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Abstract

In the present paper invariant subspace method has been extended for solving
systems of multi-term fractional partial differential equations (FPDEs) involving both
time and space fractional derivatives. Further the method has also been employed for
solving multi-term fractional PDEs in (1 + n) dimensions. A diverse set of examples
is solved to illustrate the method.
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1 Introduction
Fractional order differential equations (FODEs) are receiving increasing attention ow-

ing to their applicability to almost all branches of science and engineering. It has been
established that fractional order partial differential equations (FPDEs) provide appropri-
ate framework for description of anomalous and non-Brownian diffusion. They are more
effective while formulating processes having memory effects as fractional derivatives are
non-local in nature [4, 7, 18].

Hence solving FODEs, FPDEs, especially nonlinear ones, is a challenging task and
currently an active area of research. In pursuance to this researchers have developed new
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numerical/ analytical methods for solving FPDEs such as Adomian decomposition method
(ADM) [1], new iterative method (NIM) [3], iterative Laplace transform method [15],
method of separation of variables, homogeneous balanced principle [24], Lie symmetry
analysis method [17] and so on.

One of the analytical methods for solving PDEs is invariant subspace method devel-
oped by Galaktionov and Svirshchevskii [9]. Invariant subspace method was employed for
solving time fractional PDEs by many authors [10,20]. Further Choudhary and Daftardar-
Gejji [6] extended the method for FPDEs having both time and space fractional deriva-
tives. In 2009 a classification of two-component nonlinear diffusion equations based on
invariant subspace method was proposed [19]. Sahadevan et al. did extensive study of
Lie symmetry analysis and invariant subspace method for deriving exact solutions of the
coupled FPDEs with fractional time derivative [22].

In the present paper we develop invariant subspace method for finding analytic solu-
tions of systems of multi-term FPDEs having both time and space fractional derivatives.
Further the method is employed for solving FPDEs in (1+n) dimensions. In the proposed
method system of FPDEs and FPDEs in higher dimensions are reduced to respective sys-
tem of FODEs which can be solved by known methods. Invariant subspace method is also
used to solve FPDEs with fractional differential operator involving mixed fractional partial
derivatives.

The organization of the paper is as follows. Section 2, deals with preliminaries and
notations. In Section 3, we develop theory of invariant subspace method for r-coupled
FPDEs, which is followed by illustrative examples. In Section 4 we extend invariant sub-
space method for FPDEs in (1+n) dimensions and explain the method with a variety of
illustrative examples. Concluding remarks are made in Section 5.

2 Preliminaries and Notations
In this section, we introduce notations, definitions and preliminaries which are used in the
present article. For more details readers may refer to [8, 16, 18].

Definition 2.1. The Riemann-Liouville (R-L) fractional integral of order α > 0 of function
f is defined as

Iα f (t) =
1

Γ(α)

t∫
0

f (τ)
(t − τ)1−αdτ, 0 < t ≤ b.
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Definition 2.2. Caputo fractional derivative of order α > 0 of f is defined as

dα f (t)
dtα

=


In−αDn f (t) =

1
Γ(n − α)

t∫
0

f (n)(τ)
(t − τ)α−n+1 dτ, n − 1 < α < n,

f (n)(t), α = n, n ∈ N.

Definition 2.3. Riemann-Liouville (R-L) fractional derivative of order α > 0 of f is de-
fined as

RLdα f (t)
dtα

=


DnIn−α f (t) =

dn

dtn

 1
Γ(n − α)

t∫
0

f (τ)
(t − τ)α−n+1 dx

 , n − 1 < α < n,

f (n)(t), α = n, n ∈ N.

R-L integral, Caputo derivative and R-L derivative satisfy the following properties for
dαe = n, n ∈ N [8]:

1. Iαtγ =
Γ(γ+1)

Γ(γ+α+1) t
γ+α, if γ > −1, t > 0.

2.
dαtγ

dtα
=

 0, if γ ∈ {0, 1, 2, . . . , n − 1},
Γ(γ+1)

Γ(γ−α+1) t
γ−α, if γ ∈ N and γ ≥ n, or γ /∈ N and γ > n − 1.

3.
RLdαtγ

dtα
=

 0, if γ > −1 and α − γ ∈ {0, 1, . . . , n − 1},
Γ(γ+1)

Γ(γ−α+1) t
γ−α, if γ > −1 and α − γ /∈ N.

4. Iα
(
dα f (t)

dtα

)
= f (t) −

n−1∑
k=0

D(k) f (0)
tk

k!
, n − 1 < α < n, t > 0.

Note: In the property (2) condition γ > n − 1 is very crucial as

dα(t−α)
dtα

,

is not defined in case of Caputo derivate for 0 < α < 1. In the literature many authors
are mistakenly ignoring the underlying required condition γ > n − 1 (here γ = −α > 0 is
required but −1 < −α < 0). Therefore

dα(t−α)
dtα

=
Γ(1 − α)
Γ(1 − 2α)

t−2α,
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is not valid in case of Caputo derivative, though it holds correct for R-L derivative:
RLdα(t−α)

dtα
=

Γ(1 − α)
Γ(1 − 2α)

t−2α, γ = −α > −1.

In the present work we denote fractional partial derivative
∂kγ

∂tkγ and
RL∂kγ

∂tkγ (Caputo and
RL partial derivative respectively) as sequential fractional partial derivative [16], viz.,

∂kγ f
∂tkγ =

∂γ

∂tγ
∂γ

∂tγ
· · ·

∂γ f
∂tγ︸            ︷︷            ︸

k−times

,
RL∂kγ f
∂tkγ =

RL∂γ

∂tγ
RL∂γ

∂tγ
· · ·

RL∂γ f
∂tγ︸                   ︷︷                   ︸

k−times

.

Definition 2.4. Two-parametric Mittag-Leffler function is defined as

Eα,β(z) =

∞∑
k=0

zk

Γ(kα + β)
, α > 0, β > 0.

The n−th order derivative of Eα,β(z) is given by

E(n)
α,β(z) =

dn

dzn Eα,β(z) =

∞∑
k=0

(k + n)! zk

k! Γ(αk + αn + β)
, n = 0, 1, 2, . . . .

The α−th order Caputo derivative of Eα(atα) is

dα

dtα
[Eα(atα)] = aEα(atα), α > 0, a ∈ R.

Generalized fractional trignometric functions for dγe = n are defined as [5]

cosγ(λtγ) = Re[Eγ(iλγ)] =

∞∑
k=0

(−1)kλ2kt(2k)γ

Γ(2kγ + 1)
,

sinγ(λtγ) = Im[Eγ(iλγ)] =

∞∑
k=0

(−1)kλ2k+1t(2k+1)γ

Γ((2k + 1)γ + 1)
.

The fractional trigonometric functions satisfy the following properties

dα

dtα
[cosγ(λtγ)] = −λ sinγ(λtγ),

dα

dtα
[sinγ(λtγ)] = λ cosγ(λtγ).

Laplace transform of the Caputo derivative of order α is,

L

{
dα f (t)

dtα
; s

}
= sα f̂ (s) −

n−1∑
k=0

sα−k−1 f (k)(0), n − 1 < α ≤ n, n ∈ N, Re(s) > 0,
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where f̂ (s) = L{ f (t); s} =
∞∫
0

e−st f (t)dt, s ∈ R.

