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om.Abstra
tIn Dis
rete Event System Spe
i�
ation (DEVS), the dynami
s of anetwork is 
onstituted only by the dynami
s of its basi
 
omponents. Thestate of ea
h 
omponent is fully en
apsulated. Control in the network isfully de
entralized to ea
h 
omponent. At dynami
 stru
ture level, DEVSshould permit the same level of de
entralization. However, it is hard toensure stru
ture 
onsisten
y while letting all 
omponents a
hieve stru
ture
hanges. Besides, this solution 
an be 
omplex to implement. To avoidthese di�
ulties, usual dynami
 stru
ture approa
hes ensure stru
ture
onsisten
y allowing stru
ture 
hanges to be done only by the networkhaving new added dynami
s 
hange 
apabilities. This is a safe and simpleway to a
hieve dynami
 stru
ture. However, it should be possible tosimply allow 
omponents of a network to modify the stru
ture of theirnetwork, other 
omponents and/or their own stru
ture - without havingto modify the usual de�nition a DEVS network. In this manus
ript it isshown that a simple fully de
entralized approa
h is possible while ensuringfull modularity and stru
ture 
onsisten
y.1 Introdu
tionIn systems theory tradition, the dis
rete event spe
i�
ation has sought for manyyears to spe
ify dynami
 stru
ture sytems:
• Dynami
 Stru
ture Dis
rete Event System Spe
i�
ation (DSDEVS )[1℄:Where a single 
entral 
ontroller is in 
harge of exe
uting stru
ture 
hanges.Having a single lo
us of 
ontrol for stru
ture 
hanges 
onstitutes a rela-tively simple way of ensuring both behavior and stru
ture 
onsisten
ies.1



• Dynami
DEVS [2℄: Where a sequential implementation allows lo
al andde
entralized internal stru
ture 
hanges. Interfa
e stru
ture 
hanges aswell as the addition/deletion of 
omponents are subsequently integratedat network level.
• Variable stru
tures[3℄: Contrary to the two previous works this is not aformal approa
h. However, it is an attempt to have many de
entralizedlo
i of 
ontrol for a
hieving stru
ture 
hanges. Lo
al 
omponents are ableto sequentially1 modify the whole stru
ture of other 
omponents, in thesame network.
• Continuous Flow System Spe
i�
ation (CFSS )[4℄: Where the implemen-tation of multirate integration methods and dynami
 stu
ture models 
anbe a
hieved. CFSS 
omponents sample dire
tly their in�uen
ers' states.To deal with the autonomy of stru
ture 
hanges, the notion of single point of
ontrol is introdu
ed here. In a single point of 
ontrol, at ea
h time, only one
omponent is responsible of stru
ture 
hanges. This 
omponent 
an always bethe same for the whole simulation (stati
 single point) or 
an 
hange (dynami
single point).The s
ope of the present 
ontribution is twofold:1. To 
onstitute a 
oherent framework for usual dynami
 stru
ture formalisms.This framework would allow the di�erent formalisms to be representedwith the same elements and me
hanisms. This is of interest for the 
om-munity, e.g., to debate di�eren
es between formalisms,2. To propose a fully de
entralized modular approa
h 
loser to reality andDEVS thus opening new ex
iting resear
h perspe
tives.The manus
ript is organized as follows. In Se
tion 2, both stati
 and dynami
stru
ture spe
i�
ations of dynami
 systems are de�ned. In Se
tion 3, both �xedand dynami
 single points of 
ontrol of stru
ture 
hanges are used to representusual formalisms. In Se
tion 4 a fully modular and autonomous approa
h is pro-posed. Finally, in Se
tion 5, 
on
lusion and perspe
tives 
lose the manus
ript.2 Dis
rete event and dynami
 stru
ture spe
i�-
ations of dynami
 systemsStru
ture 
hanges are de�ned as based on dis
rete event transitions.2.1 Usual stati
 stru
ture formalismThe stru
ture of both network and basi
 dis
rete event systems is presentedhere.1In the Dis
rete Event System Spe
i�
ation, 
on
urrent events (
hanges of states), o

ur-ring at the same time, are exe
uted one after the other. Ea
h 
hange of state in�uen
ing other
on

urrent state 
hanges, at 
urrent time. 2



2.1.1 Basi
 (Atomi
) Dis
rete Event Spe
i�
ationDe�nition 2.1. A basi
 Dis
rete Event System Spe
i�
ation (DEVS ) is a stru
-ture: DEVS = (X,Y, S, δext, δint, λ, ta)Where, X is the set of input events, Y is the set of output events, S is the setof partial states, δext : Q × X → S is the external transition fun
tion with
Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} the set of total states, δint : S → Sis the internal transition fun
tion, λ : S → Y is the output fun
tion, and
ta : S → R

0,+
∞ is the time advan
e fun
tion.2.1.2 Network stru
tureDe�nition 2.2. A DEV S network is a stru
ture:

