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Abstract. In this paper we present a new algorithm for multivariate
interpolation of scattered data sets lying in convex domains Ω ⊆ R

N , for
any N ≥ 2. To organize the points in a multidimensional space, we build
a kd-tree space-partitioning data structure, which is used to efficiently
apply a partition of unity interpolant. This global scheme is combined
with local radial basis function approximants and compactly supported
weight functions. A detailed description of the algorithm for convex do-
mains and a complexity analysis of the computational procedures are
also considered. Several numerical experiments show the performances
of the interpolation algorithm on various sets of Halton data points con-
tained in Ω, where Ω can be any convex domain like a 2D polygon or a
3D polyhedron.

Keywords: Meshfree Approximation, Multivariate Algorithms, Parti-
tion of Unity Methods, Scattered Data.

1 Introduction

In this paper we deal with the problem of interpolating a (usually) large number
of multivariate scattered data points lying in convex domains or, more precisely,
in convex hulls Ω ⊆ R

N , for any N ≥ 2. In general, this problem is considered
in literature supposing to interpolate data points which are situated in suit-
able or simple domains such as hypercubes or hyperrectangles (see e.g. [7,8,11]).
Thus we construct a numerical algorithm which can efficiently be used for scat-
tered data interpolation in Ω. To organize the points in a multivariate space,
we make use of a space-partitioning data structure known as kd-tree (see [12]).
This code is designed to numerically approximate data points by the partition of
unity method, a global interpolation scheme which is combined with local radial
basis function (RBF) approximants and compactly supported weight functions
(see [9,13,14]). A detailed design of this algorithm as well as an analysis of its
complexity is considered.

Moreover, we observe that the implemented code is completely automatic
and any choice depending on the space dimension has suitably been studied so
that this algorithm can work for any dimension. Numerical experiments show
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the performances of the interpolation algorithm on various sets of Halton data
points contained in Ω ⊆ R

N , for N = 2, 3. Here, Ω is any convex domain like a
2D polygon (e.g., a triangle or a hexagon) or a 3D polyhedron (e.g., a pyramid
or a cylinder). Note that this algorithm for convex hulls extends our previous
works on the topic [3,4,5,6].

The paper is organized as follows. In Section 2 we give a general presentation
of the partition of unity interpolation combined with local radial basis functions,
reporting some theoretical results. In Section 3, we describe the algorithm for
convex hulls and analyze its complexity. In Section 4, in order to show accuracy
and efficiency of the interpolation algorithm, we report numerical experiments
considering various sets of scattered data points contained in 2D and 3D convex
domains. Finally, Section 5 refers to conclusions and future work.

2 Partition of Unity Interpolation

Let Xn = {xi, i = 1, 2, . . . , n} be a set of distinct data points, arbitrarily dis-
tributed in a domain Ω ⊆ R

N , N ≥ 1, with an associated set Fn = {fi, i =
1, 2, . . . , n} of data values or function values, which are obtained by sampling
some (unknown) function f : Ω → R at the data points, i.e., fi = f(xi),
i = 1, 2, . . . , n.

The basic idea of the partition of unity method is to start with a partition
of the open and bounded domain Ω ⊆ R

N into d subdomains Ωj such that

Ω ⊆ ⋃d
j=1 Ωj with some mild overlap among the subdomains. Associated with

these subdomains we choose a partition of unity, i.e. a family of compactly
supported, non-negative, continuous functions Wj with supp(Wj) ⊆ Ωj such
that

d
∑

j=1

Wj(x) = 1, x ∈ Ω. (1)

The global approximant thus assumes the following form

I(x) =
d

∑

j=1

Rj(x)Wj(x), x ∈ Ω. (2)

For each subdomain Ωj we define a local RBF interpolant Rj : Ω → R of the
form

Rj(x) =

nj
∑

k=1

ckφ(d(x,xk)), (3)

where d(x,xk) = ||x− xk||2 is the Euclidean distance, φ : [0,∞) → R is called
radial basis function, and nj indicates the number of data points inΩj . Moreover,
Rj satisfies the interpolation conditions

Rj(xi) = fi, i = 1, 2, . . . , nj . (4)
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In particular, we observe that if the local approximants satisfy the interpolation
conditions (4), then the global approximant also interpolates at xi, i.e. I(xi) =
f(xi), for i = 1, 2, . . . , nj .