Laplace transform of εn(t, a;α, β) := tαn+β−1E(n)
α,β(±atα) has the form

L{εn(t, a;α, β); s} =
n! sα−β

(sα ∓ a)n+1 , Re(s) > |a|
1
α , n = 0, 1, 2, . . . . (2.1)

3 System of FPDES
In this section we extend invariant subspace method for solving systems of FPDEs. We
introduce the following notations:
Let f = ( f1, f2, . . . , fr) = ( f1(t, x), f2(t, x), . . . , fr(t, x)) ∈ Rr, where t > 0, x ∈ R.

N1[ f ] := (N1
1 [ f ],N1

2 [ f ], . . . ,N1
r [ f ]) ∈ Rr,where

N1
p[ f ] := N̂1

p

[
x, f1, f2, . . . fr,

∂β f1

∂xβ
, . . . ,

∂β fr

∂xβ
, . . . ,

∂kβ f1

∂xkβ , . . . ,
∂kβ fr

∂xkβ

]
, 1 ≤ p ≤ r, and

N2[ f ] = (N2
1 [ f ],N2

2 [ f ], . . . ,N2
r [ f ]) ∈ Rr,where

N2
p[ f ] = N̂2

p

[
x, f1, . . . fr,

∂β f1

∂xβ
, . . . ,

∂β fr

∂xβ
, . . . ,

∂β+k−1 f1

∂xβ+k−1 , . . . ,
∂β+k−1 fr

∂xβ+k−1

]
, 1 ≤ p ≤ r, k ∈ N,

are linear/ non-linear fractional differential operators. Let F = (F1, F2, . . . , Fr) ∈ Rr be
such that

Fp =

mp∑
i=1

λpi
∂γ(i,p) fp(t, x)
∂tγ(i,p) , p = 1, . . . , r,

where γ(i, p) = iαp or γ(i, p) = αp + i − 1.
In this article ∂ jβ(·)

∂x jβ and ∂β+ j−1(·)
∂xβ+ j−1 , j = 1, . . . , k denote Caputo derivatives with respect to vari-

able x and ∂γ(i,p) fp(·)
∂tγ(i,p) denotes Caputo or Riemann-Liouville derivative with respect to variable

t. dαpe = sp, dβe = s, where sp, s ∈ N. Henceforth throughout the article p = 1, . . . , r.

We consider the system of coupled FPDEs as

F = N l[ f ], l = 1, 2. (3.1)

Eq. (3.1) consists of 4-kinds of different systems for p=1, 2,. . . , r, viz.,
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• Fp =
∑mp

i=1 λpi
∂iαp fp(t,x)
∂tiαp = N1

p[ f ],

• Fp =
∑mp

i=1 λpi
∂αp+i−1 fp(t,x)
∂tαp+i−1 = N1

p[ f ],

• Fp =
∑mp

i=1 λpi
∂iαp fp(t,x)
∂tiαp = N2

p[ f ],

• Fp =
∑mp

i=1 λpi
∂αp+i−1 fp(t,x)
∂tαp+i−1 = N2

p[ f ].

Further note that F is a function of either Caputo derivative or Riemann-Liouville deriva-
tive, whereas N l[ f ] always involves only Caputo fractional derivatives.

3.1 Invariant subspace method for systems of FPDEs
Let I = In1

1 × In2
2 × · · · × Inr

r represent a linear space where Inp
p denotes an np dimensional

linear subspace over R spanned by np linearly independent functions {φ j
p(x)}np

j=1, i.e.,

Inp
p = L

{
φ1

p(x), φ2
p(x), . . . , φnp

p (x)
}

=


np∑
j=1

kp jφ
j
p(x)

∣∣∣ kp j ∈ R, j = 1, 2, . . . , np

 , ∀p.

I is said to be invariant with respect to vector differential operators N l, l = 1, 2 if N l satisfies
the following condition ∀p.

N l
p : In1

1 × In2
2 × · · · × Inr

r −→ Inp
p , l = 1, 2.

Thus there exist expansion coefficients ψ j
p( j = 1, 2, . . . , np) of N l

p[ f ] with respect to the
basis functions {φ j

p(x)}np

j=1 such that

N l
p

 n1∑
j=1

k1 jφ
j
1(x), . . . ,

nr∑
j=1

kr jφ
j
r(x)

 =

np∑
j=1

ψ j
p(k11, k12, . . . , k1n1 , . . . , kr1, . . . , krnr )φ

j
p(x),

(kp1, kp2 . . . , kpnp) ∈ R
np ,∀p, l = 1, 2.

Theorem 3.1. If a finite dimensional linear subspace I = In1
1 × In2

2 × · · · × Inr
r is invariant

under the fractional differential operators N l[F], l = 1, 2, then the system of FPDEs (3.1)
has a solution of the form

fp(t, x) =

np∑
j=1

Kp j(t)φ j
p(x), p = 1, 2, . . . , r, (3.2)

where the coefficients Kp j(t) satisfy the following system of FODEs
mp∑
i=1

λpi
dγ(i,p)Kp j(t)

dtγ(i,p) = ψ j
p(K11(t), . . . ,K1n1(t), . . . ,Kr1(t), . . . ,Krnr (t)), j = 1, . . . , np, (3.3)

where γ = γ(i, p) = iαp or γ = γ(i, p) = αp + i − 1, ∀p.
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Proof. Let fp(t, x) =

np∑
j=1

Kp j(t)φ j
p(x), ∀p.

Using the linearity property of fractional derivative we get

Fp =

mp∑
i=1

λpi
∂γ(i,p) fp(t, x)
∂tγ(i,p) =

mp∑
i=1

λpi
∂γ(i,p)

∂tγ(i,p)

 np∑
j=1

Kp j(t)φ j
p(x)

 =

np∑
j=1

 mp∑
i=1

λpi
dγ(i,p)

dtγ(i,p) Kp j(t)

 φ j
p(x),

γ = γ(i, p) = iαp or γ = γ(i, p) = αp + i − 1, ∀p.
(3.4)

Given that the fractional differential operators N l[F], l = 1, 2 admit invariant subspace I,
there exist basis functions φ1

p(x), φ2
p(x), . . . , φnp

p (x) such that

N l
p

 n1∑
j=1

k1 jφ
j
1(x), . . . ,

nr∑
j=1

kr jφ
j
r(x)

 =

np∑
j=1

ψ j
p(k11, k12, . . . , k1n1 , . . . , kr1, . . . , krnr )φ

j
p(x),

(kp1, kp2 . . . , kpnp) ∈ R
np ,∀p, l = 1, 2,

(3.5)

where {ψ j
p}
′s are expansion coefficients of Np[I] ∈ Inp

p corresponding to {φ j
p}
′s. Hence in

view of Eq. (3.2) and Eq. (3.5), we deduce

N l
p[ f ] = N l

p[ f1, f2, . . . , fr] = N l
p

 n1∑
j=1

K1 j(t)φ
j
1(x),

n2∑
j=1

K2 j(t)φ
j
2(x), . . . ,

nr∑
j=1

Kr j(t)φ j
r(x)


=

np∑
j=1

ψ j
p
(
K11(t), . . . ,K1n1(t), . . . ,Kr1(t), . . . ,Krnr (t)

)
φ j

p(x), ∀p, l = 1, 2. (3.6)

Substituting (3.4) and (3.6) in (3.1) we get

np∑
j=1

 mp∑
i=1

λpi
dγ(i,p)Kp j(t)

dtγ(i,p) − ψ j
p(K11(t), . . . ,K1n1(t), . . . ,Kr1(t), . . . ,Krnr (t))

 φ j
p(x) = 0, ∀p.

