s method, we can enlarge the system of equations using
c. We assume c1 ≥ c2 ≥ · · · ≥ cn, and let kc = maxi ci = c1, which is closely
related to the index of DAEs. Consider the equations obtained by taking the

t-derivative of f
(0)
1 = f1 = 0 up to the cith derivative, 1 ≤ i ≤ n, that is the

collection


















f
(0)
1 ,f

(1)
1 , · · · ,f

(c1)
1

...

f (0)
n ,f (1)

n , · · · ,f (cn)
n



















= 0, (2)

where (l) denotes dl/dtl 1. By the definition of σij and inequalities (1b), the
derivatives of the xj that occur in equations (2) all lie in this set:



















x
(0)
1 ,x

(1)
1 , · · · ,x

(d1)
1 ,

...

x(0)
n ,x(1)

n , · · · ,x(dn)
n .

(3)

Represent (3) as a vector X, then (2) can be written as a system

0 = F (t,X) =











F0(t,X0)
F1(t,X0, X1)

...
Fkd

(t,X0, X1, · · · , Xkd−1, Xkd
)











, (4)

where kd = maxj dj = d1, and assume d1 ≥ d2 ≥ · · · ≥ dn. In particular,
for 0 ≤ i ≤ kc, Fi has fewer variables than Fi+1. The block structure form
Bi(0 ≤ i < kc) in the case ci = ci+1 + 1 is given in Table 1.

Table 1: The triangular block structure of F for the case ci = ci+1 + 1
B0 B1 · · · Bkc−1 Bkc

F
(0)
1 F

(1)
1 · · · F

(c1−1)
1 F

(c1)
1

F
(0)
2 · · · F

(c2−1)
2 F

(c2)
2

...
...

...

F
(0)
n · · · F

(cn)
n

Remark 3. Fast prolongation produces a simplified system to which a standard
numeric solver can be efficiently applied.

1 (l) is defined by the same way for the rest of this paper.
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2.2 Symbolic differential elimination

Maple’s rifsimp package can be used to simplify small- and middle-scale DAEs,
and overdetermined systems of polynomially nonlinear PDEs or ODEs and in-
equations to a more useful form [14]. For the DAEs and ODEs the only inde-
pendent variable is time. It processes systems of polynomially nonlinear PDEs
with dependent variables u1, u2, · · · , un, which can be functions of several inde-
pendent variables.

The key idea of algorithm is substitution and differential elimination, which
requires a ranking to be defined on the dependent variables and their derivatives.
A basic step of differential elimination algorithms linearly appearing is to write
the system in solved form with respect to each highest ranked derivative. It
is treated by methods involving a combination of Gröber bases and Triangular
decompositions. Another key step in such algorithms is the taking of integrability
conditions between equations.

The rifsimp algorithm is essentially an extension of the Gaussian elimination
to DAEs and systems of nonlinear PDEs. It differentiates the leading nonlinear
equations and then reduce them with respect to the leading linear equations.
If zero is obtained, it means that the equation is a consequence of the leading
linear equations. If not, it means that this equation is a new constraint to the
system. This is repeated until no new constraints are found. See Section 3.3 for
a simple example.

3 Structural analysis of simple process models

In this section, we apply the above techniques to structure analysis of dynamic
lumped process models DAE systems. The model is taken from dynamic process
simulation and multi-domain modeling and simulation of complex systems. Here,
the cascade of perfectly stirred tank reactors yields the basic examples of the
paper, see Fig.1.

3.1 Main algorithm

Suppose a system consists of k perfectly stirred tank reactor. A feed of con-
centration C0(t) is fed into the first tank. The concentrations in the tanks are
described by the following equation:

C
(1)
i =

q(t)

Vi(t)
(Ci−1(t)− Ci(t)) i = 1, 2, · · · , k (5)

where Ci(t) is the concentration in the tank i, q(t) is the flow rates from tank to
tank and Vi(t) is the fixed volume of the tank i. Thus the flow rates between the
tanks qi(t) are all the same that qi(t) = q(t) = Q(t), where Q(t) is a specified
function of t.

In general, there are two different specifications that can be added to these
equations according to the modelling goal:
a) in dynamic simulation studies the feed concentration C0(t) is given by C0 =
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Fig. 1: Sequence of liquid tanks, where for the i-th tank Fi−1 and Fi(i =
1, 2, · · · , k) are the inlet and outlet flow rate, Ci is the concentration and Vi

is the fixed volume of the i-th tank.

C0(t);
b) in dynamic design the product concentration Ck(t) is given by Ck(t) = Ck(t).