N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select)Where X is the set of input events, Y is the set of output events, D is theset of 
omponent names, for ea
h d ∈ D, Md is a basi
 model (whose stru
turedi�ers from one DEVS -based formalism to another), for ea
h d ∈ D ∪ {N},
Id is the set of in�uen
ers of d su
h that Id ⊆ D ∪ {N}, d /∈ Id and, for ea
h
i ∈ Id, Zi,d is a 
oupling fun
tion, the i− to −d output translation, de�ned for:(i) external input 
ouplings : Zself,d : Xself → Xd, with self the network name,(ii) internal 
ouplings : Zi,j : Yi → Xj , and (iii) external output 
ouplings :
Zd,self : Yd → Yself , and Select : 2D − {Ø} → D ∪ {Ø} is the sequential sele
tfun
tion (to sele
t one 
omponent to exe
ute its transition/output fun
tions,among imminent 
omponents). Considering a set of 
omponents C 
andidatefor internal transition, the sequential sele
t fun
tion has 
onstraint Select(C) ∈
C ∪ {Ø}, i.e., only one 
omponent or no 
omponents 
an be sele
ted among
andidates.2.2 Dynami
 stru
ture of dynami
 systems using a dis-
rete event spe
i�
ationBoth network and basi
 dynami
 stru
ture systems are presented here.2.2.1 Basi
 dynami
 stru
tureDe�nition 2.3. Basi
 or atomi
 Dynami
 Stru
ture Dis
rete Event SystemSpe
i�
ation (DYS-DEVS) stru
tureDYS-DEVS = (M,S, τ)Where ea
h element M ∈ M is a stru
ture DEVS = (X,Y, S, δext,, δint, λ, ta),
S = ∐M∈MSM is the disjoint union of their partial state sets, and
τ : M× S → M× S is the stru
ture transition fun
tion. Stru
ture fun
tionτtakes a basi
 DEVS and its state to a new basi
 DEVS' and a new state (
ould3



be the same also): τ(M, s) = (M ′, s′). This represents a basi
 
hange in stru
-ture whi
h transforms a basi
 DEVS into a new basi
 DEVS', by 
hanging itsstru
ture in some way (one or many elements of (X,Y, S, δext, δint, λ, ta)) andinitializing the state of the new DEVS. To use this representation the setsM (ofDEVS, it 
an generate), S (of their states), and mapping τ (how the stru
ture
hange o

urs) are identi�ed after in the manus
ript.At network level, basi
 stru
ture 
omponents are authorized to modify thewhole network. At lo
al level, for a basi
 stru
ture 
omponent, modifying itsinterfa
e requires modifying related 
ouplings (in the network) and related in-puts/outputs (in another 
omponent). The impa
t of interfa
e stru
ture 
hangesgoes a little beyond the frontiers of the 
omponent. To a

ount for these im-pa
ts, the 
on
ept of external and internal models is de�ned here.De�nition 2.4. In a basi
 DYS-DEVS = (M,S, τ) a model M ∈ M 
an bede
omposed into an external model part Mext and into an internal model part
Mint, and stru
ture transition fun
tion τ 
an be de
omposed into an exter-nal stru
ture transition fun
tion τext and into an internal stru
ture transitionfun
tion τint, where:

• Mext = (X,Y ) is 
hanged by the external stru
ture transition fun
tion
τext(Mext, δext(s, e, x)), and

• Mint = (S, δext, δint, λ, ta) is 
hanged by internal stru
ture transition fun
-tion τint(Mint, δint(s)).Example 2.1. Internal stru
ture 
hanges of a basi
 DYS-DEVS .Assume basi
 
omponent DYS-DEVS = (M,S, τ) is in state (M, s), with
Mint = (S, δext, δint, λ, ta) its internal model, when it re
eives input x = changefrom another 
omponent. Then, a new state is obtained as
δext(s, e, x) = changeInternalStructure. New stru
tureM ′

int = (S′, δ′ext, δint, λ, ta
′)is obtained as τint(Mint, s) = (M ′

in, s
′). Noti
e that di�eren
es between stru
-tures Mint and M ′

int 
onsist in new sets S′, new external transition fun
tion
δ′ext, and new time advan
e fun
tion ta′.2.2.2 Dynami
 stru
ture networkDe�nition 2.5. Dynami
 Stru
ture Dis
rete Event Network System (DYS-DEN) stru
ture DYS-DEN = (N ,S, τ)Where N = {(X,Y,D, {Md}, {Id}, {Zi,d}, Select)} is the set of network stru
-tures, where ea
h 
omponent d ∈ D is an atomi
 dynami
 stru
ture modelMd =
(Md,Sd, τd), S = ∐N∈NSN is the disjoint union of partial state sets of networkstru
tures, with
SN = Πd∈DSd the partial state set of a network N ∈ N is the 
rossprodu
tof the partial state sets of its 
omponents, and τ : N × S → N × S is thestru
ture transition fun
tion of the network.4



Next example brie�y introdu
es the stru
ture 
hanges at network level.Example 2.2. Simple 
hanges of network stru
ture ( 
f. Figure 1)

Figure 1: A simple 
hange of network stru
tureConsider a simple network stru
ture N = (D, {Md}, {Id}, {Zi,d}, Select),where
D = {a, b, c, d, e}, Ic = {a, b}, Id = {c}, Ie = {c}, and Za,c : Ya → Xc,
Zb,c : Yb → Xc, Zc,d : Yc → Xd, Zc,e : Yc → Xe. The state set of the
omponents in the network is S = Sa × Sb × Sc × Sd × Se. Now assumethat ea
h 
omponent state set is {0, 1}. Then, the state set of the networkis S = {0, 1} × {0, 1} × {0, 1} × {0, 1} × {0, 1}, with, e.g., parti
ular states
(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), ..., where the �rst 
omponent is for 
omponent a, these
ond 
omponent for 
omponent b, the third 
omponent for 
omponent c, et
.At a parti
ular instant, 
omponent c is removed. Then, network stru
ture Nde�ned as (D, {Md}, {Id}, {Zi,d}, Select) 
hanges to N' de�ned as (D′, {M ′

d}, {I
′
d}, {Z

′
i,d}, Select

′),where D′ = {a, b, d, e}, I ′c = I ′d = I ′c = {Ø}, {Z ′
i,d} = {Ø}, and {M ′

d} =
{M ′

a,M
′
b,M

′
d,M

′
e}. The state set of the 
omponents in network N ′ is now

S′ = Sa × Sb × Sd × Se. Noti
e that 
omponents a, b and 
omponents d, eare impa
ted by the deletion of 
omponent c having respe
tively their output andinput sets removed.Now suppose that these stru
ture 
hanges 
an be a
hieved by network stru
-ture transition fun
tion τ(N, s) = τ(N, (1, 1, 0, 0, 0)) = N ′. Assume also thatvalue 0 means �no 
hange intention� and value 1 means �
hange intention�. Fi-nally, τ(N, (1, 1, 0, 0, 0)) means that both 
omponents a and b have both intentionto make the network stru
ture 
hange to N ′ at the same time. It will be seenhereafter how this kind of simultaneous lo
al 
hanges of stru
ture in the network
an be serialized.Generally speaking, we will show that,Proposition 2.1. A network N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select), wherefor ea
h d ∈ D, Md is a basi
 DYS-DEVSd = (Md,Sd, τd), is equivalent to aresultant DYS-DEVS = (M,S, τ). 5