(3.7)

From the Eq. (3.7) and using the fact that {φ j
p}
′s are linearly independent, the system of

FPDEs (3.1) is reduced to the required system of FODEs (3.3). �
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3.2 Illustrative examples
3.2.1 System of fractional version of generalized Burger’s equations

Consider the following coupled generalized nonlinear fractional Burger’s equations for
t > 0, α ∈ (0, 1)\{1/2} and β ∈ (0, 1].

RL∂α f
∂tα

+ a0
∂2β f
∂x2β + a1 f

(
∂β f
∂xβ

)
+ a2

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
= 0,

RL∂αg
∂tα

+ b0
∂2βg
∂x2β + b1g

(
∂βg
∂xβ

)
+ b2

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
= 0, (3.8)

where a0, a1, a2, b0, b1 and b2(6= 0) are arbitrary constants depending upon the system pa-
rameters such as Peclet number, Brownian diffusivity and Stokes velocity of particles due
to gravity.
Comparing with the system of FPDE (3.1) we conclude that

N1[ f , g] = −a0
∂2β f
∂x2β − a1 f

(
∂β f
∂xβ

)
− a2

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
,

N2[ f , g] = −b0
∂2βg
∂x2β − b1g

(
∂βg
∂xβ

)
− b2

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
,

are the corresponding nonlinear fractional differential operators.
Observe that I = I2

1 × I2
2 = L{1, xβ} × L{1, xβ} is invariant under the operator N[ f , g] as

N1[k1 + k2xβ, l1 + l2xβ] = −Γ(1 + β)
[
(a1k1k2 + a2k1l2 + a2l1k2) − (a1k2

2 + 2a2k2l2)xβ
]
∈ I2

1 ,

N2[k1 + k2xβ, l1 + l2xβ] = −Γ(1 + β)
[
(b1l1l2 + b2k1l2 + b2l1k2) − (b1l2

2 + 2b2k2l2)xβ
]
∈ I2

2 .

In view of Theorem 3.1, system (3.8) admits solution of the form

f (t, x) = K1(t) + K2(t)xβ, g(t, x) = L1(t) + L2(t)xβ, (3.9)

where K1(t),K2(t), L1(t) and L2(t) satisfy the following system of FODEs
RLdαK1(t)

dtα
= −Γ(1 + β)[a1K1(t)K2(t) + a2K1(t)L2(t) + a2L1(t)K2(t)], (3.10)

RLdαK2(t)
dtα

= −Γ(1 + β)[a1K2
2(t) + 2a2K2(t)L2(t)], (3.11)

RLdαL1(t)
dtα

= −Γ(1 + β)[b1L1(t)L2(t) + b2K1(t)L2(t) + b2L1(t)K2(t)], (3.12)
RLdαL2(t)

dtα
= −Γ(1 + β)[b1L2

2(t) + 2b2K2(t)L2(t)]. (3.13)
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Solving Eq. (3.11) and Eq. (3.13), we obtain

L2(t) = M2t−α, K2(t) =
−b1

2b2
M2t−α−

Γ(1 − α)t−α

2b2Γ(1 − 2α)Γ(1 + β)
, M2(6= 0) is arbitrary. (3.14)

Using (3.14), and solving Eq. (3.10) and Eq. (3.12), we deduce the solution of the system
of generalized fractional Burger’s equations (3.8) as

f (t, x) =
−M1Γ(1 − α)t−α

2b2M2Γ(1 − 2α)Γ(1 + β)
−

b1M1t−α

2b2
+

[
−b1M2t−α

2b2
−

Γ(1 − α)t−α

2b2Γ(1 − 2α)Γ(1 + β)

]
xβ,

g(t, x) = M1t−α + [M2t−α]xβ, where a1, a2, b1, b2,M1,M2(6= 0) are arbitrary.

Note that in particular, for α = β = 1, a1 = b1 = −2, a0 = b0 = −1 and a2 = b2 = 1 Eq.
(3.8) becomes coupled Burger equation [23].
Now consider fractional version of coupled Burger equation.

RL∂α f
∂tα

=
∂2β f
∂x2β + 2 f

(
∂β f
∂xβ

)
−

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
,

RL∂αg
∂tα

=
∂2βg
∂x2β + 2g

(
∂βg
∂xβ

)
−

(
f
∂βg
∂xβ

+ g
∂β f
∂xβ

)
, (3.15)

Using a1 = b1 = −2, a2 = b2 = 1 and Eq. (3.10) we find the value of M2 as

M2 =
−Γ(1 − α)

2Γ(1 − 2α)Γ(1 + β)
.

Thus

K1(t) = 2M1t−α,K2(t) =
−Γ(1 − α)t−α

Γ(1 − 2α)Γ(1 + β)
, L1(t) = M1t−α, L2(t) =

−Γ(1 − α)t−α

2Γ(1 − 2α)Γ(1 + β)
.

(3.16)

From (3.9) and (3.16) we deduce the solution of fractional version of coupled Burger
equations (3.15) as

f (t, x) = 2M1t−α +

[
−Γ(1 − α)t−α

Γ(1 − 2α)Γ(1 + β)

]
xβ, g(t, x) = M1t−α +

[
−Γ(1 − α)t−α

2Γ(1 − 2α)Γ(1 + β)

]
xβ, M1 ∈ R.

(3.17)

The solution (3.17) is depicted in Fig. 1.
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Figure 1: Plot of f (t, x) and g(t, x) for M1 = 1, and different values of α and β.

3.2.2 Exact solution of coupled FPDEs

Consider the following system of nonlinear FPDEs for t > 0, 0 < α1, α2, β ≤ 1.

∂α1 f
∂tα1

+
∂α1+1 f
∂tα1+1 =

∂2β f
∂x2β + m1

(
g
∂βg
∂xβ

)
+ a1m1g2,

∂α2g
∂tα2

+
∂α2+1g
∂tα2+1 =

∂2βg
∂x2β + n1

∂2β f
∂x2β + a2

2n1 f + n2g, (3.18)

where a1, a2,m1,m2, n1 and n2 are arbitrary constants.
In view of (3.1),

N1[ f , g] =
∂2β f
∂x2β + m1

(
g
∂βg
∂xβ

)
+ a1m1g2,

N2[ f , g] =
∂2βg
∂x2β + n1

∂2β f
∂x2β + a2

2n1 f + n2g.

Clearly I = I2
1 × I1

2 = L{sinβ(a2xβ), cosβ(a2xβ)} × L{Eβ(−a1xβ)} is an invariant subspace
under N[ f , g] as

N1

[
k1 sinβ(a2xβ) + k2 cosβ(a2xβ), l1Eβ(−a1xβ)

]
= −k1a2

2 sinβ(a2xβ) − k2a2
2 cosβ(a2xβ) ∈ I2

1 ,

N2

[
k1 sinβ(a2xβ) + k2 cosβ(a2xβ), l1Eβ(−a1xβ)

]
= (a2

1 + n2)l1Eβ(−a1xβ) ∈ I1
2 .

