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This paper presents novel affine formation algorithms and implementations in different scenarios for the coordination of multi-agent systems with
triple-integrator agent dynamics for both sampled-data and continuous-time settings. The agents in affine maneuver control are to be capable of
producing required geometric shapes and simultaneously accomplishing desired maneuvers such as shearing, rotation, translation and scaling.
From existing work, these tasks can be accomplished for systems whose agent dynamics are described using double-integrators and the agents
communicate continuously in time. In some practical situations, however, the inter-agent communication may be limited to periodic intervals
of time. Furthermore, a wide range of systems is governed by complex dynamics described with higher-orders. This paper presents two novel
algorithms based on triple-integrator agent dynamics. Four implementation cases comprising of two scenarios each studied in both continuous-time
and sampled-data cases are considered. Under the proposed algorithms, the collection of agents are capable of tracking time-varying targets which
are affine transforms of the reference formation, if the leaders have knowledge of the required formation maneuvers. Detailed implementation
results are presented to demonstrate the efficacy of the proposed algorithms.

Keywords: Formation Control; Multi-Agent System; Cooperative Control; Autonomous Systems; Multi-Agent Coordination; Stress Matrix; Affine
Formation Control.

1. INTRODUCTION

The multi-agent system (MAS) formation control problem has
attracted increased attention from researchers in recent times be-
cause of its application to a wide range of areas. This includes
the control of unmanned ariel vehicles, satellite clusters, coordi-
nation of teams of mobile robots, and so on. The ultimate goal
of formation control is to design distributed control laws that en-
sure that the agents of a given MAS both form desired geometric
patterns and collectively achieve any required maneuver.

Different strategies have been proposed to address the for-
mation control problem of MASs. For example, the consensus-
based strategy is used to address the formation control prob-
lem in [1, 2].This strategy is grouped into three approaches
by convention. They are the bearing-based [3], displacement-
based [4] and distance-based [5] approaches. These approaches
achieve the defined formation by defining constant constraints
on the inter-agent bearing, displacement and distance. These
preset constant offsets in turn negatively impose limitations on
the maneuvers the formation, as a whole, can carry out. For in-

stance, consensus-based formation control laws based on the
displacement approach can track target functions having time-
varying translations [6, 7] but carrying out scales on the forma-
tion would require a redesign of the displacements. Similarly,
formation control laws based on distance can track formation
targets with time-varying translations and orientations [8, 9],
but have difficulties in tracking target formations having time-
varying scales. Also, the bearing-based formation control laws
can track time-varying formation translations and scales [5, 3],
but have difficulties in tracking time-varying formation orienta-
tions. Thus, simultaneously achieving translation, rotation and
scaling maneuvers by any of these methods are involving. The
Complex Laplacian-based strategy [10, 11], has been proposed
to extend the maneuverability of formation of MASs. This strat-
egy is able to carry out maneuvers such as rotation, translation
and scaling. Unfortunately, the strategy is only able to address
two-dimensional systems. This inadequacy motivated further re-
search which led to the development of the strategy based on the
stress matrix.

The prospect of the stress matrix based strategy is good

∗This paper is a comprehensive version of our conference paper, ”Affine Formation Maneuver Control of Multi-Agent Systems with Triple-
Integrator Dynamics,” submitted for American Control Conference 2019.
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with the promise of being able to achieve general formation
maneuvers in all dimensions. Both Laplacian and stress matri-
ces have similar properties. However, the respective edge entries
producing the stress matrix need to be jointly determined by the
formation configuration. Furthermore, the respective values of
the weight (edge) entries of the stress matrix can be either posi-
tive or negative.

Recently, the formation control strategy based on the stress
matrix has been applied to the affine formations control of
MASs. An affine transformation is viewed as a general lin-
ear transformation corresponding to translation, rotation, shear-
ing, scaling, or any combination of them. The affine forma-
tion control problem based on the stress matrix with station-
ary leaders is studied for agent dynamics described by single-
integrator in [12]. Formation scaling is considered in [13]. The
affine formation control problem where the leaders are dynamic
or modelled with double-integrator agent dynamics is addressed
in [14]. These studies only considered the case where inter-agent
communication (or sensing) occur continuously in time and the
agents’ dynamics are limited to double-integrators.