3 Representation of usual formalismsIn DSDEV S formalism, there is only one 
omponent in every instan
e of Mthat makes the de
ision for the next instan
e. Stru
ture transition fun
tion τ isde�ned by mimi
king the 
hanges a
hieved by the exe
utive in one transition.On the other hand, DynamicDEV S formalism allows multiple lo
al de
isionpoints but 
hanges of network stru
ture are done only at network level.DYS-DEVS uses the usual dynami
 me
hanisms of DEVS, using states
hanges for syn
hronizing dynami
 stru
ture transitions. Serialization of stru
-ture 
hanges is based on the notions of stati
 and dynami
 single points of
ontrol for stru
ture 
hanges.De�nition 3.1. A stati
 single point of 
ontrol 
onsists of having only onedynami
 stru
ture 
omponent, always the same, in the whole network.De�nition 3.2. A dynami
 single point of 
ontrol 
onsists of having manydynami
 stru
ture 
omponents in the whole network. However, at ea
h timestep, only one 
omponent 
an be authorized to a
hieve stru
ture 
hanges.DSDEVS formalism is represented as a stati
 point of 
ontrol, while Dyn-DEVS formalism is represented as a dynami
 point of 
ontrol. More generally,it is shown that,Proposition 3.1. Di�erent existing formalisms for dynami
 stru
ture DEV S
an be represented in the Dynami
 Stru
ture Formalism Framework (DYS-F)by di�erent 
hoi
es of M, S and τ .3.1 Equivalen
e of basi
 dynami
 stru
ture 
omponentand basi
 dis
rete event 
omponentTheorem 3.1. An atomi
 DYS-DEVS = (M,S, τ) is equivalent to an atomi
DEVS = (X,Y, S, δext, δint, λ, ta), where the state set is S = M× S, with Ma set of basi
 DEV S models and S is the disjoint union of their state sets:
S = ∐M∈MSM .Proof. We des
ribe the dynami
s of both DYS-DEVS and DEVS de�ning theelements of a DEVS in terms of the elements of a DYS-DEVS.The internal transition fun
tion of a DYS-DEVS is

δint(M, s) = τ(M, δint,M (s))i.e., �rst apply the internal transition fun
tion of the 
urrent stru
ture M ∈ Mto state s ∈ SM to get new state δint,M (s), then apply the stru
ture transfor-mation to this pair to get a new stru
ture and a new state (M ′, s′).Similarly, the external transition fun
tion is de�ned by:
δext(M, s, e, x) = τ(M, δext,M (s, e, x))6



The output fun
tion is de�ned by:
λ(M, s) = λM (s)i.e., output fun
tion of the 
urrent stru
ture M ∈ M sends 
urrent state s ∈ S.The time advan
e fun
tion is
ta(M, s) = taM (s)i.e., time advan
e of the 
urrent stru
ture M ∈ M is applied to its state, s ∈ S,to 
ompute the o

urren
e time of next state 
hange.Based on stru
ture transition fun
tion τ , a basi
 DYS-DEVS 
hanges astru
ture M ∈ M, using partial state s ∈ S. A new state is obtained bythe exe
ution of one of the two usual transition fun
tions: δext,M (s, e, x) or

δint,M (s). Then, stru
ture 
hange depends on total state (s, e) ∈ S ×R
0,+
∞ , andpossibly on external input event x ∈ X .3.2 Stati
 single pointCentralized 
ontrol of stru
ture 
hanges is investigated here. Stru
ture 
hangesare 
ontrolled only by one 
omponent. No other 
omponent 
an 
hange thenetwork stru
ture.Lemma 3.1. Considering an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where the set of 
omponent indexes D = {1, 2, ..., p} and the state set of thenetwork is S = S1×S2×...×Sp, where S1 is the state set of the �rst 
omponent,

S2 is the state set of the se
ond 
omponent, et
., If a single point of 
ontrol is at�rst 
omponent DYS-DEVS1 = (M1,S1, τ1), while ea
h other 
omponent i ∈ D,with i > 1 is a basi
 
omponent DEV Si, the set of networks N is equivalent toa resultant DYS-DEVS = (M,S, τ).Proof. A single point of 
ontrol at �rst 
omponent DYS-DEVS1, would bethat τ always a

ounts for the state of DYS-DEVS1 to make its de
ision; so
τ(s1, s2, ..., sp) = τ1(s1) for some τ1. Then, the image of τ depends on the new
omponents added to the network or not (be
ause the states of new 
omponentshave to be initialized).Denoting new stru
tures as N ′ = (X ′, Y ′, D′, {M ′

d}, {I
′
d}, {Z

′
i,d}), stru
turetransition fun
tion τ : M×S → M×S redu
es to one of the two maps:1. For ea
h non-
reated 
omponent d ∈ D ∩D′, τ : S1 → M, with

τ(. . . ,sd, . . . ) = τ1(s1) = N ′,2. For ea
h new 
omponent i ∈ (D′ − D) (
reated), ini-tialized to initial state s0,i, τ : S1 → M × S, with
τ(. . . ,si, . . . ) = τ1(s1) = (N ′, (. . . ,s0,i, . . . )).De�nition 3.3. A DSDEV S network[1℄ is a stru
ture DSDEN = (χ,Mχ),with exe
utive model Mχ = (Xχ, Yχ, Sχ, γ,Σ