Thus Theorem 3.1 implies that the system (3.18) admits solution of the form

f (t, x) = K1(t) sinβ(a2xβ) + K2(t) cosβ(a2xβ), g(t, x) = L1(t)Eβ(−a1xβ), (3.19)
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where K1(t),K2(t) and L1(t) satisfy the system of FODEs

dα1 K1(t)
dtα1

+
dα1+1K1(t)

dtα1+1 = −a2
2K1(t), (3.20)

dα1 K2(t)
dtα1

+
dα1+1K2(t)

dtα1+1 = −a2
2K2(t), (3.21)

dα2 L1(t)
dtα2

+
dα2+1L1(t)

dtα2+1 = (a2
1 + n2)L1(t) = aL1(t), a = (a2

1 + n2). (3.22)

We apply Laplace transform to Eq. (3.20) and obtain

K̃1(s) =
K1(0)sα1

sα1 + sα1+1 + a2
2

+
[K1(0) + K′1(0)]sα1−1

sα1 + sα1+1 + a2
2

= K1(0)
∞∑

m=0

(−1)ma2m
2 s−α1m

(s + 1)m+1 +
[
K1(0) + K′1(0)

] ∞∑
m=0

(−1)ma2m
2 s−α1m−1

(s + 1)m+1 , Re(s) > 1.

Taking inverse Laplace transform and using the relation (2.1)

K1(t) = K1(0)
∞∑

m=0

(−1)m

m!
a2m

2 t(α1+1)mE(m)
1,α1m+1(−t) +

[
K1(0) + K′1(0)

] ∞∑
m=0

(−1)m

m!
a2m

2 t(α1+1)m+1E(m)
1,α1m+2(−t).

Proceeding on similar lines we evaluate K2(t) and L2(t). Hence an exact solution of the
system (3.18) is

f (t, x) =

K1(0)
∞∑

m=0

(−1)m

m!
a2m

2 t(α1+1)mE(m)
1,α1m+1(−t) +

[
K1(0) + K′1(0)

]
∞∑

m=0

(−1)m

m!
a2m

2 t(α1+1)m+1E(m)
1,α1m+2(−t)

 sinβ(a2xβ) +

K2(0)
∞∑

m=0

(−1)m

m!
a2m

2 t(α1+1)m

× E(m)
1,α1m+1(−t) +

[
K2(0) + K′2(0)

] ∞∑
m=0

(−1)m

m!
a2m

2 t(α1+1)m+1E(m)
1,α1m+2(−t)

 cosβ(a2xβ),

g(t, x) =

L1(0)
∞∑

m=0

am

m!
t(α2+1)mE(m)

1,α2m+1(−t) +
[
L1(0) + L′1(0)

]
×

∞∑
m=0

am

m!
t(α2+1)m+1E(m)

1,α2m+2(−t)

 Eβ(−a1xβ),

where a = a2
1 + n2 and a1, a2, n2 are arbitrary.
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3.2.3 Coupled fractional Boussinesq equations

Fractional version of coupled Boussinesq equations along with initial conditions for t >
0, 0 < α1, α2, β ≤ 1 is

∂α1 f
∂tα1

=
−∂βg
∂xβ

= N1[ f , g], (3.23)

∂α2g
∂tα2

= −m1
∂β f
∂xβ

+ 3 f
(
∂β f
∂xβ

)
+ m2

∂3β f
∂x3β = N2[ f , g], (3.24)

f (0, x) = e + 2xβ, g(0, x) =
3
2
, (3.25)

where m1, m2 are arbitrary constants.
I = I2

1 × I2
2 = L{1, xβ} × L{1, xβ} is invariant subspace w.r.t. the operator N[ f , g] as

N1[k1 + k2xβ, l1 + l2xβ] = −Γ(1 + β)l2 ∈ I2
1 ,

N2[k1 + k2xβ, l1 + l2xβ] = Γ(1 + β) [−m1k2 + 3k1k2] + 3Γ(1 + β)k2
2 xβ ∈ I2

2 .

Hence using Theorem 3.1, system (3.23)-(3.24) has the following solution

f (t, x) = K1(t) + K2(t)xβ, g(t, x) = L1(t) + L2(t)xβ, (3.26)

where the unknowns functions K1(t),K2(t), L1(t) and L2(t) satisfy the following system of
FODEs

dα1 K1(t)
dtα1

= −Γ(1 + β)L2(t), (3.27)

dα1 K2(t)
dtα1

= 0, (3.28)

dα2 L1(t)
dtα2

= Γ(1 + β) [−m1K2(t) + 3K1(t)K2(t)] , (3.29)

dα2 L2(t)
dtα2

= 3Γ(1 + β)K2
2(t). (3.30)

Eq. (3.28) implies that K2(t) = b (constant). Hence substituting value of K2(t) in Eq.
(3.30) and performing fractional integration on both sides we obtain L2(t) = L2(0) +

12



3b2 Γ(1 + β)tα2

Γ(1 + α2)
. Proceeding on similar lines solution (3.26) takes the following form

f (t, x) =

[
a − d

Γ(1 + β)
Γ(1 + α1)

tα1 − 3b2 Γ(1 + β)2tα1+α2

Γ(1 + α1 + α2)

]
+ bxβ,

g(t, x) =

[
c − m1b

Γ(1 + β)
Γ(1 + α2)

tα2 + 3ba
Γ(1 + β)
Γ(1 + α2)

tα2 − 3bd
Γ(1 + β)2tα1+α2

Γ(1 + α1 + α2)
− 9b3 Γ(1 + β)3tα1+2α2

Γ(1 + α1 + 2α2)

]
+

[
d + 3b2 Γ(1 + β)tα2

Γ(1 + α2)

]
xβ, a, b, c and d are arbitrary. (3.31)

Note: In particular for α1 = α2 = α, and β = 1 the solution has the form

f (t, x) =

[
a −

dtα

Γ(1 + α)
−

3b2t2α

Γ(1 + 2α)

]
+ bx,

g(t, x) =

[
c −

m1btα

Γ(1 + α)
+

3batα

Γ(1 + α)
−

3bdt2α

Γ(1 + 2α)
−

9b3t3α

Γ(1 + 3α)

]
+

[
d +

3b2tα

Γ(1 + α)

]
x.

This is a solution of the time fractional coupled Boussinesq equation obtained by Sahade-
van et. al [21]. Exact solution of the system (3.23)-(3.24) along with the initial conditions
(3.25) is

f (t, x) =

[
e −

12Γ(1 + β)2

Γ(1 + α1 + α2)
tα1+α2

]
+ 2xβ,

g(t, x) =

[
3
2
−

2m1Γ(1 + β)
Γ(1 + α2)

tα2 +
6eΓ(1 + β)
Γ(1 + α2)

tα2 −
72Γ(1 + β)3tα1+2α2

Γ(1 + α1 + 2α2)

]
+

[
12Γ(1 + β)
Γ(1 + α2)

tα2

]
xβ.

(3.32)

The solution (3.32) is plotted in Fig. 2.

Figure 2: Plot of the solution (3.32) for various values of α1, α2 and β.
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3.2.4 Exact solution of fractional version of system of KdV type of equations

Consider fractional KdV type of fractional coupled equations for t > 0, α ∈ (0, 1]\{12 }, β ∈
(0, 1].