In real-life situations, however, agents may only commu-
nicate in periodic time intervals and may have agent dynamics
described by triple-integrators. Triple-integrator agent dynamics
have found applications in robot motion control, aircraft control,
lifts and a wide range of mechanical control systems. For exam-
ple, the DC motor which features as an actuator in a vast ma-
jority of mechanical control systems is normally modelled with
triple-integrator agent dynamics when the motor load is consid-
ered. Triple-integrator agent dynamics are used to approximate
the individual agent dynamics in an n-vehicle system of travel-
ling along a single lane for a drive-train model in [15]. A broad
range of systems could be modelled using triple-integrator agent
dynamics, see [16, 17]. Therefore, it is important to broaden
the application area by considering the stability conditions for
MASs with triple-integrator agent dynamics.

In this paper, we study the affine formation maneuver con-
trol problem of MASs described by triple-integrator agent dy-
namics. We propose two control laws based on periodic and
continuous communications. Sufficient conditions are presented
to guarantee the global stability of the proposed control laws.
The proposed laws are implemented for four cases consisting
of two scenarios each considered for both sampled-data and
continuous-time agent communication cases.

The remainder of this paper is organised as follows. Prelim-
inary results and notations used in the remainder of this paper are
presented in Section 2. The affine formation control problem is
formulated in Section 3. Section 4 considers the continuous-time
case of the affine formation maneuver control problem. Section
5 studies the sample-data case. Section 6 presents simulation
study of the problem. Finally, a conclusion for the study is pre-
sented in Section 7.

2. PRELIMINARIES

This section presents some preliminary results and notations
used in the remaining sections of this paper.

2.1. Basic Graph Notations

Consider a MAS composed of n agents. Let the communication
among the agents be modelled by a graph G (V ,E ), which de-
notes a collection of edges E and vertices V . An edge denotes
a direct communication path from one node (or vertice) to an-
other. For example, if node j can obtain information from node i
(or node i can transmit information to node j), then edge (i, j) is
considered to exist, i.e., (i, j) ∈ E . The edge (i, j) has a weight
given by w ji if it exists and 0 if it does not. If for every exist-
ing edge ( j, i) ∈ E ; we have (i, j) ∈ E , then the graph is said to
be undirected, but if otherwise, the graph is considered directed.
The neighbours of node i are the set of nodes it can receive infor-
mation from. This set is denoted by Ni. In this paper, we assume
each agent knows its state and the states of its neighbours. Also,
⊗ denotes the Kronecker product.

A configuration denotes a collection of nodes defined by
their respective positions in Euclidian coordinate space, Rd . We
denote this by p = [pT

1 , ..., pT
n ]

T , where pi ∈ Rd . A framework
F = (G , p) in Rd is a graph defined with its configuration. Two
frameworks, (G ,q) and (G , p) are considered to be equivalent,
written as ((G ,q)≡ G , p), if and only if

‖ qi−q j ‖=‖ pi− p j ‖, ∀(i, j) ∈ E .

The two frameworks, (G ,q) and (G , p), are considered to be
congruent, written as (G , p)∼= (G ,q), if and only if

‖ qi−q j ‖=‖ pi− p j ‖, ∀i, j ∈ V .

A framework in Rd is considered globally rigid if (G , p) ≡
(G ,q) implies (G , p)∼= (G ,q). This follows that, any framework
in Rd equivalent to (G , p) is congruent to it as well. A config-
uration p is considered universally rigid if and only if for all
Rd1 , where d1 refers to any positive integer, (G , p)≡ (G ,q) im-
plies (G , p)∼= (G ,q). This means that, universal rigidity confers
global rigidity but global rigidity does not automatically implies
universal rigidity [18, 19 and 12].

2.2. Affine Span

The affine span, S , of a set of points, {pi}n
i=1 ∈Rd is described

by

S =

{
n

∑
i=1

ai pi : ai ∈ R ∀i and
n

∑
i=1

ai = 1

}
.

A collection of d +1 affinely independent points are required to
affinely span any d-dimensional space. The affine span of any
two distinct points is a line that joins both of them. Similarly,
the affine span of three unique points that are not collinear is a
2-dimensional plane passing through these three points. Other
higher dimensions follow the analogy.

Any given affine span can be easily translated so that it con-
tains the origin, and therefore, a linear space with the same di-
mension as the affine space. Therefore, given a d-dimensional
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affine span, one can say the points span Rd affinely. In this pa-
per, the d + 1 leaders that span Rd is considered for the affine
formation control of a d dimensional space.