Solving the j-th interpolation problem (4) leads to a system of linear equa-
tions of the form

Φc = f ,

where entries of the interpolation matrix Φ are

Φik = φ(d(xi,xk)), i, k = 1, 2, . . . , nj ,

c = [c1, c2, . . . , cnj
]T and f = [f1, f2, . . . , fnj

]T .
Now, we give the following definition (see [13]).

Definition 1. Let Ω ⊆ R
N be a bounded set. Let {Ω}dj=1 be an open and

bounded covering of Ω. This means that all Ωj are open and bounded and that
Ω is contained in their union. A family of nonnegative functions {Wj}dj=1 with

Wj ∈ Ck(RN ) is called a k-stable partition of unity with respect to the covering
{Ωj}dj=1 if

1) supp(Wj) ⊆ Ωj;

2)
∑d

j=1 Wj(x) ≡ 1 on Ω;

3) for every β ∈ N
N
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L∞(Ωj) ≤ Cβ/δ
|β|
j , j = 1, 2, . . . , d,

where δj = diam(Ωj) = sup
x,y∈Ωj

||x− y||2.

In accordance with the statements in [13] we require some additional regu-
larity assumptions on the covering {Ωj}dj=1.

Definition 2. Suppose that Ω ⊆ R
N is bounded and Xn = {xi, i = 1, 2, . . . , n} ⊆

Ω are given. An open and bounded covering {Ωj}dj=1 is called regular for (Ω,Xn)
if the following properties are satisfied:

(a) for each x ∈ Ω, the number of subdomains Ωj with x ∈ Ωj is bounded by a
global constant K;

(b) each subdomain Ωj satisfies an interior cone condition [14];
(c) the local fill distances hXnj

,Ωj
, where Xnj

= Xn ∩Ωj, are uniformly bounded

by the global fill distance hXn,Ω, i.e.

hXn,Ω = sup
x∈Ω

min
xk∈Xn

d(x,xk).

After defining the space Ck
ν (R

N ) of all functions f ∈ Ck whose derivatives
of order |β| = k satisfy Dβf(x) = O(||x||ν2) for ||x||2 → 0, we consider the
following convergence result (see, e.g., [7,14]).
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Theorem 1. Let Ω ⊆ R
N be open and bounded and suppose that Xn = {xi, i =

1, 2, . . . , n} ⊆ Ω. Let φ ∈ Ck
ν (R

N ) be a strictly positive definite function.
Let {Ωj}dj=1 be a regular covering for (Ω,Xn) and let {Wj}dj=1 be k-stable for

{Ωj}dj=1. Then the error between f ∈ Nφ(Ω), where Nφ is the native space of φ,
and its partition of unity interpolant (2) can be bounded by

|Dβf(x)−DβI(x)| ≤ Ch
(k+ν)/2−|β|
Xn,Ω

|f |Nφ(Ω),

for all x ∈ Ω and all |β| ≤ k/2.

If we compare this result with the global error estimates (see e.g. [14]), we
can see that the partition of unity preserves the local approximation order for
the global fit. This means that we can efficiently compute large RBF interpolants
by solving small RBF interpolation problems and then glue them together with
the global partition of unity {Wj}dj=1. In other words, the partition of unity
approach is a simple and effective technique to decompose a large problem into
many small problems while at the same time ensuring that the accuracy obtained
for the local fits is carried over to the global one.

3 Algorithm for Convex Hulls

In this section we present an algorithm for multivariate interpolation of scattered
data sets lying in a convex domain (or convex hull) Ω ⊆ R

N , for any N ≥ 2.
This code is based on a global partition of unity interpolant using local RBF
interpolants and compactly supported weight functions. To organize the points
in a multivariate space, we build an efficient space-partitioning data structure
as the kd-trees, because this enables us to efficiently answer a query, known as
range search (see [1,2]). In fact, we need to solve the following computational
issue:

Given a set X of points xi ∈ X and a subdomain Ωj , find all points situated
in that subdomain, i.e. xi ∈ Xj = X ∩Ωj.

