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Abstract  

In this study we developed a SEIR model, including social interactions and individual human 

mobility in everyday activities. For this purpose, daily mobility of people was considered by 

using the molecular dynamic method and the virus spreading was modeled employing the 

ordinary SEIR scheme. Utilizing this model, the variation of population size, density, and 

health strategy as well as the effect of busy places such as malls, were considered. The results 

show that, our flexible model is able to consider the effects of different parameters such as 

distance between peoples, local population density and health strategy in the outbreak. 
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Virus epidemics or outbreaks happened by the viruses, have been wide spreading among 

human societies. Usually, one of the most important ways of the virus spreading is the 

people’s daily life close contact, which may cause one healthy person to be faced with an 

infected one and inhales very small droplets produced by him/her (possibly created by 

talking, coughing, or sneezing). In December 2019 a novel type of coronavirus, called 

COVID-19, was identified in Wuhan-China, which has rapidly spread all around the world 

due to the accessibility of global travel and close contact of people [1]. This virus, 

COVID-19, is a new one, and in addition to its biological harm issues, many of its epidemic 

details are still unclear and under investigation. Regarding this situation, some public health 

strategies, like maintaining overall personal hygiene and social distancing, are recommended 

to cut off the infection transmission chain. Moreover, high-risk activities such as being in 

crowded places, like busy restaurants or shopping centers, and travelling on public transport, 

are controlled seriously to reduce the risk of the virus spreading. 

 Considering these conditions, the theoretical modeling of disease outbreak could be helpful 

to select more efficient policies and actions for controlling the outbreak in realistic cases. In 

the recent years, agent-based models (ABMs) have been extensively used for modeling such 

pandemics [2-12]. Some of the basic and simplest epidemiological models which are widely 

used to predict these kinds of epidemic diseases are SIR type models (SIR, SEIR and SEIRD 

models) [7-14] that represent the disease timeline through three, four and five status, where 

the variables S, E, I, R and D denote the number of individuals in susceptible, exposed, 

infected, recovered, and deceased compartment states, respectively. In this type of classical 

epidemiological models, individual real-life information is not considered and hence these 

models are limited to describe the details of outbreaks completely. Recently, to obtain better 

descriptions of the disease spreading, agent-based models which include the individual’s 

behavior were employed for modeling the virus spreading. To this end, combination of the 

methods was used to predict the outbreak dynamics, in some investigations. As an example, 

Kie et al. presented a hybrid model for COVID-19 pandemic prediction based on a SEIR 

approach and the ABM Monte Carlo simulation [15]. In another study, Martınez et al. [16] 

planned an ABM system to simulate virus spreading by means of agents that are 

characterized by their individual mobility patterns and social networks from cell phone 

records to model the virus spreading.  It is well known that useful models are based on 

simplifying assumptions, however data obtained from all models are some kinds of 

estimations, but they can be useful if their basic assumptions are good enough for the 

particular applications. We believe that more realistic models than the ordinary existing ones 

https://en.wikipedia.org/wiki/Transmission_(medicine)
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such as the normal forms of SEIR family models are needed to describe the virus epidemic in 

detail, due to some noticeable features of COVID-19 outbreak affected by the public 

situations such as social culture, local medical resources, health strategies and individual 

activities. Thus, in this study we aimed to improve the SEIR approach by considering the 

people daily mobility and communications. To this end, the molecular dynamic (MD) 

simulation and ordinary SEIR epidemic methods were combined, in which people mobility 

was considered using the MD simulation method, and the virus spreading between people 

was modeled employing the SEIR scheme. The method tracks the individual human mobility 

during the epidemic timeline, by time interval less than an hour. So, it not only considers the 

daily routine activities of each person in the virus spreading, but also allows us to add the 

effects of geometries of public sites and places, like malls in virus epidemic. In addition, this 

flexible model lets us to consider the effects of impressive parameters on the outbreak, such 

as variation of distance between two individuals. Moreover, this method makes it possible to 

understand that how the usage of suitable public health strategies can effectively control and 

prevent the transmission of these kinds of communicable diseases. This approach can be 

especially useful to establish the efficient policies to control such diseases, for cases such as 

universities, schools, government buildings and so on, mainly after the post lockdown phase 

of the outbreak. Hence, we believe that employing this simple model, based on well-defined 

assumptions can provide a practical approach to overcome the two important features of 

COVID-19 mentioned above. In addition, this scheme can be used to model other kinds of 

similar infectious disease, and also comparable complex systems such as animal herd 

dynamics and communication in social networks, by utilizing the proper parameters. 