∗, δχ, λχ, taχ), where a nework7



stru
ture Σ ∈ Σ∗ is given by Σ = γ(sχ) = (D, {Md}, {Id}, {Zi,d}) and γ :
Qχ → Σ∗, with χ /∈ D.Corollary 3.1. A DSDEV S network is equivalent to a DYS-DEVS = (M,S, τ)having a single point of 
ontrol DYS-DEVS1 in 
harge of the stru
ture 
hangesin a network N = (X,Y,D, {Md}, {Id}, {Zi,d}), where D = {1, 2, ..., p} and forea
h 
omponent i ∈ D, with i > 1, Mi is a basi
 DEV S model.Single point of 
ontrol DSP-DEVS1 
an be des
ribed in terms of exe
utivemodel Mχ with: M1 = Σ∗, S1 = Sχ, Dχ = projD(γ(sχ) ∪ {χ}, and τ1 = γ.In Continuous Flow System Spe
i�
ation (CFSS )[4℄, 
omponents sampledire
tly their in�uen
ers' states (in a one-step pro
ess) while usual DEVS 
om-ponents have to request and re
eive their in�uen
ers' states (in a two-steppro
ess)[5℄. Therefore, transforming a CFSS network into a DEVS one 
on-sists of mapping ea
h original 
oupling into two 
ouplings (one for request, onefor answer). Another soution would be, 
ontrary to CFSS, to break 
ompo-nents' modularity through the multi
omponent approa
h[6℄. In the dynami
stru
ture 
ontext, DYS-DEVS equivalen
e 
an be a
hieved preserving modu-larity (at dynami
 stru
ture network 
ontroller level) adding extra 
oupling (
f.Barros' des
ription[5℄ for details).3.3 Dynami
 single pointExample 3.1. Dynami
 stru
ture authorization by �token� passingConsider now a single point of 
ontrol �passing� around, a
tivating, the 
om-ponents - just like a �token� in network where ea
h node gets a 
han
e to sendwhen it has the token. In this example the state set of Example 2.2 would be
S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} with the token (authorization) going from a to
b to c ba
k to a, and so on in a 
yle. Instead of "sending" the node with thetoken 
an do any stru
ture 
hange with the global state being initialized to thenext triple in the 
y
le. Here, only one 
omponent among the 
omponents ofthe network, 
an be a
tivated at a time.Theorem 3.2. Consider an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where for ea
h d ∈ D, Md is a basi
 dynami
 stru
ture DYS-DEVSd and thestate set of the network is S = S1 × S2 × ... × Sp, where S1 is the state set ofthe �rst 
omponent DYS-DEVS1, S2 is the state set of the se
ond 
omponentDYS-DEVS2, et
. If a dynami
 single point of 
ontrol is assigned sequentiallyand 
y
li
ally to ea
h 
omponent DYS-DEVSd for stru
ture 
hanges on the
omponents of the network, the set of networks N is equivalent to a resultantDYS-DEVS = (M,S, τ).Proof. Extending Lemma 3.1, it is simple to 
onsider that a 
y
le of dynami
single points of 
ontrol is re
ursively de�ned by global and lo
al stru
ture tran-sition fun
tions: 8
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τ : (1, 0, 0, ..., 0) 7→ (N ′, (0, 1, 0, ..., 0))
with τ1(1, 0, 0, ..., 0) = (N ′, (0, 1, 0, ..., 0))

τ : (0, 1, 0, ..., 0) 7→ (N ′′, (0, 0, 1, ..., 0))
with τ2(0, 1, 0, ..., 0) = (N ′′, (0, 0, 1, ..., 0))

...
τ : (0, 0, 0, ..., 1, 0) 7→ (Np, (0, 0, 0, ..., 1))

with τp(0, 0, 0, ..., 1, 0) = (Np, (0, 0, 0, ..., 1))Then, the resultant DYS-DEVS = (M,S, τ) is de�ned with M = N ,
S = {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, 1, ..., 0), ..., (0, 0, 0, ..., 1)}, τ(s) = s+1modp,with p the number of 
omponents and state s = {0, 1}p.Remark 3.1. This is di�erent from DSDEV S, whi
h does not allow expli
itly
hanging a dynami
 single point of 
ontrol.De�nition 3.4. A DynamicDEV S network is a stru
ture

DynNDEV S = (X,Y, ninit,N (ninit))Where X,Y are input and output event sets, ninit ∈N (ninit) is the initial stru
-ture, andN (ninit) the least (minimum) set having the stru
ture{(D, ρN , {dynDEV Si}, {Ii}, {Zi,j}, Select)},with:
• D, {Ii}, {Zi,j} as de�ned previously,
• ρN : S → N (ninit) is the network transition fun
tion with

S = Πi∈D(∐m∈dynDEV Si
Sm), with dynDEV Si the dynam-i
DEVS model i ∈ D,

• dynDEV Si = (Xi, Yi,minit,i,Mi(minit,i) , with:� Xi, Yi the input and output event sets,� minit,i ∈Mi(minit,i) the initial model, and� Mi(minit,i) the least (minimum) set of internal stru
ture
{(Si, δext,i, δint,i, ρα,i, λi, tai)} of usual atomi
DEV S, ex
ept
ρα,i : Si → Mi(minit,i) the model transition fun
tion.