RL∂α f
∂tα

= a1

(
f
∂β f
∂xβ

)
+ a2

(
g
∂βg
∂xβ

)
+ a3

∂3β f
∂x3β ,

RL∂αg
∂tα

= b1

(
f
∂βg
∂xβ

)
+ b2

(
g
∂β f
∂xβ

)
+ b3

∂3βg
∂x3β . (3.33)

Here a1, a2, a3, b1, b2 and b3 are arbitrary constants such that b > a1 and a2 ≥ 0. Note that
for α = 1 = β, and

• When a1, a2, a3, b1, b3 are arbitrary constants and b2 = 0 then the coupled system
(3.33) is the coupled KdV system given in ref. [22].

• When a1 = a2 = b1 = b2 = 6, and a3 = 1 = b3, then the system (3.33) is well-known
complex coupled KdV system studied in [13].

• When a1 = 6a, a2 = 2b, a3 = a, b1 = −3, b2 = 0 and b3 = −1, (a, b are arbitrary),
then the system (3.33) reduces to Hirota-Satsuma (HS)-KdV system proposed by
Hirota ans Satsuma in 1981 to model interactions of two long waves with different
dispersion relations [12].

• When a1 = 6, a2 = 2, a3 = 1, b1 = b2 = 2 and b3 = 0, then the KdV type system
(3.33) is treated as Ito type coupled KdV system [14].

Further note when g = 0, and a1 = 6, a2 = 0, a3 = −1 the fractional KdV system (3.33)
reduces to fractional KdV equation studied by Choudhary and Daftardar-Gejji [6].
In system (3.33)

N1[ f , g] = a1

(
f
∂β f
∂xβ

)
+ a2

(
g
∂βg
∂xβ

)
+ a3

∂3β f
∂x3β ,

N2[ f , g] = b1

(
f
∂βg
∂xβ

)
+ b2

(
g
∂β f
∂xβ

)
+ b3

∂3βg
∂x3β .

Note that I = I2
1 × I2

2 = L{1, xβ} ×L{1, xβ} is invariant subspace with respect to the operator
N[ f , g] since

N1[k1 + k2xβ, l1 + l2xβ] = Γ(1 + β) [a1k1k2 + a2l1l2] + Γ(1 + β)
[
a1k2

2 + a2l2
2

]
xβ ∈ I2

1 ,

N2[k1 + k2xβ, l1 + l2xβ] = Γ(1 + β) [b1k1l2 + b2l1k2] + Γ(1 + β) [(b1 + b2)k2l2] xβ ∈ I2
2 .
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Hence the system (3.33) admits solution of the form

f (t, x) = K1(t) + K2(t)xβ, g(t, x) = L1(t) + L2(t)xβ, (3.34)

where the unknown functions K1(t),K2(t), L1(t) and L2(t) satisfy the following system of
FODEs.

RLdαK1(t)
dtα

= Γ(1 + β) [a1K1(t)K2(t) + a2L1(t)L2(t)] , (3.35)
RLdαK2(t)

dtα
= Γ(1 + β)[a1K2

2(t) + a2L2
2(t)], (3.36)

RLdαL1(t)
dtα

= Γ(1 + β)[b1K1(t)L2(t) + b2L1(t)K2(t)], (3.37)
RLdαL2(t)

dtα
= Γ(1 + β)[bK2(t)L2(t)], b = (b1 + b2). (3.38)

Solving system (3.35)-(3.38), we deduce the following solution of system (3.33):
For α = 1,

f (t, x) =
−
√

a2M1√
b − a1t

−

(
1

bΓ(1 + β)t

)
xβ,

g(t, x) =
M1

t
+

 √
b − a1

b
√

a2Γ(1 + β)t

 xβ,

For α ∈ (0, 1)\{12 },

f (t, x) =

√
a2√

b − a1

M1t−α +

[
Γ(1 − α)t−α

bΓ(1 − 2α)Γ(1 + β)

]
xβ,

g(t, x) = M1t−α +

 √
b − a1 Γ(1 − α)t−α

b
√

a2 Γ(1 − 2α)Γ(1 + β)

 xβ,

where M1, a1, a2, b1 and b2 are arbitrary such that b = b1 + b2, b > a1, a2 ≥ 0.
Solution of the system (3.33) for α ∈ (0, 1]\{12 }, β ∈ (0, 1] is plotted in Fig. 3.
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Figure 3: Plot of the solution of the system (3.33) for M1 = 1, a1 = 2, a2 = 4, b = 3.

4 FPDEs in (1+n) dimension
In this section we consider higher dimensional FPDEs of the form

r∑
i=1

λi
∂γ(i) f (t, x̄)
∂tγ(i)

= N l[ f (t, x̄)], (4.1)

where x̄ = (x1, x2, . . . , xn), l = 1, 2, γ(i) = iα or γ(i) = α + i − 1.

N1[ f (t, x̄)] = N̂1
[
x̄, f , ∂

β1 f

∂xβ1
1

, . . . , ∂
βn f
∂xβn

, ∂
2β1 f

∂x2β1
1

, . . . , ∂
kβn−1 f

∂xkβn−1
n−1

, ∂
kβn f
∂xkβn

n

]
, and

N2[ f (t, x̄)] = N̂2
[
x̄, f , ∂

β1 f

∂xβ1
1

, . . . , ∂
βn f
∂xβn

n
, ∂

β1+1 f

∂xβ1+1
1

, . . . , ∂
βn−1+k−1 f

∂xβn−1+k−1
n−1

, ∂
βn+k−1 f
∂xβn+k−1

n

]
are nonlinear fractional

differential operators in higher dimensions. Here ∂γ(i) f (·)
∂tγ(i) is Caputo (or Riemann-Liouville)

derivative with respect to t. ∂ jβi f (·)

∂x jβi
i

and ∂βi+ j−1 f (·)

∂xβi+ j−1
i

, i = 1, . . . , n, j = 1, . . . , k (k ∈ N) are Ca-

puto derivatives with respect to variable xi. dαe = s, dβie = si, where s, si ∈ N, i = 1, . . . k
and λi ∈ R.

4.1 Invariant subspace method FPDEs in higher dimensions
Let Im denote the m-dimensional linear space over R spanned by m linearly independent
basis functions {φ j(x1, x2, . . . , xn) : j = 1, . . . ,m}, i.e.,

Im = L{φ1(x̄), φ2(x̄), . . . , φm(x̄)} =

 m∑
j=1

k jφ j(x̄)
∣∣∣∣ k j ∈ R, i = 1, . . . ,m

 .
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A finite dimensional linear space Im is said to be invariant under fractional differential
operators N l[ f (t, x̄)](l = 1, 2), if N l[ f ] ∈ Im,∀ f ∈ Im.

Theorem 4.1. If a finite dimensional linear space Im is invariant under the operators
N l[ f (t, x̄)], l = 1, 2, then FPDE (4.1) has a solution of the form

f (t, x̄) =

m∑
j=1

K j(t)φ j(x̄), (4.2)

where the coefficient {K j}
′s satisfy the following system of FODEs

r∑
i=1

λi
dγ(i)K j(t)

dtγ(i) = ψ j(K1(t),K2(t), . . . ,Km(t)), j = 1, . . . ,m. (4.3)

Here γ(i) = iα or γ(i) = α+i−1, and {ψ j}
′s are the expansion coefficients of N l[ f (t, x̄)], l =

1, 2 with respect to basis function {φ j}
′s of Im.