2.3. Stress Matrix

Given a framework, F = (G , p) whose graph is undirected, we
refer to the stress as a collection of the weights, wi j of respective
edges. A stress satisfying

−∑wi j(pi− p j) = 0, i ∈ V , (1)

is said to be an equilibrium stress [18, 19]. Equation (1) is writ-
ten in a matrix form as

−(Ω⊗ Id)p = 0,

where the stress matrix, Ω ∈ Rn×n, is given by

Ωi j =


∑

j∈Ni

wi j(k), for i = j,

−wi j, for i 6= j, ( j, i) ∈ E ,

0, for i 6= j, ( j, i) /∈ E .

(2)

Both classical Laplacian matrices and stress matrices of graphs
have similar properties, but that the off-diagonal entries of stress
matrices can be positive, negative or zero, unlike the Laplacian
matrices which only permit zero and negative values. The stress
matrix Ω is normally partitioned, for convenience, as

Ω =

[
Ωll Ωl f
Ω f l Ω f f

]
,

where Ω f f and Ωll are respectively n f × n f and nl × nl sub-
matrices. Note that the value of every wi j is to be computed.

2.4. Stress Matrix Design

Rigidity plays an important role in stress-matrix based forma-
tion control. The uniqueness of a framework in the entire space
of a defined dimension is guaranteed by its global rigidity. Ad-
ditionally, universal rigidity is required to guarantee the unique-
ness of the framework in all dimensions. Unfortunately, the nec-
essary and sufficient conditions to guarantee global/universal
rigidity is still lacking in existing literature. Thus, researchers
mostly concerned with MAS coordination typically focus on
the special global and universal rigidity cases where the frame-
work has a generic configuration. A configuration is considered
generic if its coordinates are algebraically independent over the
integer [18]. For frameworks with generic configurations, suf-
ficient conditions are given in [18, 20 and 21] to guarantee
global/universal rigidity. In the rest of this paper, we assume that
our configurations are generic.

Consider a framework whose communication graph is
undirected, universally rigid and has a generic configuration.
Assume that q1, ...,qd denote the 1st, ...,qth components of the
configuration with d-dimensional nodes. For instance, consider

a 3-dimensional configuration (x, y and z) of three unique nodes,
p1(1,0,3), p2(2,1,1) and p3(1,0,0), i.e., pi(x,y,z). This follows
that q1 = [1,2,1]T , q2 = [0,1,0]T and q3 = [3,1,0]T . Note that
1n,q1, ..,qd are linearly independent since the configuration is
generic.

Lemma 2.1. [20, 18, 21]: A framework (G , p) whose graph is
undirected and has a generic configuration in Rd with n≥ d +2
nodes is universally rigid if and only if its communication graph
is (d + 1)-connected with a stress matrix, Ω, that is positive
semi-definite and has a rank of n−d−1.

Assumption 1. The framework (G , p) is assumed to be generi-
cally universally rigid.

Remark 2.2. Assumption 1 guarantees that the rank(Ω) of the
stress matrix is n−d−1.

A method of computing the stress matrix as given in [14]
is presented. Denote w with the stress vector of the reference
formation. Let the graph have m undirected edges. Choose any
orientation for the graph and let the incidence matrix be given by
H ∈ Rm×n. Let hi ∈ Rm denote the ith column of the incidence
matrix H, so that H = [h1, ...,hn]. Choose

Z =

P̄T (r)HT diag(h1)
...

P̄T (r)HT diag(h1)

 ∈ Rn(d+1)×m,

where P̄(r) denotes the matrix [q1, ..,qd ,1n]
T . Denote the basis

of the null space of Z, null(Z) by z1, ...,zn ∈Rm. Let the singular
value decomposition (SVD) of P̄(r) = U ∑V . Let U = [U1 U2],
where the first d + 1 columns of U is used to compose U1. By
defining

Mi =UT
2 HT diag(zi)HU2, ∀i = 1, ..,q

and choosing c1, ...,cq such that,

ciMi � 0,

the stress vector is given by

w =
q

∑
i=1

cizi. (3)

More details on this method is contained in [14]. Furthermore,
some useful guideline on constructing universally rigid frame-
works is available in [22].

2.5. Affine Realizability and Leaders Selection

Proper leader selection is important for the manipulation of the
entire formation. This subsection presents a guide on how to se-
lect the leaders for the required affine formation maneuver con-
trol.