2. Materials and Method  

We model the epidemiology of COVID-19 outbreak employing an ABM based on 

combination of the MD simulation method and the ordinary SEIR model. In our improved 

model, the population was represented by a collection of N particles (each person considered 

as a particle), in which the people mobility was simulated using the MD simulation method 

and virus spreading between the people was modeled utilizing SEIRD method with the five 

mentioned compartments. 

In fact, we used the MD simulation to create the network dynamics of contacts between the 

individuals. For this purpose, each person was considered as a particle in the simulation box, 

and the interactions between people (particles) in the society were calculated from the simple 

form of the Lennard-Jonze potential as follows:  
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where ε and δ are respectively related to the potential magnitude and the equilibrium distance 

between the particles and     is the distance between the i-th and j-th particles. The equations 

of motion were integrated via the application of Velocity-Verlet method [17]. To change the 

social conditions such as social distancing, the related simulation parameters must be 

changed, accordingly. For example, the parameters δ (potential distance cut-off) and 

infectious rates, are related to the social distancing strategies. In the simulations at first, the 

particles are allowed to interact with each other and be in motion accordingly, during each 

MD step. After each step, the SEIR method algorithm was used to model the virus spreading 

among the people. As it is known, when the virus introduced to a population by some 

infected ones, the people status switched from one of the mentioned compartment to the next 

one, i.e. SEIR, and with small probabilities from E and I to D. The variation of 

population compartments were computed during the time, governed by a set of five coupled 

differential equations, which are presented in Eq. (2).                                                                                                                                                                                       
Where S, E, I, R and D denote the above mentioned populations, and N=S+E+I+R+D is the 

total population. The parameters β1, β2, α, γ, σ1 and σ2 are the transition rates between the five 

compartments and are α=1/A, β1=1/B and γ=1/C, where A, B and C are the latent, contact, 

and infectious periods. Among these parameters, A and C are interpreted as the disease 

specific and B as the behavior specific.  It is necessary to mention that the parameter β1 is 

related to the inverse of distance between the two particles, as well, i.e. the larger the distance 

between S and I ones, the less the probability of translation from S to E status. Furthermore, 

β2 is the environmental transition coefficient from S to E, i.e. the probability of getting the 
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virus from the environment, indirectly.  The parameter σ1 and σ2 denote the mortality rate of 

disease, at the exposed and infectious levels.  

This set of equations was applied as a stochastic process to model the disease transmission in 

ABM. To this end, according to the possible disease progression of an individual, a 

susceptible one may become exposed if he/she directly is faced with an infectious one at rate 

β1 (which could be related to the distance) or may become exposed indirectly by inhaling the 

infected droplets floating in his/her surrounding at rate β2.  

These probability parameters can be decreased considering suitable public health strategies 

such as facial masking and frequent hand-washing.  The exposed one switches to the infected 

one after 3 days (with the rate of α=1/3 Day
-1

), and the infected one to the recovered one after 

15 days (with the rate of β=1/15 Day
-1

) [8]. In addition, the exposed and infected ones are 

removed from the active population at the rates σ1 and σ2. To consider the effect of especial 

busy places, such as malls, the dynamics of particles in the system were simulated in the 

present of an attractive force. In this way, a Gaussian function form was chosen as the 

attraction force as bellow:                                                                                                     
Where F0 is the force intensity, a is the width of the potential,   is position of the center of 

the place and ri is the location of individual i. The lockdown, and closure or limitation of the 

public places’ services are reflected on F0 and a parameters. The parameters values used in 

our computational model are listed in table 1. 

Table (1) List of parameters and their values used in our simulations [8,11]. 

parameter Description unit value 

α Latency rate Day
-1

 0.33 (1/3) 

β1 Infection rate (direct coefficient form infected 

one)  

Day
-1

 0.067 

β2 Infection rate (direct coefficient form 

environment) 

Day
-1

 0.0067 

γ Recovery rate Day
-1

 0.047 (1/21) 

σ1 Death rate (for exposed compartment) Day
-1

 0.0001 

σ2 Death rate (for infected compartment) Day
-1

 0.0005 

δ Length parameter of LJ potential m 0.5 

ε Energy parameter of LJ potential J 2 

F0 Attractive force coefficient N 15 
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N Number of population  - 1500-2600-5200 

a Gaussian potential width m
2
 10000 

 

3. Results and Discussion 

The aim of this investigation is to predict the outbreak scenarios by using our developed 

model, based on MD and SEIR methods. As it was mentioned, in our proposed 

epidemiological model, the people mobility was simulated employing the MD simulation 

approach and the virus spreading between the people was modeled using SEIR method, at 

each MD time step. Regarding this approach, we considered the effect of social distancing, 

individuals’ mobility and public health strategies such as social distancing, on the diseases 

outbreak. To this ends, several simulations were performed to examine the influence of some 

parameters, such as the system size and physical distancing, to prevent the transmission of the 

disease and to maintain the public health. In all simulations, the initial numbers of 

susceptible, exposed, infected, recovered, and deceased individuals were set at N-1, 0, 1, 0 

and 0, respectively.  The initial arrangement of the number of 2600 people in the square 

simulation box of 1000×1000 m
2
 is shown in Fig. 1-a.  