When applied to process system a) and b), the main steps of our approach
are:

Step 1. Construct the original system as follows based on the equation (5):

F := [Ci(t)
(1) = q(t)(Ci−1(t)− Ci(t))/Vi(t), i = 1, 2, · · · , k,

Vi(t)
(1) = 0, i = 1, 2, · · · , k, q(t) = Q(t)],

(6)

where k is the number of tanks.
Step 2. Obtain the original condition and add it into F . There are two cases:

a) in dynamic simulation the tank feed concentration C0(t) is given as a function
of time then get 2k + 1 equations in 2k + 1 unknowns: C0(t) = C0(t), this
is essentially index 1 no matter what k is, and is a trivial system. Symbolic
differential elimination can be used for case a);
b) in dynamic design the product concentration Ck(t) is given as a function:
Ck(t) = Ck(t). It is a nontrivial system, which is high-index as k increased.

Step 3. Call the Pryce’s algorithm of Section 2 to solve the vector c and
d, and enlarge the initial system by fast prolongation. Alternatively symbolic
differential elimination can be used for case b).

Step 4. Check the Jacobian matrix J with the coefficients of highest deriva-
tives equations and compute the consistent point.

Remark 4. Based on the structure analysis of Pryce’s method, it is practical and
efficient for dynamic lumped process models DAE systems. In general, the goal
of structural analysis of DAEs is to differentiate the equations in such a way
that the coefficient (Jacobian) matrix of the highest derivatives is non-singular.
It means that some equations need prolongations on independent variable to
balance the coefficients matrix. So it can computing Jacobian matrix of the
lower derivatives equations by an iterative procedure for finding all consistent
points.
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Remark 5. Compared with the structural analysis of process models using their
representation graphs method, the advantages of our algorithm are:
• We efficiently apply the fast numerical and symbolic computations to a wide
variety of physical models generated by the equation-based technique.
• For the large models, we can keep the structural index of system remaining
unchanged. Moreover, the prolongation system has a favorable block triangular
structure to compute the missing initial conditions more efficiently.

3.2 Main results

For the general dynamic lumped process models DAE systems, we can obtain
the offsets of vector

c = (0, 1, 2, · · · , k − 1, 0, 0, 1, 2, · · · , k)

and
d = (0, 1, 2, · · · , k, 1, 1, 2, · · · , k − 1, k − 1)

by Pryce’s method. Therefore, we have the following ranking of dependent vari-
ables.

(

Ck

)

≺













Ck−1

C
(1)
k

Vk−1

Vk

q













≺



















Ck−2

C
(1)
k−1

C
(2)
k

V
(1)
k−1

V
(1)
k

q(1)



















≺ · · · ≺











































C1

C
(1)
2
...

C
(k−1)
k

V1

V2

...

V
(k−3)
k−1

V
(k−2)
k

q(k−2)











































≺













































C0

C
(1)
1

C
(2)
2
...

C
(k)
k

V
(1)
1

V
(1)
2
...

V
(k−2)
k−1

V
(k−1)
k

q(k−1)













































Based on the above ranking, we can obtain the sequence of solving initial
value problem for the dynamic lumped process models DAE systems. It is equiv-
alently the block-triangular system that has full row rank for each k.

From (6), F and the original condition Ck(t) = Ck(t) have

M = (
∑

ci) + (2k + 2) = ((

k−1
∑

1

i) + (

k
∑

1

i)) + (2k + 2) = k2 + 2k + 2

components. The number of variables is

N = (
∑

dj)+(2k+2) = ((

k
∑

1

j)+1+(

k−1
∑

1

j)+(k−1))+(2k+2) = k2+3k+2.
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Considered asM algebraic equations inN variables, it has a solution (t∗, X∗),
where

X = (C0, C
(1)
1 , C

(2)
2 , · · · , C

(k)
k , V

(1)
1 , V

(1)
2 , · · · , V

(k−2)
k−1 , V

(k−1)
k , q(k−1));

and that J is non-singular. Therefore, (t∗, X∗) is a consistent point. In a neigh-
borhood of the point (t∗, X∗), the solution manifold has D degrees of freedom
[3].

Lemma 1. At a point (t∗, X∗) in M where J is non-singular, M is locally a

manifold of dimension π+1 parameterized. The solution manifold has D degrees

of freedom, where

D = π =
∑

dj −
∑

ci = N −M.

The above shows that if we find a solution (t∗, X∗), this is a consistent point,
and if the number of degrees of freedom D > 0 there are other consistent points
nearby for the same t.