Lemma 2.3. [14] Consider that the nominal formation of the
framework (G , p) is composed of n f followers and nl leaders.
Then, the followers target positions p∗f can be uniquely calcu-
lated from the relation

p∗f =−(Ω−1
f f Ω f l⊗ Id)p∗l
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for any p = [pT
l , pT

f ]
T which belongs to the collection of affine

transform of the reference (nominal) formation, if and only if the
set of leaders chosen span Rd affinely and Ω f f is nonsingular.

Note that pl and p f respectively denote the positions of the lead-
ers and followers while p∗l and p∗f respectively denote the target
positions of the leaders and followers. Assume that the tracking
error be defined by

δp f (t) = p f (t)− p∗f (t) = p f (t)+(Ω−1
f f Ω f l⊗ Id)p∗l (t), (4)

The following assumption is to guarantee that the leaders
are properly chosen and the targets of the followers are defined.

Assumption 2. Assume that the d +1 leaders are selected such
that they span the Rd space affinely.

3. Problem Formulation

Consider a MAS with n agents. Let the position of the ith agent
be denoted by x1, ...,xn ∈ Rd , so that the ith agent’s target posi-
tion in the time-varying formation is given by

x∗i (t) = A(t)ri +b(t) (5)

where both b(t) ∈ Rd and A(t) ∈ Rd×d are time-varying and
the nominal (constant reference) configuration is denoted by
ri ∈ Rd . Equation (5) is written in global form as

x∗(t) = [In⊗A(t)]r+1nb(t) (6)

where r = [rT
1 , ...,r

T
n ] ∈Rnd and x∗(t) ∈Rnd respectively denote

the reference configuration and the targets (time-varying) to be
tracked. The affine image is the set of all affine transform of the
nominal configuration. Note that the tracked time-varying tar-
gets are affine images of the nominal configuration r.

We define the affine image as a collection of all the affine
transformation of the reference configuration r. Note that the
time-varying targets are affine images of the reference config-
uration. The affine image is given in global form by [12]

A (r) = {x ∈ Rdn : x = (In⊗A)r+1n⊗b, A ∈ Rd×d ,b ∈ Rd}.
(7)

The overall goal is to find conditions that guarantees that

lim
x→∞

x(t) = x∗(t), ∀x∗(t) ∈A (r).

4. Affine Formation Control Law for
Continuous-time Coordination of Multi-agent
Systems Described by Triple-Integrator Agent
Dynamics

Consider the MAS where the agents communicate continuously
in time, their inter-agent communication is modelled using an
undirected graph, and each agent has dynamics described using
triple-integrator, such that


ẋi(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = −∑ j∈Ni wi j[kx(xi(t)− x j(t))+ kv(vi(t)− v j(t))

+ka(ai(t)−a j(t))], i ∈ V f ,

(8)

where ka, kv and kx are positive constant control gains. Note that,
for brevity, we have dropped the subscript (t) in (8) for the re-
mainder of this section. System (8) can be given in matrix-vector
form by 

ẋ f = v f ,

v̇ f = a f ,

ȧ f = −kx[(Ω f f ⊗ Id)x f +(Ω f l⊗ Id)x∗l ]
−kv[(Ω f f ⊗ Id)v f +(Ω f l⊗ Id)v∗l ]
−ka[(Ω f f ⊗ Id)a f +(Ω f l⊗ Id)a∗l ],

(9)

where the states x f ,v f ,a f ∈ Rdn f respectively denote the posi-
tion, velocity and acceleration of the followers while x∗l , v∗l = ẋl
and a∗l = v̇l have been used to denote those of the leaders respec-
tively. Define the position tracking error as

δx f = x f − x∗f = x f +(Ω−1
f f Ω f l⊗ Id)x∗l ,

where x∗f denotes the target positions of the followers. Next, the
stability of control law (9) is investigated. Let µi denote the ith
eigenvalue of −Ω f f .

Theorem 4.1. Assume that Assumptions 1 and 2 hold, and the
leaders jerk ȧl is constantly zero, then by choosing the control
gains such that −kvkaµi > kp,∀i, control law (9) guarantees that
the errors in the followers positions δx f converge to zero.