Proof. Using linearity of fractional derivatives and Eq. (4.2), L.H.S of FPDE (4.1) reduces
to

r∑
i=1

λi
∂γ(i) f (t, x̄)
∂tγ(i) =

r∑
i=1

λi
∂γ(i)

∂tγ(i)

 m∑
j=1

K j(t)φ j(x̄)

 =

m∑
j=1

 r∑
i=1

λi
dγ(i)K j(t)

dtγ(i)

 φ j(x̄). (4.4)

Further as Im is an invariant space under the operator N l[ f ], there exist m linearly indepen-
dent functions φ1(x̄), φ2(x̄), . . . , φm(x̄) such that

N l

 m∑
j=1

k jφ j(x̄)

 =

m∑
j=1

ψ j(k1, k2, . . . , km)φ j(x̄), for k j ∈ R, l = 1, 2, (4.5)

where {ψ j}
′s are expansion coefficients of N l[ f ] ∈ Im with respect to the basis {φ j}

m
j=1.

In view of Eq. (4.2) and Eq. (4.5)

N l[ f (t, x̄)] = N l

 m∑
j=1

K j(t)φ j(x̄)

 =

m∑
j=1

ψ j(K1(t), . . . ,Km(t))φ j(x̄), l = 1, 2. (4.6)

Substituting Eq. (4.4) and Eq. (4.6) in Eq. (4.1), we get
m∑

j=1

 r∑
i=1

λi
dγ(i)K j(t)

dtγ(i) − ψ j(K1(t),K2(t), . . . ,Km(t))

 φ j(x̄) = 0. (4.7)

Using Eq. (4.7) and the fact that {φ j}’s are basis functions, we get the following system of
FODEs

r∑
i=1

λi
dγ(i)K j(t)

dtγ(i) = ψ j(K1(t),K2(t), . . . ,Km(t)), j = 1, . . . ,m,

where γ(i) = iα or γ(i) = α + i − 1. �
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4.2 Illustrative examples for FPDEs in higher dimensions
4.2.1 Fractional dispersive KdV equation in (1+n) dimensions.

Consider the following linear fractional dispersive KdV equation

∂α f
∂tα

+
∂3β1 f

∂x3β1
1

+
∂3β2 f

∂x3β2
2

+ · · · +
∂3βn f

∂x3βn
n

= 0, t > 0, β1, β2, · · · , βn ∈ (0, 1]. (4.8)

In view of FPDE (4.1), we note that N[ f ] = −
∂3β1 f

∂x3β1
1

− · · · −
∂3βn f
∂x3βn

n
. Observe that when

I2n = L{cosβ1(λ1xβ1
1 ), sinβ1(λ1xβ1

1 ), cosβ2(λ2xβ2
2 ), sinβ2(λ2xβ2

2 ), · · · , cosβn(λnxβn
n ), sinβn(λnxβn

n )},

N

 n∑
i=1

(
ki1 cosβi(λix

βi
i ) + ki2 sinβi(λix

βi
i )

) =

n∑
i=1

(
−λ3

i ki1 sinβi(λixβi) + λ3
i ki2 cosβi(λixβi)

)
∈ I2n.

Hence I2n is an invariant subspace of fractional operator N[ f ]. Hence Theorem (4.1)
implies an exact solution of the form

f (t, x̄) =

n∑
i=1

(
ki1(t) cosβi(λix

βi
i ) + ki2(t) sinβi(λix

βi
i )

)
, λi, i = 1, . . . , n are distinct. (4.9)

where Ki1(t) and Ki2(t), i = 1, . . . , n are the unknown functions to be determined by solving
the following system of FODEs:

dαK11(t)
dtα

= λ3
1K12(t), (4.10)

dαK12(t)
dtα

= −λ3
1K11(t), (4.11)

dαK21(t)
dtα

= λ3
2K22(t), (4.12)

dαK22(t)
dtα

= −λ3
2K21(t), (4.13)

...

...
dαKn1(t)

dtα
= λ3

2Kn2(t), (4.14)

dαKn2(t)
dtα

= −λ3
2Kn1(t). (4.15)

After solving the system (4.10) − (4.15), we get

Ki1(t) = ai sinα(λ3
i tα), Ki2(t) = ai cosα(λ3

i tα). (4.16)

From (4.9) and (4.16) we find the following exact solution of system (4.8) as

f (t, x̄) =

n∑
i=1

(
ai sinα(λ3

i tα) cosβi(λix
βi
i ) + ai cosα(λ3

i tα) sinβi(λix
βi
i )

)
, (4.17)
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where ai and λi are arbitrary constants for i = 1, 2, . . . , n.
The solution (4.17) for n = 2 is depicted in Fig. 4.

α=0.5, β1=0.9, β2=0.6

α=1, β1=1, β2=1

Figure 4: Plot of f (t, x̄) of Eq. (4.8) for n = 2, a1 = a2 = λ1 = 1 and λ2 = 2 at t = 1.

Note: The fractional dispersion KdV equation admits another invariant subspace In =

L{Eβ1(λ1xβ1
1 ), Eβ2(λ2xβ2

2 ), · · · , Eβn(λnxβn
n )}, leading to following distinct solution:

f (t, x̄) =

n∑
i=1

[
aiEα(λ3

i tα)
]

Eβi(λix
βi
i ), ai ∈ R for i = 1, . . . , n.

4.2.2 Fractional version of (1+2) dimensional population model

We discuss two dimensional nonlinear FPDE for the population density f .

∂α f
∂tα

=
∂β

∂xβ

(
∂β f 2

∂xβ

)
+
∂γ

∂yγ

(
∂γ f 2

∂yγ

)
+ ψ( f ), α, β, γ ∈ (0, 1]. (4.18)

Note that for α = β = γ = 1 and

• ψ( f ) = c f , c ∈ R, the population model (4.18) follows Malthusian law [11],

• ψ( f ) = f (c1 − c2 f ), c1, c2 ∈ R, Eq. (4.18) satisfies Verhulst law [11].

Here we consider ψ( f ) = c f . Hence N[ f (t, x, y)] =
∂β

∂xβ

(
∂β f 2

∂xβ

)
+
∂γ

∂yγ

(
∂γ f 2

∂yγ

)
+ c f is the

fractional nonlinear operator. I3 = L{1, xβ, yγ} is invariant under N[ f ] since

N[k1 + k2xβ + k3yγ] = ck1 + Γ(2β + 1)k2
2 + Γ(2γ + 1)k2

3 + ck2xβ + ck3yγ ∈ I3.
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In view of Theorem 4.1, solution of the equation under consideration (3.18) is

f (t, x, y) = K1(t) + K2(t)xβ + K3(t)yγ, (4.19)

where K1(t),K2(t) and K3(t) satisfy the following set of equations:

dαK1(t)
dtα

= cK1(t) + Γ(2β + 1)K2(t)2 + Γ(2γ + 1)K3(t)2, (4.20)

dαK2(t)
dtα

= cK2(t), (4.21)

dαK3(t)
dtα

= cK3(t). (4.22)

Solving Eq. (4.21) and Eq. (4.22) using Laplace transform technique, we obtain

K2(t) = a2Eα(ctα), K3(t) = a3Eα(ctα), a2, a3 are arbitrary.