Figure (1) 

In the first computational examination, we considered the influence of the total population 

number on the outbreak dynamics. To this end, three population numbers was chosen, i.e. 

1500, 2600 and 5200 persons, with the same population density. The variations of the five 

populations during the time for the three mentioned total population numbers are shown in 

the panels of Fig. 2. From these curves, as we expected from SEIR model, it can be seen that 

as the susceptible population decreases over time, the exposed population and after it the 

infected population first grow up, then reach a peak, then begin to decline and eventually 

reach zero. Furthermore, it can be observed that by decreasing the infected population, the 

recovered and the deceased populations increase toward their final values. 

Figure (2) 

 As can be seen from Fig. 2-a, 2-b and 2-c, the dynamics of population compartments are 

nearly similar for three population numbers, and only the maximum picks values are different 

according to the population. In addition, it is found that nearly all people have experienced 

the exposed level, and their status changed to the recovered or death during about 50 days. 

Moreover, the population variation of E, I, R and D compartments per day were calculated 

and shown in the panels of Fig. 2-d, 2-e and 2-f, for N= 1500, 2600 and 5200, respectively, 
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which their variation are very similar for three cases. These curves can be useful to predict 

the second phase of the outbreak, i.e. if after the first negative or zero values of ∆I, the 

positive values are observed again, the second phase of outbreak may be started. To clear the 

effect of the people mobility simulated by MD, a set of three similar mathematical SEIR 

modeling were performed on a system, in which individuals were fixed on a square lattice 

network and they could interact with their first and second-nearest neighbors, for the 

mentioned populations, i.e. 1500, 2600 and 5200 ones. As it is presented in the panels of Fig. 

3, the results are nearly similar but for a larger infectious rate (β1=0.125, β2=0.025, σ1 = 0.005, 

σ2 = 0.025). So, considering the people mobility in the model caused to increase the virus 

spreading rate. It is necessary to mention that the simulation on the fixed networks was faster 

and can be used for bigger population, but our model is more flexible and considers more 

details as well as people motility, as it will be shown in the following. 

Figure (3) 

Therefore, it was achieved that population number is not the key parameter in the outbreak if 

the population densities are the same, i.e. it seems that the population density can be the 

important parameter in the outbreak dynamics and to test this propose, three amounts of 

population number densities were examined and the obtained results are presented in panels 

of Fig. 4. From this figure, it is observed that the rate of outbreak dynamics was reduced for 

the smaller population density, i.e. the duration period of the disease in the chosen society 

increased for lower density. It is due to the fact that by decreasing the density, the average 

amount of separation distance between the people increased and so the probability of facing 

with the sick person was reduced. Thus, as it was known, reducing the people density in the 

public places can be a successful strategy for controlling the outbreak, and we believe our 

method can be useful to determine the optimal people density in small public places such as 

schools and universities. 

Figure (4) 

To consider the effect of public health strategies, such as social distancing, we increased the 

average distance between the people by increasing δ in L-J potential value. Furthermore, the 

infected persons were not allowed to interact with the other people by decreasing β1 value, as 

quarantine. In addition, the probability of getting the virus from the environment is reduced 

by reducing β2 as the application of some health strategies such as facial masking and hand 

washing. The obtained results shown in Fig. 5 imply that applying these health strategies 

caused to increase the outbreak period (more than 250 days) in comparison with the condition 

that these strategies were not applied (less than 50 days). As can be seen in Fig. 5 the 
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maximum number of sick people (about 0.1 of publication for the case of 2600 persons) is 

less than the same value when the public-health strategies have not been applied (about 0.8 of 

publication for the case of 2600 persons). Accordingly, the ailing persons can be better 

supported by limited public medical resources (usually in good condition, the public medical 

resources are enough for 0.1 of publication), which leads to reduction in the deceased 

population. Hence, the risk of population's health harming from the disease will be reduced 

by increasing the outbreak period.  