Proof. Define the disagreements of the position, velocity and
acceleration respectively by δx f = x f +(Ω−1

f f Ω f l⊗ Id)x∗l , δv f =

v f +(Ω−1
f f Ω f l ⊗ Id)v∗l and δa f = a f +(Ω−1

f f Ω f l ⊗ Id)a∗l so that
(9) can be re-written as functions of their disagreements as

δ̇x f

δ̇v f

δ̇a f

=


 0n f×n f In f 0n f×n f

0n f×n f 0n f×n f In f
−kpΩ f f −kvΩ f f −kaΩ f f


︸ ︷︷ ︸

F1

⊗Id


δx f

δv f
δa f



+

 0n f×n f
0n f×n f

Ω
−1
f f Ω f l

⊗ Id

 ȧ∗l . (10)

Note that ȧ∗l = 0 for this study. The system matrix of (10) has
the characteristic polynomial given by

det([sI3n f −F1]⊗ Id) =

det

 sIn f −In f 0n f×n f
0n f×n f sIn f −In f
kpΩ f f kvΩ f f (sIn f + kaΩ f f )

⊗ Id

 .
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Note that µi denotes the ith eigenvalue of−Ω f f . Thus, det(sIn+
Ω f f ) = Πn

i=1(s−µi). This implies that

det([sI3n f −F1]⊗ Id) = det(sI3n f −F1)

= Π
n
i=1
[
s3− kaµis2− kvµis− kpµi

]
.

Therefore, the eigenvalues satisfy

s3− kaµis2− kvµis− kpµi = 0. (11)

Since ka,kv,kx > 0 and −µi > 0,∀i , all errors converge to zero
if and only if −kvkaµi > kp,∀i.

Remark 4.2. The choice of −kvkaµmax > kp satisfies the con-
vergence requirement −kvkaµi > kp for all followers. Note that
µmax has been used to denote the greatest eigenvalue of −Ω f f ,
i.e., the greatest µi.

Remark 4.3. Note that the case of time-varying jeck can be
studied using the protocol

ẋi(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = − 1
γ ∑ j∈Ni wi j[kx(xi(t)− x j(t))+ kv(vi(t)− v j(t))

+ka(ai(t)−a j(t))− ȧ j], i ∈ V f ,

where γ = ∑ j∈Ni . Further stability analysis is not included in
this paper because of page limitation.

5. Affine Formation Control Law for Sampled-data
Coordination of Multi-agent Systems Described
by Triple-Integrator Agent Dynamics

Consider the MAS coordination case where the agents are de-
scribed with triple-integrator dynamics modelled in continuous-
time by

ẋi(t) = vi(t), v̇i(t) = ai(t), ȧi(t) = ui(t). (12)

Assume that each agent has continuous-time dynamics, but
communicate (or sense) their neighbours at periodic time inter-
vals and their control inputs are zero-order hold based. Such that,
following [23],

ui(t) = ui(kT ), kT ≤ t < (k+1)T,

where T, k, ui(t), and ui[k] respectively denote sampling period,
discrete-time index, control input at time t (continuous-time),
and control input at t = kT .

Discretization of (12) yields


xi[k+1] = xi[k]+T vi[k]+

T 2

2 ai[k]+
T 3

6 ui[k],

vi[k+1] = vi[k]+Tai[k]+
T 2

2 ui[k],

ai[k+1] = ai[k]+Tui[k], i ∈ V f ,

(13)

where ai, vi and xi have respectively been used to denote the ac-
celeration, velocity and position of agent i. Next, we study the

sampled-data case where the jerk of leaders are constantly zero.
Consider the protocol,

ui[k] =− ∑
j∈Ni

wi j[kx(xi[k]− x j[k])+ kv(vi[k]− v j[k])

+ ka(ai[k]−a j[k])], i ∈ V f ,

which is given in closed-loop form by

u f =− kx[(Ω f f ⊗ Id)x f +(Ω f l⊗ Id)x∗l ]
− kv[(Ω f f ⊗ Id)v f +(Ω f l⊗ Id)v∗l ]
− ka[(Ω f f ⊗ Id)a f +(Ω f l⊗ Id)a∗l ]. (14)

Using (14), (13) can be re-written in matrix form asx f [k+1]
v f [k+1]
a f [k+1]

=


(In f − T 3

6 kxΩ f f ) (T In f −
T 3

6 kvΩ f f ) (
T 2

2 In f − T 3

6 kaΩ f f )

−T 2

2 kxΩ f f (In f − T 2

2 kvΩ f f ) (T In f −
T 2

2 kaΩ f f )
−T kxΩ f f −T kvΩ f f (In f −T kaΩ f f )