• Select : 2D − {Ø} → D is the sequential sele
t fun
tion.Corollary 3.2. Using a single dynami
 point of 
ontrol, a network DynNDEV S =
(X,Y, ninit,N (ninit)) 
an be represented by an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d})where D = {1, 2, ..., p}, M1 is a dynami
 stru
ture network DYS-DEN1 and ea
hother 
omponent d ∈ D, with d > 1 is a basi
 dynami
 stru
ture 
omponentDYS-DEVSd.A DynNDEV S network operates along two sequential steps: (i) Lo
ally,basi
 
omponents dynDEV Si 
an 
hange only their internal model a

ordingto their model transition fun
tion ρα,i : Si → Mi(minit,i), then (ii) Dyn-NDEVS network 
an 
hange its stru
ture (interfa
es (Xi, Yi) and D, {Ii}, {Zi,j},9



adding/removing 
omponents) through the network transition fun
tion ρN : S →
N (ninit), with S = Πd∈D(∐m∈dynDEV Si

Sm).Ea
h basi
 dynDEV Si = (Xi, Yi,minit,i,Mi(minit,i) 
an be represented bya DYS-DEVSd = (Md,Sd, τd) with 
orresponden
es: Md = Mi(minit,i), with
Md ∈ Md restri
ted to internal model Mint,d = (Sd, δext,d, δint,d, λd, tad), Sd =
Si, τd = ρα,i restri
ted to τd : Si → Mi(minit,i). DynNDEV S is representedby dynami
 stru
ture network DYS-DEN 1 = (N1,S1, τ1), with 
orresponden
es:
N1 = N (ninit), S1 = ∐N∈NSN with SN = Πi∈DSi = S1, τ1 = ρN restri
ted to
τ1 : S1 → N (ninit).Remark 3.2. The Dynami
 Stru
ture Formalism Framework allows representinga DynamicDEV S network, limitating: (i) lo
al stru
ture 
hanges to be onlyinternal stru
ture 
hanges of atomi
 models, and (ii) global stru
ture 
hangesto be a
hieved only by the dynami
 stru
ture network.Another 
lass of dynami
 stru
ture systems 
onsists of mobile agents. Mod-eling mobile agents has been done using the Heterogeneous Flow System Spe
-i�
ation (HFSS ) formalism, whi
h 
ombines with the Continuous Flow SystemSpe
i�
ation (CFSS ) to represent 
ontinuous �ow systems and DEVS[7℄. Aset of 
onne
ted networks (ea
h one embedding an exe
utive) sequentially add,transmit, and then destroy a single migrating agent. It 
an be easily shownthat this is equivalent to a dynami
 sequential single point of 
ontrol, ea
h pointa
hieving only self-
hanges of stru
ture. For the same 
lass of mobile agents,a DEVS -based formalism has been proposed: Mobile DEVS (MDEVS )[8℄. Inthis formalism, many agents 
an be �added, transmitted, and then destroyed�in the networks. It 
an be shown that this formalism is also equivalent to the
ase of dynami
 single points of 
ontrol.4 De
entralization of stru
ture 
hange operationsUsing a dynami
 single point of 
ontrol allows enhan
ing de
entralization at twolevels:1. Globally: Having ea
h dynami
 stru
ture 
omponent operating at networklevel. This is already a step toward de
entralization with respe
t to usualdynami
 stru
ture formalisms (whi
h are 
entralizing network operations).However, we will see that this approa
h 
an be 
onsiderered as partiallymodular.2. Lo
ally: Having ea
h dynami
 stru
ture 
omponent operating at interfa
eand 
ouplings levels (here with in�uen
ee permission). This new approa
h
an be 
onsiderered as fully modular.4.1 Counter-arguments to usual dynami
 stru
ture mod-ularityThe hierar
hy of systems spe
i�
ation[6℄ is grounded on 
omponentsmodularity :The state of 
omponents 
an only be 
hanged: (i) externally by another 
ompo-10



nent, through interfa
e intera
tions, or (ii) internally by the 
omponent itself. In
omputer programming this is 
alled en
apsulation. In dynami
 stru
ture sys-tems, 
hanging other-stru
ture remains a major issue. Changing self-stru
ture
an impa
t the stru
ture of the network and of other 
omponents (e.g., deletingself-output requires deleting 
orresponding 
oupling and other-input of in�u-en
ee 
omponents). Then, be
ause of stru
ture 
hange propagation it is hardto ensure stru
ture 
onsisten
y at 
omponent and network level.As depi
ted in previous se
tion, one solution is to have only one (network)
omponent in 
harge of 
oupling 
hanges (DynDEVS ) or all stru
ture 
hanges(DSDEVS ). Authors' philosophy 
ould be sum up by argument: �only the net-work 
an 
hange the interfa
e stru
tures of its 
omponents to ensure modular-ity�. However, it 
an be argued a major 
ounter-argument:Allowing networks to a
hieve stru
ture/state 
hange is a holisti

hange of perspe
tive while the usual hierar
hy of systems spe
i-�
ation is purely redu
tionnist (the network having no ability to
hange stru
ture/state being merely a 
omposition of dynami

omponents).Then, allowing networks to 
hange the stru
ture/state of 
omponents 
ouldalso be 
onsidered as a violation of the modularity 
on
ept simply be
ause then
omponents are not the only ones to 
hange their state.Having a stati
 point of 
ontrol is a simpli�
ation of purely autonomous sys-tems only intera
ting through interfa
es. Allowing many 
omponents to 
hangeea
h-other stru
ture requires de�ning syn
hronization intera
tion proto
ols that
an rapidly be
ome 
omplex to implement. In the next subse
tions we de�nesu
h proto
ols for elementary stru
ture 
hange operations. These me
hanisms
an be automated and 
ombined to a
hieve multiple stru
ture 
hanges. Nowlet's �rst a
hieve a �rst step towards de
entralization having ea
h dynami
 stru
-ture 
omponent being able to operate at network level.4.2 Global stru
ture 
hange operationsTheorem 3.2 already showed that 
onsidering an initial network
N = (X,Y,D, {Md}, {Id}, {Zi,d}), where ea
h 
omponent d ∈ D is a basi
 dy-nami
 stru
ture 
omponent DYS-DEVSd, ea
h network stru
ture N ∈ N 
anbe rea
hed by a resultant DYS-DEVS = (M,S, τ). However, the global stateof 
omponents is used lo
ally for 
omponent sele
tion thus de
reasing 
ontrolautonomy.Here, the whole system is simpli�ed ensuring network stru
ture 
onsisten
yand having more autonomy at 
omponent level. Ea
h 
omponent d ∈ D of thenetwork is a dynami
 stru
ture network 
omponent DYS-DEN d = (Nd,Sd, τint,d)with τint,d : Sd → Nd. Noti
e that stu
ture transition fun
tions τint,d are inter-nal ones, i.e., based on internal state transitions.11