Substituting the obtained values of K2(t) and K3(t) in Eq. (4.20), we get

K1(t) = cK1(t) + A [Eα(ctα)]2 , A = a2
2Γ(2β + 1) + a2

3Γ(2γ + 1). (4.23)

We apply NIM [3] to solve Eq. (4.23). Applying Iα to both sides of Eq. (4.23), we obtain
the following integral equation

K1(t) = a1 + AIα [Eα(ctα)]2 + M[K1(t)], where M[K1(t)] = cIαK1(t).

Let

K0
1(t) = a1 + AIα [Eα(ctα)]2 ,

K1
1(t) = M[K0

1(t)] =
a1ctα

Γ(α + 1)
+ AcI2α [Eα(ctα)]2 ,

...

Kn
1(t) = M[Kn−1

1 (t)] =
a1cntnα

Γ(α + n)
+ AcnI(n+1)α [Eα(ctα)]2 .

Hence

K1(t) =

∞∑
m=0

Km
1 (t) = a1Eα(ctα) + A

∞∑
m=0

cmI(m+1)α [Eα(ctα)]2 . (4.24)

Using (4.23) and (4.24), solution (4.19) takes the following form:

f (t, x, y) = a1Eα(ctα) + A
∞∑

m=0

cmI(m+1)α [Eα(ctα)]2 + [a2Eα(ctα)] xβ + [a3Eα(ctα)] yγ.

20



4.2.3 Exact solution of fractional scale wave equation in (1+2) dimension

Consider fractional version of scale wave equation

∂β

∂xβ

(
∂β f
∂xβ

)
+
∂γ

∂yγ

(
∂γ f
∂yγ

)
− a

∂α f
∂tα
−
∂α+1 f
∂tα+1 = 0, t > 0, α, β, γ ∈ (0, 1]. (4.25)

Comparing with the equation (4.1) we note that

N[ f ] =
∂β

∂xβ

(
∂β f
∂xβ

)
+
∂γ

∂yγ

(
∂γ f
∂yγ

)
.

Observe that I2 = L{Eβ(λ1xβ), Eγ(−λ2yγ)} is one of the required invariant subspaces, since

N[k1Eβ(λ1xβ) + k2Eγ(−λ2yγ)] = λ2
1k1Eβ(λ1xβ) + λ2

2k2Eγ(−λ2yγ) ∈ I2.

Hence f (t, x, y) = K1(t)Eβ(λ1xβ)+ K2(t)Eγ(−λ2yγ) is a solution of the fractional scale wave
equation (4.25), where K1(t) and K2(t) are the unknown functions that satisfy following
system of FODEs.

a
dαK1(t)

dtα
+

dα+1K1(t)
dtα+1 = λ2

1K1(t), (4.26)

a
dαK2(t)

dtα
+

dα+1K2(t)
dtα+1 = λ2

2K2(t), (4.27)

Using Laplace transform technique to Eqs. (4.26)-(4.27), we deduce the exact solution of
fractional scale wave equation (4.25) as

f (t, x, y) =

b1

∞∑
m=0

λ2m
2

m!
t(α+1)mE(m)

1,αm+1(−at) + (b1 + b2)
∞∑

m=0

λ2m
2

m!
t(α+1)m+1E(m)

1,αm+2(−at)

 Eβ(λ2xβ)

+

a1

∞∑
m=0

λ2m
1

m!
t(α+1)mE(m)

1,αm+1(−at) + (a1 + a2)
∞∑

m=0

λ2m
2

m!
t(α+1)m+1E(m)

1,αm+2(−at)

 Eγ(−λ2yγ),

where a1, a2, b1 and b2 ∈ R.

4.2.4 Solutions of fractional order Boussinesq equation

Consider the IVP for fractional order Boussinesq equation where t > 0, α, β ∈ (0, 1].

∂α f
∂tα

=
∂β

∂xβ

(
(r f + s)

∂β(r f + s)
∂xβ

)
+
∂β

∂yγ

(
(r f + s)

∂γ(r f + s)
∂yγ

)
= N[ f ], (4.28)

f (0, x, y) =
9
5

+ e2yγ, (4.29)
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where r, s are arbitrary. For α = β = γ = 1, Eq. (4.28) is a two dimensional heat and mass
transfer equation with temperature dependent diffusion coefficient [25].
We choose I3 = L{1, xβ, yγ} which satisfies the invariant subspace property as follows:

N[k1 + k2xβ + k3yγ] = r2
[
Γ(β + 1)2k2

2 + Γ(γ + 1)2k2
3

]
∈ I3.

In view of Theorem (4.1), an exact solution of Eq. (4.28) has the form

f (t, x, y) = K1(t) + K2(t)xβ + K3(t)yγ,

where the unknown functions K1(t),K2(t) and K3(t) are to be evaluated by solving the
following system:

dαK1(t)
dtα

= r2
[
Γ(β + 1)2K2(t)2 + Γ(γ + 1)2K3(t)2

]
, (4.30)

dαK2(t)
dtα

= 0, (4.31)

dαK3(t)
dtα

= 0. (4.32)

Clearly K2(t) = a2 and K3(t) = a3, where a1, a2 are constants. Eq. (4.30) becomes

dαK1(t)
dtα

= r2[a2
2Γ(β + 1)2 + a2

3Γ(γ + 1)2]. (4.33)

Solving Eq. (4.33), we get K1(t) = a1 +
r2[a2

2Γ(β + 1)2 + a2
3Γ(γ + 1)2]tα

Γ(α + 1)
. Hence exact

solution of IVP (4.28)-(4.29) is

f (t, x, y) =
9
5

+
e4r2Γ(γ + 1)2

Γ(α + 1)
tα + e2yγ. (4.34)

The solution (4.34) is plotted in Fig. 5.
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α=0.1, γ=0.2

α=0.5, γ=0.5

α=1, γ=1

Figure 5: Plot of solution of the IVP (4.28)-(4.29) for different values of α and γ at t = 1.

Note: It can be verified that the Eq. (4.28) also admits another invariant subspace
I4 = L{1, x2β, y2γ, xβyγ}. Thus proceeding on similar lines as previous examples another
exact solution corresponding to I4 can be found.

4.2.5 Exact solution of fractional diffusion like PDE in (1+2) dimensions

Consider fractional PDE with initial condition as follows

∂α f
∂tα

=
1
2

(
x2β∂

2γ f
∂y2γ + y2γ∂

2β f
∂x2β

)
, t > 0, α, β, γ ∈ (0, 1], (4.35)

f (0, x, y) = y2γ. (4.36)

Here I3 = L{1, x2β, y2γ} is an invariant subspace for N[ f ] =
1
2

(
x2β∂

2γ f
∂y2γ + y2γ∂

2β f
∂x2β

)
as

N[k1 + k2x2β + k3y2γ] =
Γ(2γ + 1)

2
k3x2β +

Γ(2β + 1)
2

k2y2γ ∈ I3.