︸ ︷︷ ︸

F2

⊗Id


×

x f [k]
v f [k]
a f [k]


+

−T 3

6 kxΩ f l −T 3

6 kvΩ f l −T 3

6 kaΩ f l

−T 2

2 kxΩ f l −T 2

2 kvΩ f l −T 2

2 kaΩ f l
−T kxΩ f l −T kvΩ f l −T kaΩ f l

⊗ Id

x∗l[k]
v∗l[k]
a∗l[k]

 (15)

where v∗l ∈ Rdnl and v f ∈ Rdn f is used to respectively denote
the velocities of the leaders and followers. Define the position
tracking error as

δ f [k] = x f [k]− x∗f [k] = x f [k]+(Ω−1
f f Ω f l⊗ Id)x∗l[k],

where x∗f [k] denotes the target positions of the followers. Next,
we analyse the stability of control law (15).

Theorem 5.1. Assume that Assumptions 1 and 2 hold, and the
leaders jerk is constantly zero, by choosing kx, ka, kv and T such
that (2kv−T kx)> 0 and kv(3T kv−T 2kx−6ka)µi−6kx > 0, the
tracking error δx f [k] of all followers is guaranteed to stabilize to
the origin by control law (15).

Proof. Let the state errors (or disagreements) of the followers
be defined by

[
δ

T
x f [k]

,δ T
v f [k]

,δ T
a f [k]

]T
=
[
xT

f [k],v
T
f [k],a

T
f [k]

]T

−
[
x∗Tf [k],v

∗T
f [k],a

∗T
f [k]

]T
, (16)

where a∗f ,v
∗
f ,x
∗
f ∈ Rdn f respectively denote the target accelera-

tions, velocities and positions of the followers. By taking (16)
and control law (15) into consideration, the system matrix of the
error dynamics is defined by
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(In f − T 3

6 kxΩ f f ) (T In f −
T 3

6 kvΩ f f ) (
T 2

2 In f − T 3

6 kaΩ f f )

−T 2

2 kxΩ f f (In f − T 2

2 kvΩ f f ) (T In f −
T 2

2 kaΩ f f )
−T kxΩ f f −T kvΩ f f (In f −T kaΩ f f )


︸ ︷︷ ︸

F2

⊗Id .

(17)
The characteristic polynomial of F2 ⊗ Id in (17) is given by
det([sI3n f − F2]⊗ Id), which equals det(sI3n f − F2). Note that
µi is used to denote the ith eigenvalue of −Ω f f . Thus, det(sIn +
Ω f f ) = Πn

i=1(s−µi). It implies that (17) satisfies

s3− (
T 3

6
kxµi +

T 2

2
kvµi +T kaµi +3)s2

+(−2T 3

3
kxµi +2T kaµi +3)s

− (
T 3

6
kxµi−

T 2

2
kvµi +T kaµi +1) = 0. (18)

Using the bi-linear transform s = t+1
t−1 , for (18), the expression

−3T 3kxµit3 +(3T 3kxµi−6T 2kvµi)t2

+(T 3kxµi +6T 2kvµi−12T kaµi)t

+(−T 3kxµi +12T kaµi +24) = 0 (19)

is obtained. Thus, a sufficient condition for the stability of (15)
is for all the roots of (19) to be on the left half plane. Note
that the entire roots of (18) fall within a unit circle if the en-
tire roots of (19) are situated in the open left half plane. Note
that −3T 3kxµi > 0, because µi is always negative. Thus, guar-
anteeing that

3T 3kxµi−6T 2kvµi > 0, and

(3T 3kxµi−6T 2kvµi)(T 3kxµi +6T 2kvµi−12T kaµi)

+3T 3kxµi(−T 3kxµi +12T kaµi +24)> 0,

guarantees that the roots of (18) are within the unit circle. By fur-
ther algebraic simplification, these requirements are respectively
reduced to (2kv−T kx)> 0 and kv(3T kv−T 2kx−6ka)µi−6kx >
0.

6. Implementation

The first step in the implementation of the proposed algorithms
is the design of a reference formation that satisfies Assumptions
1 and 2. That is, the reference formation should be both gener-
ically universally rigid and have at least d + 1 nodes, that span
the Rd space affinely, to be selected as leaders. The next step is
to compute the stress matrix Ω. Equation (3) is used to compute
the stress matrix in this study.