Note that the subdomain Ωj denotes a generic region, so the index j is here
fixed. For simplicity, all details of this algorithm concern a generic convex hull
Ω ⊆ [0, 1]N , but its generalization is obviously possible and straightforward.

3.1 Description of the Algorithm

INPUT: N , space dimension; n, number of data; Xn = {xi, i = 1, 2, . . . , n}, set
of data points; Fn = {fi, i = 1, 2, . . . , n}, set of data values.

OUTPUT: As = {I(x̃i), i = 1, 2, . . . , s}, set of approximated values.

Stage 1. The set Xn of data points and the set Fn of data values are loaded.

Stage 2. After computing the number d of subdomain points, a set Cd =
{x̄j , j = 1, 2, . . . , d} ⊆ Ω of subdomain points is constructed1. Note that the

1 This set is obtained by generating a grid of equally spaced points on the hypercube
[0, 1]N . They are then automatically reduced taking only those in Ω by the inhull

Matlab function. Such points are the centres of partition of unity subdomains.
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number d depends on both the data point number n and the space dimension
N ; furthermore, it is suitably chosen assuming that the ratio n/d ≈ 2N+1.

Stage 3. The number s of evaluation points is computed and a set Es = {x̃i, i =
1, 2, . . . , s} ⊆ Ω of evaluation points is generated.

Stage 4. For each subdomain point x̄j , j = 1, 2, . . . , d, a local spherical subdo-
main is constructed, whose radius is

δΩj
=

√
2

D1/N
, (5)

where D is the number of subdomain points initially generated on [0, 1]N .

Stage 5. The kd-tree data structures are built for the set Xn of data points and
the set En of evaluation points.

Stage 6. For each subdomain Ωj , j = 1, 2, . . . , d, the range query problem
is considered, adopting the related searching procedure which consists of the
following two steps:

i) Find all data points (i.e. the set Xnj
) belonging to the subdomain Ωj and

construct a local interpolation RBF matrix by Xnj
, where nj denotes the

point number of Xnj
.

ii) Determine all evaluation points (i.e. the set Esj ) belonging to the subdomain
Ωj and build a local evaluation RBF matrix by Esj , where sj is the point
number of Esj .

Stage 7. A local RBF interpolant Rj and a weight function Wj , j = 1, 2, . . . , d,
is computed for each evaluation point.

Stage 8. The global fit (2) is applied, accumulating all the Rj and Wj .

In this algorithm for convex domains the local interpolants are computed
by using compactly supported RBFs as the Wendland functions. However, this
approach is completely automatic and turns out to be very flexible, since differ-
ent choices of local approximants, either globally or compactly supported, are
allowed.

3.2 Complexity Analysis

The algorithm is based on the construction of kd-tree data structures. They
enable us to efficiently determine all data points belonging to each subdomain
Ωj , j = 1, 2, . . . , d, so that we can compute local RBF interpolants to be used
in the partition of unity scheme. Then, assuming that the covering {Ωj}dj=1 is
regular and local and the set Xn of data points is quasi-uniform, we analyze the
complexity of this interpolation algorithm.

In Stages 1-4 we have a sort of preprocessing phase where we automatically
load all data sets and define the parameters concerning data, subdomain and
evaluation points. To construct an algorithm which efficiently works in a generic
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space dimension N , we require that the subdomain number d is proportional to
the data point number n, taking n/d ≈ 2N+1.

In Stage 5 we build the kd-trees, which needs O(Nn logn) time and O(Nn)
space for n data points and O(Ns log s) time and O(Ns) space for s evaluation
points. Then, in Stage 6 we make use of the range search procedure for each
subdomain Ωj , j = 1, 2, . . . , d, whose running times are O(log n) and O(log s),
respectively (see [14]).

Since the number of centres in each subdomain Ωj is bounded by a constant
(see Definition 2), we need O(1) space and time for each subdomain to solve
the local RBF interpolation problems. In fact, in order to obtain the local RBF
interpolants, we have to solve d linear systems of (relatively) small sizes, i.e.
nj × nj, with nj << n, thus requiring a constant running time O(n3

j ), j =
1, 2, . . . , d, for each subdomain. Besides reporting the points in each subdomain
in O(1), as the number d of subdomains Ωj is bounded by O(n), this leads to
O(n) space and time for solving all of them.