Since criteria of Theorem (4.1) is satisfied, an exact solution of Eq. (4.35) is of the form

f (t, x, y) = K1(t) + K2(t)x2β + K3(t)y2γ, (4.37)
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where the unknown functions K1(t),K2(t) and K3(t) satisfy following system of FODEs:

dαK1(t)
dtα

= 0, (4.38)

dαK2(t)
dtα

=
Γ(2γ + 1)

2
K3(t), (4.39)

dαK3(t)
dtα

=
Γ(2β + 1)

2
K2(t). (4.40)

Clearly from (4.39)-(4.40), we deduce

dα

dtα

(
dαK2(t)

dtα

)
= λK2(t), λ = λ1λ2, λ1 =

Γ(2γ + 1)
2

, λ2 =
Γ(2β + 1)

2
. (4.41)

Taking Laplace transform of Eq. (4.41), we get

sαL(Dα
t K2(t); s) − sα−1 (

Dα
t K2(0)

)
= λK̃1(s)

K̃2(s) = b1
s2α−1

s2α − λ
+ b2

sα−1

s2α − λ
, where b1 = K2(0), b2 = DαK2(0).

Performing inverse Laplace transform, we obtain K2(t) = b1E2α,1(λt2α) + b2tαE2α,α+1(λt2α),
where b1 and b2 are arbitrary. Substituting value of K2(t) in Eq. (4.40) and solving the
same, we get K3(t) = c + λ2b1tαE2α,α+1(λ2t2α) + λ2b2t2αE2α,2α+1(λ2t2α).
Hence we get an exact solution of Eq. (4.35) as

f (t, x, y) = a +
[
b1E2α,1(λt2α) + b2tαE2α,α+1(λt2α)

]
x2β +

[
c + λ2b1tαE2α,α+1(λ2t2α)

+λ2b2t2αE2α,2α+1(λ2t2α)
]

y2γ, c = b2, and a, b1, b2 ∈ R. (4.42)

Using initial condition (4.36), solution (4.42) reduces to

f (t, x, y) =
[
tαE2α,α+1(λt2α)

]
x2β +

[
1 + λ2t2αE2α,2α+1(λ2t2α)

]
y2γ. (4.43)

Note: For α = β = γ = 1, c = b2 and under an initial condition f (0, x, y) = y2, solution
(4.42) reduces to

f (t, x, y) = (sinh t)x2 + (cosh t)y2. (4.44)

Solution (4.44) coincides with the solution for the heat like equation ∂ f
∂t = 1

2

(
x2 ∂2 f

∂y2 + y2 ∂2 f
∂x2

)
,

obtained by NIM [2].
The solution (4.43) is depicted in Fig. 6.
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α=0.1, β=0.3, γ=0.2

α=0.5, β=0.5, γ=0.5

α=1, β=1, γ=1

Figure 6: 3D-Plot of solution of the IVP (4.35)-(4.36) at t = 1.

5 Fractional differential operators with mixed partial deriva-
tives

It should be noted that invariant subspace method can also be employed for solving FPDEs
with fractional differential operators N l[ f ] (l = 1, 2) involving mixed fractional partial
derivatives. Analysis of such FPDEs can be done on the similar lines as done in Sec. (3)
and Sec. (4). We illustrate the method by solving an example.
Consider the following system of nonlinear FPDEs for t > 0, 0 < α1, α2, β, γ ≤ 1.

∂α1 f
∂tα1

=
∂γ

∂tγ

(
∂2β f
∂x2β

)
+ m1

(
g
∂βg
∂xβ

)
+ a1m1g2,

∂α2g
∂tα2

=
∂γ

∂tγ

(
∂2βg
∂x2β

)
+ n1

∂β

∂xβ

(
∂β f
∂xβ

)
− a2

2n1 f + n2g, (5.1)

where γ < α1, γ < α2, and a1, a2,m1,m2, n1 and n2 are arbitrary constants.

Observe that I = I2
1 × I1

2 = L{Eβ(a2xβ), Eβ(−a2xβ)} × L{Eβ(−a1xβ)},
is an invariant subspace corresponding to the given fractional differential operator. Hence
the system (5.1) admits solution of the form

f (t, x) = K1(t)Eβ(a2xβ) + K2Eβ(−a2xβ), g(t, x) = L1(t)Eβ(−a1xβ), (5.2)
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such that

dα1 K1(t)
dtα1

= a2
2
dγK1(t)

dtγ
, (5.3)

dα1 K2(t)
dtα1

= a2
2
dγK2(t)

dtγ
, (5.4)

dα2 L1(t)
dtα2

= a2
1
dγL1(t)

dtγ
+ n2L1(t). (5.5)

Solving the system of FODEs (5.3)-(5.5) and substituting the values of K1(t),K2(t) and
L1(t) in Eq. (5.2) we get an exact solution of the system (5.1) as

f (t, x) =

b1

∞∑
m=0

(
a2m

2 t(α1−γ)m

Γ((α1 − γ)m + 1)
−

a2m+2
2 t(α1−γ)(m+1)

Γ((α1 − γ)(m + 1) + 1)

) Eβ(a2xβ)

+

b2

∞∑
m=0

(
a2m

2 t(α1−γ)m

Γ((α1 − γ)m + 1)
−

a2m+2
2 t(α1−γ)(m+1)

Γ((α1 − γ)(m + 1) + 1)

) Eβ(−a2xβ),

g(t, x) =

c1

∞∑
m=0

(
nm

2

m!
tα2mE(m)

α2−γ,γm+1(a2
1tα2−γ) −

a2
1nm

2

m!
t2α2−2γE(m)

α2−γ,α2+γ(m−1)+1(a2
1tα2−γ)

) Eβ(−a1xβ),

where b1, b2, c1 are arbitrary constants.

6 Conclusions and future scope
Present article extends invariant subspace method for solving nonlinear systems of FPDEs
involving both time and space fractional derivatives. In this method system of FPDEs
are reduced to systems of FODEs which can be further solved by existing methods. The
proposed method has been illustrated by finding exact solutions of various systems, viz.,
system of generalized fractional Burger’s equations, coupled fractional Boussinesq equa-
tions, fictionalized system of KdV type of equations. Further we demonstrate how invari-
ant subspace method can be employed for FPDEs in (1+n) dimension. The effectiveness
of this method is illustrated by finding closed form solutions for fractional dispersive KdV
equation in (1+n) dimensions, fractional population model, fractional scale wave equation,
fractional order Bossinesq equation and fractional diffusion like PDE in (1+2) dimensions
We have modelled equations using RL as well as Caputo derivatives and considered multi-
term expressions in time. Invariant subspace method is also used to find unique solutions
along with initial conditions.

We observe that (1+1) dimensional FPDEs admit more than one invariant subspaces,
each of which yields different exact solution [6]. Similarly FPDEs in higher dimensions
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admit more than one invariant subspaces. The solutions obtained can be expressed in terms
of Mittag-Leffler functions, fractional trigonometric functions etc. We demonstrate that
invariant subspace method is very effective tool in finding exact solutions of wide class of
linear and non linear systems of FPDEs and FPDEs in higher dimensions. Further we have
also employed invariant subspace method for solving FPDEs with fractional differential
operator involving mixed fractional partial derivatives.

Due to lack of composition rule and chain rule, we have severe limitations in finding
invariant subspaces corresponding to fractional operator using existing algorithms devel-
oped for ordinary PDEs. We have found invariant subspaces for the fractional operators
by trial and error method. Developing proper theory and algorithms for finding all sets of
invariant subspaces for fractional operators is an open area to explore. Similarly, suitable
theory may be developed for finding maximum dimension of invariant subspaces.
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