The simulations were done in obstacle avoidance scenarios.
The acceleration varied slowly at some points, however, the con-
trol algorithms are still effective in these cases. We now present

the results of our four implemention cases grouped into two sce-
narios. Note that, the agents’ connections in the framework (e.g.
in Fig.6) are denoted with straight lines and (2,0) is used to de-
note that the agent’s position on the x- and y-axis are respectively
2 and 0.

6.1. Scenario One

Consider a five-agent MAS where each agent is modelled as
triple-integrators. Assume that the agents are denoted by i =
1,2, ...,5. Let Fig. 1 denote the communication graph of the
agents.

5 14

2

3

(-2,0)

(0,-1)

(-1,0)

(1,0)

(0,1)

Fig. 1. Framework showing agent communication along with their 2-
dimensional reference positions.

Agents 1 to 3 are selected as leaders while the rest are followers.
The stress matrix of the graph is given by

Ω =

[
Ωll Ωl f
Ω f l Ω f f

]
where



Ωll =

 0.2919 −0.2919 −0.2919
−0.2919 0.3544 0.3544
−0.2919 0.3544 0.3544

 ,
Ω f f =

[
1.2919 −0.5000
−0.5000 0.2500

]
,

Ω f l =

[
0.2919 −0.5419 −0.5419

0 0.1250 0.1250

]
and

Ωl f =

 0.2919 0
−0.5419 0.1250
−0.5419 0.1250

 .
(20)

The largest eigenvalue of −Ω f f , µmax = −0.049. The leaders’
initial positions are their respective nominal positions while the
followers are initialized to the following positions: P4(−3,1)
and P5(−1,2), where P5(−1,2) implies that the position of agent
5 is (−1,2). We now present the results of two simulation stud-
ies where the leaders paths are generated in advance.
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6.1.1. Continuous-time Inter-Agent Communication
Case

This study considers the case where inter-agent communica-
tion occurs continuously in time. We use control law (9) in this
study. The control parameters are chosen to satisfy the require-
ment of Theorem 4.1, i.e., −kvkaµi > kp,∀i. Here, we consider
−kvkaµmax > kp, which is the lower bound. From (20), µmax =
−0.049 for −Ω f f . It is easy to verify that the choice of the con-
trol gains kx = 0.8, kv = 8 and ka = 10 with µmax =−0.049 sat-
isfy the requirement of Theorem 4.1 (−kvkaµi > kp,∀i ). These
parameters are used in the simulation.

In the simulation study, the velocities and accelerations of
the leaders are estimated using discrete differentiators (zero-
order hold based). Note that the trajectories of the leaders is as-
sumed to be piecewise continuous and differentiable.

The simulation result showing the agents’ positions is pre-
sented in Fig. 2. It shows the formation maneuver around ob-
stacles on its path. The trajectories of the agents’ velocities and
accelerations are presented in Fig. 11 and the tracking errors of
the followers’ positions are presented in Fig. 3.

6.1.2. Sampled-data Inter-Agent Communication Case

This study considers the case where inter-agent communication
occurs in periodic time intervals. We use control law (15) in this
study. The control parameters are chosen to satisfy the require-
ments of Theorem 5.1. Denote the least eigenvalue of −Ω f f
by µmin. It can be verified from (20), that µmax = −0.049 and
µmin = −1.493 in this case. It is easy to verify that the choices
of T = 0.1, kx = 0.8, kv = 8 and ka = 8 satisfy the requirements
of Theorem 5.1, i.e., (2kv − T kx) > 0 and kv(3T kv − T 2kx −
6ka)µi−6kx > 0, ∀i. Note that both µmax and µmin are used be-
cause they form the boundary.

The simulation result showing the agents’ positions is pre-
sented in Fig. 4. It shows the formation maneuver around ob-
stacles on its path. The trajectories of the agents’ velocities and
accelerations are presented in Fig. 12 and the tracking errors of
the followers’ positions are shown in Fig. 5.

6.2. Scenario Two

Consider a seven-agent MAS where each agent is modelled
as triple-integrators. Assume that the agents are denoted by
i = 1,2, ...,7. Let Fig. 6 denote the communication graph of the
agents.

1

2

3

4

5

6

7

(-1, -1) (0, -1) (1, -1)

(2,0)

(-1, 1) (0, 1) (1, 1)

Fig. 6. Framework showing agent communication along with their 2-
dimensional reference positions.