Theorem 4.1. Consider an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}),where for ea
h d ∈ D, Md is a dynami
 stru
ture networkDYS-DEVNd = (Nd,Sd, τint,d), the state set of the network is S = S1 × S2 ×
... × Sp, where S1 is the state set of the �rst 
omponent DYS-DEVN1, S2 isthe state set of the se
ond 
omponent DYS-DEVN2, et
. If a dynami
 singlepoint of 
ontrol is su

essively assigned to only one 
omponent DYS-DEVNd =
(Nd,Sd, τint,d), the set of networks N is equivalent to a resultant DYS-DEVS =
(M,S, τint).Proof. The main di�eren
e with Theorem 4.1 is that there is no 
y
le of dynami
single points of 
ontrol. Remember now that the exe
ution of ea
h internal stu
-ture transition τint,d is driven by an internal state transition τint,d(δint,d(sd)). A
omponent 
andidate for a stru
ture 
hange is thus 
andidate �rst for an internaltransition. And here is the interesting point in usual DEVS, at ea
h global statetransition, only one 
omponent, among 
andidates for internal transitions2, is
hosen by Sele
t fun
tion. Therefore, only one 
andidate for stru
ture 
hangeis 
hosen at ea
h global state transition avoiding stru
ture 
on�i
ts.Finally, ea
h resultant stru
ture 
hange transition 
onsists of the exe
utionof one dynami
 stru
ture network 
omponent d∗ = Select(IMM), i.e.,1. For ea
h non-
reated 
omponent i ∈ D ∩ D′,

τ(. . . ,si, . . . ) = τd∗(sd∗) = N ′.2. For ea
h new 
omponent i ∈ (D′ −D), initialized to initial state
s0,i, τ(. . . ,si, . . . ) = τd∗(sd∗) = (N ′, (. . . ,s0,i, . . . )).4.3 Lo
al stru
ture 
hange operationsHere 
ome the tri
ky stru
ture 
hange operations a
hieved by basi
 
omponents.To ensure stru
ture 
onsisten
y, at both lo
al and global levels, syn
hronizationme
hanisms are de�ned.4.3.1 Dynami
 stru
ture syn
hronizationTo ensure modularity, 
omponents 
annot 
hange other-interfa
es. As for state
hanges, stru
ture 
hanges 
an only be asked through interfa
e intera
tions anda
hieved by the 
omponent itself. Spe
ial input �query� and spe
ial output�done� of basi
 dynami
 stru
ture 
omponents are used for 
hange syn
hroniza-tion.De�nition 4.1. Stru
ture 
hange syn
hronization 
onditions:2Candidates for internal transition 
ompose the imminent set IMM = {σd | d ∈ D ∧ σd =

ta(s)}, with σd the time remaining to the next event σd = tad(sd)− ed, and tad(sd) the timeadvan
e of a 
omponent model.
12



• Ea
h dynami
 stru
ture 
omponent has extra stru
ture query/done inter-fa
e.
• Ea
h dynami
 stru
ture in�uen
er has query outgoing 
oupling and donein
oming 
oupling with all its in�uen
ees.
• Dynami
 stru
ture 
omponents 
an:� 
hange its external stru
ture and 
orresponding outgoing 
ouplingsafter request/done proto
ol (querying 
orresponding in�uen
ee toadd/remove 
orresponding input),� 
hange its internal stru
ture,� 
reate/remove other 
omponents,� query its in�uen
ees to perform stru
ture 
hanges.Proposition 4.1. Changing other-stru
ture 
an only be a
hieved through in-terfa
e intera
tions. This respe
ts totally modularity 
on
ept as de�ned in thehierar
hy of systems spe
i�
ation[6℄.However, 
hanging the external stru
ture of a 
omponent as well as adding/removinga 
oupled 
omponent requires the 
omplian
e of impa
ted in�uen
ees as well asupdating network stru
ture while ensuring that this whole stru
ture 
hangesequen
e 
annot be interrupted. To a
hieve this goal, a syn
hronization me
h-anism 
an be used.De�nition 4.2. Lo
k syn
hronization of stru
ture 
hanges is depi
ted in Fig-ure 2 for two 
omponents. Component a aims at a
hieving a stru
ture 
hangeimpa
ting the stru
ture of in�uen
ee 
omponent b. This follows the sequen
e:1. Component a sends a query message to 
omponent b to 
hangestru
ture,2. Component b 
hanges self-stru
ture to 
omply with the new stru
-ture aimed by 
omponent a,3. Component b sends a done message to 
omponent a,4. Finally, 
omponent a 
hanges self-stru
ture and updates networkstru
ture.

13



Figure 2: UML intera
tion diagram for request/done syn
hronization proto
olfor dynami
 stru
ture 
hange between 
omponent a and 
omponent b.In the next se
tions this syn
hronization proto
ol is applied to addition anddeletion operations.4.3.2 Addition operationsExample 4.1. A 
omponent a adds query/done 
oupling with a 
omponent b.There are no query/done 
ouplings between 
omponent a and 
omponent b.However, as all dynami
 stru
ture 
omponents, 
omponents a and b have ex-isting query/done interfa
es. As des
ribed in Figure 3, 
omponent a needs �rstto self-add a query outgoing 
oupling with 
omponent b. After, 
omponent arequests 
omponent b to self-add a done outgoing 
oupling. Finally, 
omponentb 
on�rms the addition operation sending a done 
on�rmation to 
omponent a.