Figure (5) 

Finally, in order to investigate the effect of special crowded public places such as malls, 

transport stations and so on, we added the attracting force of form Eq. (3), in the MD 

simulation which is caused to increase the local population density in that place (as it is 

shown in Fig. 1-b. The result of this simulation is presented in Fig. 6. As can be seen adding a 

public place in the system caused to increase the infection rate and hence decreases the 

outbreak duration time. Declining in the outbreak duration leads to increase the public 

damage, as it is described in the previous section, i.e. the maximum number of daily sick 

people is higher when the attraction public place was added in the model. So the public 

medical resources probably cannot support the numerous people in the small time duration, 

which leads to increase the health-damaged risk. 

Figure (6) 

Therefore, as it was shown, this flexible model could be very useful for investigating such 

pandemic cases, and also in modeling the information diffusion in the social communication 

networks and social face-to-face interaction between individuals, animal behaviors within a 

herd and so on.  

4. Conclusion 

In this paper we have modified the SEIR approach by considering the people daily activities 

to simulate an outbreak dynamics.  To this end, a classical MD simulation method was 

utilized to simulate the people mobility and SEIR model was employed for modeling disease 

spreading among the people. To examine the impact of various public-health strategies, such 

as physical distancing, on the resulting epidemic spreading, several simulations were 

performed. Our model has confirmed that the number of people in a system is not a 

significant factor in the outbreak while the population density is an effective parameter in the 

virus spreading. We have also realized that as far as the people mobility is concerned, the 

disease spreading rate is more than the situation of a network of fixed people in which every 
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individual has limited neighbors. Furthermore, our simulations show that the application of 

the social distancing can lead to a reduction in the epidemic spreading by influencing β1 and 

β2 values. So it allows us to determine the optimal physical distance to control the pandemic. 

As a final point, to concern the effect of crowded public places such as malls, the local 

population density in such places was increased by adding the attracting Gaussian force in the 

MD simulation which leads to increase the COVID-19 spreading rate in the system. This 

approach can be easily adjusted to model such infectious disease that follows the SEIR 

person to person transmission dynamics, and also other kinds of similar complex systems 

such as communication in social dynamics networks and animal herd behaviors, by changing 

the related parameters. 
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8. Figure’s  

 

Figure 1: The initial arrangement of the number of 2600 people in the square simulation box 

of 1000×1000 m
2
, (a) for the system without the crowded place, (b) for the system without 

the crowded place in the center of the simulation box. 
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Figure 2: The percentage variations of the five populations during the time for the total 

population number of, (a) 1500, (b) 2600, and (c) 5200, and the population variation of E, I, 

R and D compartments per day for the total population number of, (d) 1500, (e) 2600, and (f) 

5200, utilizing our model. 
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Figure 3: The percentage variations of the five populations during the time for the total 

population number of, (a) 1500, (b) 2600, and (c) 5200, and the population variation of E, I, 

R and D compartments per day for the total population number of, (d) 1500, (e) 2600, and (f) 

5200, utilizing classical SEIR model with a fixed square lattice network. 
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Figure 4: The percentage variations of the five populations during the time for the population 

number densities of, (a) 2.60D-3, (b) 1.30D-3, and (c) 0.75D-3 person/m2, and the population 

variation of E, I, R and D compartments per day for the total population number of, (d) 

2.60D-3, (e) 1.30D-3, and (f) 0.75D-3 person/m2, utilizing our model. 
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Figure 5: The effect of public health strategies for the total population number of 2600 

persons, (a) the percentage variations of the five populations during the time, (b) the 

population variation of E, I, R and D compartments per day. 

 

 

 

 

 

Figure 6: The effect of adding a public place in the system for the total population number of 

2600 persons, (a) the percentage variations of the five populations during the time, (b) the 

population variation of E, I, R and D compartments per day. 
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The initial arrangement of the number of 2600 people in the square simulation box of 1000×1000 m2, (a)
for the system without the crowded place, (b) for the system without the crowded place in the center of
the simulation box.
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The percentage variations of the �ve populations during the time for the total population number of, (a)
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The percentage variations of the �ve populations during the time for the population number densities of,
(a) 2.60D-3, (b) 1.30D-3, and (c) 0.75D-3 person/m2, and the population variation of E, I, R and D
compartments per day for the total population number of, (d) 2.60D-3, (e) 1.30D-3, and (f) 0.75D-3
person/m2, utilizing our model.



Figure 5

The effect of public health strategies for the total population number of 2600 persons, (a) the percentage
variations of the �ve populations during the time, (b) the population variation of E, I, R and D
compartments per day.

Figure 6

The effect of adding a public place in the system for the total population number of 2600 persons, (a) the
percentage variations of the �ve populations during the time, (b) the population variation of E, I, R and D
compartments per day.