Thus, in Stage 7 and 8 we have to add up a constant number of local RBF
interpolants to get the value of the global fit (2). This can be computed in O(1)
time.

4 Numerical Experiments

In this section we present some numerical experiments we made to test our
procedures implemented inMatlab environment. All the tests have been carried
out on a Intel Core i7-4500U 1.8 GHz processor. In our results we report errors
and CPU times obtained by running the algorithm on a few scattered data sets,
which are located in a convex hull Ω ⊆ [0, 1]N , for N = 2, 3. As interpolation
points, we take uniformly random Halton data points. They are generated by
using the program haltonseq.m, available at [10], and then suitably reduced to
Ω. We observe that this code for convex domains is completely automatic and,
though we here focus only on bivariate and trivariate interpolation, it might also
be used in higher dimensions.

In order to point out accuracy of this algorithm, we compute on a reduced
grid of s evaluation points2 Maximum Absolute Error (MAE) and Root Mean
Square Error (RMSE), whose formulas are

MAE = max
1≤i≤s

|f(x̃i)− I(x̃i)|, (6)

and

RMSE =

√

√

√

√

1

s

s
∑

i=1

|f(x̃i)− I(x̃i)|2. (7)

2 The number s depends on the convex domain Ω; at first, we construct a uniform
grid of 40N points, and then we automatically reduce them taking only those in Ω

through the inhull Matlab function.
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Moreover, we report results obtained by using as basis the Wendland C2

function, i.e.,

φ(r) = (1− δr)
4
+ (4δr + 1) ,

where δ ∈ R
+ is a shape parameter, r = || · ||2 is the Euclidean distance, and (·)+

denotes the truncated power function. We remark that this RBF is compactly
supported (i.e., its support is [0, 1/δ]) and strictly positive definite in R

N for
N ≤ 3 (see [14]). Note that here it is used as both a basis function and a
localizing function of Shepard’s weight Wj in the global fit (2).

4.1 Results for 2D Convex Hulls

In this subsection we focus on bivariate interpolation, analyzing performances
of our algorithm for convex hulls and showing the numerical results obtained by
considering five sets of Halton data points. These tests are carried out considering
different convex domains, i.e., a triangle, a disk and a hexagon (see Figure 1).
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Fig. 1: Examples of points in 2D convex hulls. Left: triangle, 805 nodes; center:
disk, 1257 nodes; right: hexagon, 1204 nodes.

In the various experiments we investigate accuracy of the interpolation algo-
rithm taking the data values by the well-known 2D Franke’s test function

f2(x1, x2) =
3

4
e−

(9x1−2)2+(9x2−2)2

4 +
3

4
e−

(9x1+1)2

49 −
9x2+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2 .

After showing in Figure 2 the stable behavior of RMSEs by varying the value
of δ ∈ [0.1, 3], for each of convex domains we report MAEs and RMSEs taking
δ = 0.1 as shape parameter of the Wendland C2 function. Then, since we are
also concerned to point out the efficiency of the algorithm, in Tables 1–3 we
show CPU times computed in seconds.

Finally, in Figure 3 we represent the 2D Franke’s function (left) and the
absolute errors (right) computed on convex domains. This study shows that the
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Fig. 2: RMSEs by varying the value of δ. Left: triangle; center: disk; right:
hexagon.

Table 1: Errors and CPU times (in seconds) for triangle using δ = 0.1.

n MAE RMSE time

51 1.04E − 01 1.06E − 02 0.1
200 6.57E − 02 3.60E − 03 0.2
451 1.26E − 02 6.11E − 04 0.3
805 7.39E − 03 3.00E − 04 0.4
1256 3.72E − 03 1.65E − 04 0.6

Table 2: Errors and CPU times (in seconds) for disk using δ = 0.1.

n MAE RMSE time

80 2.64E − 02 4.94E − 03 0.1
317 5.12E − 03 4.22E − 04 0.2
706 1.99E − 03 1.25E − 04 0.4
1257 3.29E − 04 3.51E − 05 0.6
1960 3.23E − 04 2.39E − 05 0.9