14



Figure 3: UML intera
tion diagram for request/done 
oupling addition between
omponent a and 
omponent b.Example 4.2. A 
omponent a adds an outgoing state 
oupling with a 
ompo-nent b.As des
ribed in Figure 4, 
omponent a needs �rst to request 
omponent bto add 
orresponding state input. After, 
omponent b 
on�rms the additionoperation sending a done 
on�rmation to 
omponent a. Finally, 
omponent aself-adds 
orresponding output and outgoing state 
oupling with 
omponent b.
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Figure 4: UML intera
tion diagram for outgoing state 
oupling addition between
omponent a and 
omponent b.4.3.3 Deletion operationsExample 4.3. Mutual deletion of query/done outgoing 
ouplings between 
om-ponents a and b.As des
ribed in Figure 5, As for outgoing state 
oupling addition, 
omponenta needs �rst to request 
omponent b to delete 
orresponding input. On
e 
om-ponent a re
eives the done 
on�rmation from 
omponent b, it self-deletes its out-put and outgoing 
oupling to 
omponent b. For symmetry reasons, 
omponentb self-deletes 
orresponding done output and outgoing 
ouplings to 
omponentb.
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Figure 5: UML intera
tion diagram for mutual request/done 
oupling deletionbetween 
omponent a and 
omponent b.Example 4.4. A 
omponent b deletes itself.As des
ribed in Figure 6, 
omponent b queries �rst all its in�uen
ees (
om-ponent a) to self-delete their inputs from 
omponent b. After this deletion,
omponent a sends a done message after whi
h 
omponent b deletes all its out-going 
ouplings and outputs to 
omponent a. After, 
omponent a follows thesame proto
ol to remove its outputs and outgoing 
ouplings to 
omponent b.Finally, 
omponent b deletes itself.

17



Figure 6: UML intera
tion type diagram of request/response proto
ol for 
om-ponent b self-deletion.4.3.4 Independen
e of lo
al stru
ture 
hangesProposition 4.2. Based on a query/done message ex
hange proto
ol, a stru
-ture 
hange lo
k is a syn
hronization me
hanism ensuring: (i) no interferen
esbetween external stru
ture 
hanges, and (ii) stru
ture 
onsisten
y at networklevel.Lemma 4.1. Lo
al external stru
ture 
hanges do not interfere.Proof. At ea
h global transition, only one imminent 
omponent is sele
ted:
d∗ = Select(IMM), with imminent 
omponents IMM = {σd | d ∈ D ∧ σd =
ta(s)}. The basi
 lo
k syn
hronization me
hanism between two dynami
 stru
-ture 
omponents (
f. Figure 2) follows a zero time advan
e sequen
e. First,imminent 
omponent i∗ is sele
ted to send a query message to an in�uen
ee
j ∈ Ii∗ . The latter a
hieves an external stru
ture 
hange transition
(M ′

ext,j, s
′
j) = τext,j(Mext,j , δext,j(sj , ej, xj)) and s
hedules an internal transi-tion δint,j(sj). At the same time, if 
omponent j re
eives another query mes-sage, as in 
lassi
 DEV S, δext,j(δint,j(sj), 0, xj), internal transition δint,j(sj)is exe
uted �rst, and 
omponent j∗ sends the done message to initial query-ing 
omponent i ∈ Ij∗ , whi
h exe
utes its external stru
ture transition fun
-tion. The latter �rst 
hanges the external stru
ture of 
omponent i ∈ D as

(M ′
ext,i, s

′
i) = τext,i(Mext,i, δext,i(si, ei, xi)) and �nally updates network stru
-ture based on new stru
turesM ′

ext,i andM ′
ext,j , i.e., N ′ = τext,i(N, δext,i(si, ei, xi)).18



Lemma 4.2. Lo
al internal stru
ture 
hanges do not interfere.Proof. Obvious from the de�nition of internal models (
f. De�nition 2.4).Theorem 4.2. Lo
al dynami
 stru
ture 
hanges do not interfere.Proof. Obvious from Lemma 4.2 and Lemma 4.1.Theorem 4.3. Considering an initial network
N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select), where ea
h 
omponent d ∈ D is abasi
 dynami
 stru
ture 
omponent DYS-DEVSd, and where there are dynami
single lo
al points of 
ontrol of stru
ture 
hanges of modelsMd = (Mext,d,Mint,d), the set of networks N is equivalent to a resultant DYS-DEVS = (M,S, τ).Proof. As lo
al stru
ture 
hanges do not interfere (
f. Theorem 4.2),1. For ea
h non-
reated 
omponent d ∈ D ∩ D′,

τ(...,Md, sd, . . . ) = (..., τd(Md, sd), ...) = N ′,2. For ea
h new 
omponent d ∈ (D′ −D), initialized to initial state
s0,d: τ(...,Md, sd, . . . ) = (..., τd(Md, sd), ...) = (N ′, (..., s0,d, ...)).4.3.5 Closure under 
ouplingTheorem 4.4. DYS-DEVS formalism is 
losed under 
oupling, i.e., 
onsid-ering an initial network N = (X,Y,D, {Md}, {Id}, {Zi,d}, Select),where ea
h
omponent d ∈ D is a basi
 dynami
 stru
ture 
omponent DYS-DEVSd, andwhere there are dynami
 single points of 
ontrol of stru
ture 
hanges, the set ofnetworks N is equivalent to a resultant DEVS = (X,Y, S, δext, δint, λ, ta).Proof. Let the time remaining to the next event σd = tad(sd)− ed, with tad(sd)the time advan
e of a 
omponent model Md, sd its 
urrent state, ed its timeelapsed time sin
e the last event. Then, the time advan
e of the resultant is

ta(s) = min{σd , | d ∈ D}.External transitions s′ = δext(s, e, x) at resultant level 
an be expressed at
omponent level by:
s′d =