Theorem 1. The general dynamic lumped process models DAE systems have

degrees of freedom D =
∑

dj −
∑

ci = k, where k is the number of tanks. The

structural index is k + 1.

Proof. From Lemma 1, we have degrees of freedom

D =
∑

dj −
∑

ci = (

k
∑

1

j) + 1 + (

k−1
∑

1

j) + k − 1−

((

k−1
∑

1

j) + (

k−2
∑

1

j) + k − 1 + k) = k + 1 + k − 1 + 0− k = k.

(7)

Because the d1 = 0, the structural index is maxi (ci) + 1 = k + 1.

Here, we give the degrees of freedom and structural index of the general dynamic
lumped process models DAE systems that is a function of the number of tanks
k.

3.3 A detailed example

Example 1. We propose a simple example to set the number of tanks k := 3 case
a) to illustrate the rifsimp algorithm.

Step 1: Construct the original system as follows:

sys := [C1(t)
(1) =

q(t) ∗ (C0(t)− C1(t))

V1(t)
, C2(t)

(1) =
q(t) ∗ (C1(t)− C2(t))

V2(t)
,

C3(t)
(1) =

q(t) ∗ (C2(t)− C3(t))

V3(t)
, V1(t)

(1) = 0, V2(t)
(1) = 0, V3(t)

(1) = 0, q(t) = Q(t)];



Structural analysis of high-index DAE for process simulation 9

Step 2: Obtain the original condition C0(t) = C0(t), and add it to sys;
Step 3: Call rifsimp algorithm to reduce the system as follows:

[C1(t)
(1) =

Q(t) ∗ C0(t)−Q(t) ∗ C1(t)

V1(t)
, C2(t)

(1) =
Q(t) ∗ C1(t)−Q(t) ∗ C2(t))

V2(t)
,

C3(t)
(1) =

Q(t) ∗ C2(t)−Q(t) ∗ C3(t)

V3(t)
, V1(t)

(1) = 0, V2(t)
(1) = 0,

V3(t)
(1) = 0, C0(t) = C0(t), q(t) = Q(t), V1(t) 6= 0, V2(t) 6= 0, V3(t) 6= 0].

Remark 6. In this paper, we consider the modelling goal for case a) by the
rifsimp algorithm. The main reason is the specific structure of models, which
is the quasi-triangular system and has C0(t) = C0(t) specified. Therefore, it is
only simple check. But it becomes rapidly more complicated as the number k
increased for case b).

Example 2. We propose a simple example to set the number of tanks k := 4 case
b) and illustrate our algorithms.

Step 1: Construct the original system as follows:

sys := [D1 = C1(t)
(1) −

q(t) ∗ (C0(t)− C1(t))

V1(t)
= 0, D2 = C2(t)

(1)

−
q(t) ∗ (C1(t)− C2(t))

V2(t)
= 0, D3 = C3(t)

(1) −
q(t) ∗ (C2(t)− C3(t))

V3(t)
= 0, D4 = C4(t)

(1)

−
q(t) ∗ (C3(t)− C4(t))

V4(t)
= 0, D5 = V1(t)

(1) = 0, D6 = V2(t)
(1) = 0,

D7 = V3(t)
(1) = 0, D8 = V4(t)

(1) = 0, D9 = q(t)−Q(t) = 0];

Step 2: Obtain the original condition C4(t) = C4(t), and add D10 =
C4(t)− C4(t) = 0 to sys;
Step 3: Obtain the variables list variables := [C0, C1, C2, C3, C4, V1, V2, V3, V4, q];
Step 4: Call the Pryce’s method and solving this integer LPP by LPSolve
in the Optimization package of Maple, we obtain the fast prolongation
times for the i-th equation from c, and the highest order of derivative
variables from d as follows:
c1 = 0, c2 = 1, c3 = 2, c4 = 3, c5 = 0, c6 = 0, c7 = 1, c8 = 2, c9 = 3, c10 =
4,
d1 = 0, d2 = 1, d3 = 2, d4 = 3, d5 = 4, d6 = 1, d7 = 1, d8 = 2, d9 =
3, d10 = 3.
Therefore, according to the ci values it can be prolonged for the corre-
sponding equations automatically. Enlarged sets of variables:

{C0;C1, C
(1)
1 ;C2, C

(1)
2 , C

(2)
2 ;C3, C

(1)
3 , C

(2)
3 , C

(3)
3 ;C4, C

(1)
4 , C

(2)
4 , C

(3)
4 , C

(4)
4 ;