Table 3: Errors and CPU times (in seconds) for hexagon using δ = 0.1.

n MAE RMSE time

76 4.43E − 02 6.35E − 03 0.1
300 5.56E − 03 5.82E − 04 0.2
678 2.38E − 03 1.72E − 04 0.4
1204 6.40E − 04 6.07E − 05 0.6
1877 6.32E − 04 3.98E − 05 0.8
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maximum errors mainly concentrate on or close to the boundary of the convex
hull. Note that, for shortness, in this paper we report numerical results obtained
on a single example (or data set), but similar situations appear in all considered
cases.

4.2 Results for 3D Convex Hulls

In this subsection we instead report numerical results concerning trivariate in-
terpolation. As earlier, we analyze accuracy and efficiency of the partition of
unity algorithm for convex hulls, taking also in this case some sets of Halton
scattered data points. Such points are located in three different convex domains:
a pyramid, a cylinder and a hexagonal prism (see Figure 4).

In the various tests we analyze the performances of the proposed algorithm
taking the data values by 3D Franke’s function, whose analytic expression is

f3(x1, x2, x3) =
3

4
e−

(9x1−2)2+(9x2−2)2+(9x3−2)2

4 +
3

4
e−

(9x1+1)2

49 −
9x2+1

10 −
9x3+1

10

+
1

2
e−

(9x1−7)2+(9x2−3)2+(9x3−5)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2−(9x3−5)2 .

As in the bivariate case, for each of convex hulls in Tables 4–6 we show
MAEs, RMSEs and CPU times obtained by running our interpolation algorithm.
These results are obtained taking δ = 0.1. Here, we omit the graphs of RMSEs
by varying δ because this study revealed a behavior similar to that outlined
in Figure 2. Moreover, in dimension three we observed a even more relevant
concentration of maximum errors on (or close to) the boundary of convex hulls.

Table 4: Errors and CPU times (in seconds) for pyramid using δ = 0.1.

n MAE RMSE time

335 1.15E − 01 5.03E − 03 4.8
2670 3.42E − 02 5.88E − 04 17.4
8995 1.21E − 02 1.60E − 04 30.1
21337 1.66E − 02 1.59E − 04 49.5
41665 5.96E − 03 5.95E − 05 83.7

5 Conclusions and Future Work

In this paper we presented a new algorithm for multivariate interpolation of
scattered data sets lying in convex domains (or hulls) Ω ⊆ R

N , for any N ≥ 2.
It is based on the partition of unity interpolation using local RBF interpolants
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Fig. 3: 2D Franke’s function (left) and absolute errors (right) defined on convex
domains. Top: triangle, 1256 nodes; middle: disk, 1960 nodes; bottom: hexagon,
1877 nodes.
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Fig. 4: Examples of points in 3D convex hulls. Left: pyramid, 8995 nodes; center:
cylinder, 21177 nodes; right: hexagonal prism, 20249 nodes.

Table 5: Errors and CPU times (in seconds) for cylinder using δ = 0.1.

n MAE RMSE time

787 3.47E − 01 7.93E − 03 15.2
6271 9.91E − 03 1.65E − 04 44.6
21177 2.00E − 03 3.35E − 05 77.6
50184 1.48E − 03 1.86E − 05 130.7
97997 8.58E − 04 1.08E − 05 209.0

Table 6: Errors and CPU times (in seconds) for hexagonal prism using δ = 0.1.

n MAE RMSE time

754 1.65E − 01 4.49E − 03 15.1
6002 7.25E − 03 1.33E − 04 44.5
20249 3.02E − 03 3.78E − 05 77.3
47997 1.78E − 03 2.00E − 05 127.0
93754 1.15E − 03 1.27E − 05 202.9
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and compactly supported weight functions. To partition the points in Ω, we used
a kd-tree data structure efficiently answering the range search query.

As future work, we expect to build new data structures for partitioning data
in convex hulls using efficient cell-based searching procedures. The new code
should allow us to further reduce CPU times, making it suitable and applicable
in several fields of applied mathematics and scientific computing.
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