δext,d(sded, xd) if d ∈ D ∩D′, N ∈ Id, xd 6= Ø
sd,0 if d ∈ (D −D′)
sd otherwiseInternal transitions s′ = δint(s) at resultant level 
an be expressed at 
om-ponent level by:

s′d =















δext,d(sded, xd) if d ∈ D ∩D′, d ∈ Id∗ , xd 6= Ø
δint,d(sd) if d ∈ D ∩D′, d∗ = d

sd,0 if d ∈ (D −D′)
sd otherwise
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4.3.6 Legitima
yGeneral 
losure under 
oupling yields aDEVS whi
h is not ne
essarily legitimate- there 
ould be a loop of 
omponents that a
tivate ea
h other without advan
ingtime (ea
h having a transient (zero-time) state to output and then waiting forinput). Hen
e, the same situation 
an hold for the non dynami
 stru
ture partof a DYS-DEVS, 
onsidering dynami
 stru
ture operations at network level.Therefore, 
onditions of DYS-DEVS legitima
y have to be exposed.Theorem 4.5. A DYS-DEN = (N ,S, τ) is legitimate (i.e., 
orresponding dy-nami
 stru
ture operations always terminate) if ea
h network N ∈ N is legiti-mate, the resultant being also legitimate.Proof. A DEVS M is legitimate under following 
onditions[6℄:1. M is �nite (partial state set S is �nite): Every 
y
le in thestate diagram of internal transitions δint 
ontains a non-transitory state ta(s) > 0 (ne
essary and su�
ient 
ondi-tion).2. M is in�nite: There is a positive lower bound on the timeadvan
es, i.e., ∃b ∀s ∈ S, ta(s) > b (su�
ient 
ondition).Although, it has been proved in Theorem 4.2 that 
on�uent dynami
 stru
-ture operations do not interfere, for sake of simpli
ity it is assumed here thatthere are no 
on�uent dynami
 stru
ture operations for ea
h network N ∈ N .Then, at ea
h time, ea
h 
omponent 
an be 
on
erned by only one dynami
stru
ture operation.Also, it is assumed that ea
h network N ∈ N is legitimate, i.e., ea
h 
orre-sponding resultant does not get stu
k in time and spe
i�es a well-de�ned dynami
system.In a network, among basi
 dynami
 stru
ture operations, self-deletion (
f.Example 4.4) 
onsists of 9 
onse
utive internal and external transitions. It isthe longest sequen
e of basi
 dynami
 stru
ture operations. Ea
h other basi
dynami
 stru
ture operation terminates in fewer (zero-time) transitions. Toshow this, both internal and external dynami
 stru
ture 
hanges 
an be 
onsid-ered. Being independent, for one 
omponent d ∈ D, 
hanging its internal model
Mint,d 
onsists merely of 1 transition: (M ′

int,d, s
′
d) = τint,d(Mint,d, δint,d(sd)).Depending on the intera
tion of one requesting 
omponent i ∈ D and one an-swering 
omponent j ∈ D, 
hanging external model Mext,i implies 
hangingexternal model Mext,j. This 
onsists of a basi
 lo
k syn
hronization messageex
hanges (
f. Figure 2), i.e.:
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1. Two transitions for 
omponent i ∈ D:(a) δint,i(request),(b) (M ′
ext,i, s

′
i) = τext,i(Mext,i, δext,i(request, 0, done)).2. Two transitions for 
omponent j ∈ D:(a) δint,j(done),(b) (M ′

ext,j , done) = τext,j(Mext,j , δext,j(sj , ej, request)).Hen
e, 
hanging external models 
onsists of 4 zero-time transitions. Finally,self-deletion of a 
omponent i ∈ D 
onsists of summing the following steps:1. Mutually 
hanging both external models Mext,j with i ∈ Ij (re-moving 
orresponding input/output of 
omponent j ∈ D and out-going 
ouplings to 
omponent i ∈ D) and external model Mext,i(removing 
orresponding input/output of 
omponent i ∈ D andoutgoing 
ouplings to 
omponent j ∈ D) - 8 zero-time transitions;2. Self-deletion �nally 
onsisting of the deletion of internal model
Mint,i (in
luding the update of network stru
ture) - 1 zero-timetransition.Considering a DYS-DEN = (N ,S, τ), where ea
h network N ∈ N is legiti-mate, 
orresponding dynami
 stru
ture operations always terminate individuallyin less than 9 zero-time transitions, then the resultant is legitimate.5 Con
lusion and perspe
tiveUsing single point en
apsulated 
ontrol fun
tions this arti
le proves that a fullymodular de
entralization of dynami
 stru
ture systems is possible while keepingthe approa
h simple enough. Futhermore, a new way of integrating formalismsand spe
ifying dynami
 stru
ture dis
rete event systems is proposed.The goal of this work is really to preserve and to parti
ipate to the diversityof the dynami
 stru
ture resear
h �eld. Modeling the intera
tions betweenstru
ture and state dynami
s is not easy. However, this should not be an ex
usefor 
onstraining too mu
h the 
ontrol me
hanisms. Otherwise, it is well knownthat too mu
h 
onstraints kills diversity and usually leads to the sterilizationof a �eld. It is hoped that this 
ontribution will be the o

asion to share newperspe
tives.A �rst perspe
tive 
on
erns the implementation of abstra
t simulators toautomate request/done message ex
hange proto
ol. A se
ond perpe
tive 
on-
erns the generalization of single points of 
ontrol to multiple points of 
ontrolallowing many stru
ture 
hanges to o

ur in parallel.Referen
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