Agents 1 to 3 are selected as leaders while the rest are followers.
The stress matrix of the graph is given by [14].

Ω =

[
Ωll Ωl f
Ω f l Ω f f

]
where



Ωll =

 0.2742 −0.2741 −0.2741
−0.2741 0.6853 0
−0.2741 0 0.6853

 ,
Ω f f =


0.7538 −0.0685 −0.2741 0
−0.0685 0.7538 0 −0.2741
−0.2741 0 0.2741 −0.1370

0 −0.2741 −0.1370 0.2741

 ,

Ω f l =


0.1370 −0.5482 0
0.1370 0 −0.5482

0 0 0.1370
0 0.1370 0

 and

Ωl f =

 0.1370 0 0
0 0 0.1370

−0.5482 0.1370 0

 .

(21)

The largest eigenvalue of −Ω f f , µmax = −0.024. The lead-
ers’ initial positions are their respective nominal positions
while the followers are initialized to the following positions:
P4(0,2), P5(0,−2), P6(−1,3) and P7(−1,3), where P5(0,−2)
implies that the position of agent 5 is (0,−2). We now present
the results of two simulation studies where the leaders paths are
generated in advance.

6.2.1. Continuous-time Inter-Agent Communication
Case

This study considers the case where inter-agent communica-
tion occurs continuously in time. We use control law (9) in this
study. Note that in this case µmax = −0.024. The control gains
kx, kv and ka are respectively chosen to be 0.8, 8 and 9. It is
easy to verify that this satisfies the requirement of Theorem 4.1,
i.e.,−kvkaµi > kp,∀i. These parameters are used in the simula-
tion.

In the simulation study, the velocities and accelerations of
the leaders are estimated using discrete differentiators (zero-
order hold based). Note that the trajectories of the leaders is as-
sumed to be piecewise continuous and differentiable.

The simulation result showing the agents’ positions is pre-
sented in Fig. 7. It shows the formation maneuver around ob-
stacles on its path. The trajectories of the agents’ velocities and
accelerations are presented in Fig. 13 and the tracking errors of
the followers’ positions are presented in Fig. 8.
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Fig. 2. Simulation illustrating the agents’ positions in the continuous-time case of scenario one, based on control law (9)
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Fig. 3. Simulation illustrating the positions error dynamics for the continuous-time case of scenario one
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Fig. 4. Simulation illustrating the agents’ positions in the sampled-data case of scenario one, based on control law (15)

6.2.2. Sampled-data Inter-Agent Communication Case

This study considers the case where inter-agent communication
occurs in periodic time intervals. We use control law (15) in this
study. Denote the least eigenvalue of −Ω f f by µmin. It can be
verified from (21) that µmax =−0.024 and µmin =−0.96 in this
case. Thus, the choices of T = 0.1, kx = 0.8, kv = 8 and ka = 8
can be verified to satisfy the requirements of Theorem 5.1, i.e.,
(2kv−T kx)> 0 and kv(3T kv−T 2kx−6ka)µi−6kx > 0, ∀i. Note
that both µmax and µmin are used because they form the bound-
ary.

The simulation result showing the agents’ positions is pre-

sented in Fig. 9. It shows the formation maneuver around ob-
stacles on its path. The trajectories of the agents’ velocities and
accelerations are presented in Fig. 14 and the tracking errors of
the followers’ positions are presented in Fig. 10.

7. Conclusion

This study investigates the affine formation control of MASs
with triple-integrator agent dynamics in both sampled-data and
continuous-time settings. Algorithms, based on stress matrix, are
proposed to accomplish formation control in each setting. Suffi-
cient conditions on the sampling intervals and control gains for
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Fig. 5. Simulation illustrating the positions error dynamics for the sampled-data case of scenario one
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Fig. 7. Simulation illustrating the agents’ positions in the continuous-time case of scenario two, based on control law (9).

Fig. 8. Simulation illustrating the positions error dynamics for the continuous-time case of scenario two.

the overall stability of the formation are presented. Implemen-
tations were carried out for four cases. The results obtained in
all four cases are in agreement with the proposed algorithms.
The proposed control algorithms are capable of tracking time-
varying transformations that are the affine transform of the nom-
inal formation if the jerk of the agents is zero. An ongoing study
is on extending the scheme to the general linear multi-agent sys-
tem case.
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