V1, V
(1)
1 ;V2, V

(1)
2 ;V3, V

(1)
3 , V

(2)
3 ;V4, V

(1)
4 , V

(2)
4 , V

(3)
4 ; q, q(1), q(2), q(3)},

equations:

{D1;D2, D
(1)
2 ;D3, D

(1)
3 , D

(2)
3 ;D4, D

(1)
4 , D

(2)
4 , D

(3)
4 ;D5;D6;D7, D

(1)
7 ;D8, D

(1)
8 , D

(2)
8 ;
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D9, D
(1)
9 , D

(2)
9 , D

(3)
9 ;D10, D

(1)
10 , D

(2)
10 , D

(3)
10 , D

(4)
10 }. The system Jacobian J

is:

J :=



















































−
q(t)

V1(t)
1 0 0 0 0 0 0 0 0

0 −
q(t)

V2(t)
1 0 0 0

q(t) (C1(t)− C2(t))

V2(t)2
0 0 0

0 0 −
q(t)

V3(t)
1 0 0 0

q(t) (C2(t)− C3(t))

V3(t)2
0 0

0 0 0 −
q(t)

V4(t)
1 0 0 0

q(t) (C3(t)− C4(t))

V4(t)2
−

C3(t)− C4(t)

V4(t)

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0



















































Step 5: Computing the Jacobian matrix J = − q(t)4

V1(t)V2(t)V3(t)V4(t)
, which

is non-singular. And then we can compute the consistent point by nu-
merical methods, such as Taylor series methods, Homotopy methods.

Remark 7. In particular, we can obtain the coefficient (Jacobian) matrix that
is sparse dramatically. For the highest derivatives, the determinant of Jacobian

matrix is det J = − q(t)k

V1(t)V2(t)···Vk(t)
where k is the number of tanks.

4 Experimental Results

An efficient practical implementation of Pryce’s method is in Maple. The follow-
ing examples run in the platform of Maple and Inter(R) Core(TM) i3 2.40GHz,
2.00G RAM. We give some experimental results using symbolic differential elim-
ination and fast prolongation for structural analysis of dynamic lumped process
models DAE systems. In Fig. 2, we present the time for symbolic differential
elimination by rifsimp of Maple package and fast prolongation as the number of
tank reactors k increased. In Fig. 3, we present the memory usage for symbolic
differential elimination by rifsimp of Maple package and fast prolongation as the
number of tank reactors k increased.

The system Jacobian is very sparse for case b). Its determinants are evaluated

symbolically to be det J = − q(t)k

V1(t)V2(t)···Vk(t)
where k is the number of tanks, and

is non zero. In other examples the alternative is to usually find an approximate
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point satisfying the constraints by numerical method (eg. Homotopy method)
and evaluate the condition number of the Jacobian to carry out he validation.

Fig. 2: Time for structural analysis of dynamic lumped process models DAE
systems using symbolic differential elimination and fast prolongation.

Fig. 3: Memory usage for structural analysis of dynamic lumped process models
DAE systems using symbolic differential elimination and fast prolongation.

From Figures 2 and 3:
• The time of structural analysis of dynamic lumped process models DAE sys-
tems for fast prolongation is small and ultimately grows slowly in the range
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of degrees of freedom considered. The time for symbolic differential elimination
method grows much faster. The main reason is that fast prolongation only needs
to solve an integer linear programming problem, but the symbolic differential
elimination needs a large number of eliminations and differentiates. Therefore,
the symbolic differential elimination is more difficult for the general high-index
DAE systems.
• The memory shows steady growth as the number k increases. The memory
usage of symbolic differential elimination grows very quickly.

The above analysis and experimental results, motivates consideration of hy-
brid techniques involving a combination of symbolic differential elimination and
fast prolongation for large DAE models. However, symbolic computations have
the disadvantage of intermediate expression swell. In the future, we would like to
consider a combination of partial symbolic differential elimination and fast pro-
longation to model and simulate realistic physical models. We hope to give the
specific structural analysis algorithms that exploit the form of systems appearing
in applications.

5 Conclusion

In this paper, we have investigated the high-index structural analysis problem
for the class of dynamic lumped process models DAE systems by Pryce’s method
and symbolic differential elimination. We designed the algorithm to automati-
cally analysis the structural of simple process models, and showed that the rif-
simp algorithm of Maple package reduces the original system to standard form.
We also gave the degrees of freedom and structural index of the dynamic lumped
process models DAE systems that is a function of the number of tanks k. More-
over, those approached can be generalized to a wide variety of physical models
and analyzed the structural of square and non-square nonlinear DAE and PDAE
systems.
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