
Northumbria Research Link

Citation: Rigatos, Gerasimos, Siano, Pierluigi, Wira, Patrice, Busawon, Krishna and Binns,
Richard (2020) A Nonlinear H-infinity Control Approach for Autonomous Truck and Trailer
Systems. Unmanned Systems, 08 (01). pp. 49-69. ISSN 2301-3850 

Published by: World Scientific Publishing

URL:  https://doi.org/10.1142/S2301385020500041
<https://doi.org/10.1142/S2301385020500041>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/41398/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


A nonlinear H-infinity control approach

for autonomous truck and trailer systems

G. Rigatosa P. Sianob P. Wira c

aUnit of Industrial Automation bDepartment of Innovation Systems cIRIMAS

Industrial Systems Institute University of Salerno Université de Haute Alsace
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Abstract: A nonlinear optimal control method is developed for autonomous truck and trailer systems.
Actually,two cases are distinguished: (a) a truck and trailer system that is steered by the front wheels
of its truck, (b) an autonomous fire-truck robot that is steered by both the front wheels of its truck and
by the rear wheels of its trailer. The kinematic model of the autonomous vehicles undergoes linearization
through Taylor series expansion. The linearization is computed at a temporary operating point that is
defined at each time instant by the present value of the state vector and the last value of the control
inputs vector. The linearization is based on the computation of Jacobian matrices. The modelling error
due to approximate linearization is considered to be a perturbation that is compensated by the robustness
of the control scheme. For the approximately linearized model of the autonomous vehicles an H-infinity
feedback controller is designed. This requires the solution of an algebraic Riccati equation at each iteration
of the control algorithm. The stability of the control loop is confirmed through Lyapunov analysis. It is
shown that the control loop exhibits the H-infinity tracking performance which implies elevated robust-
ness against modelling errors and external disturbances. Moreover, under moderate conditions the global
asymptotic stability of the control loop is proven. Finally, to implement state estimation-based control for
the autonomous vehicles, through the processing of a small number of sensor measurements, the H-infinity
Kalman Filter is proposed.

Keywords: truck and trailer, autonomous fire-truck robot, autonomous vehicle, nonlinear H-infinity con-
trol, nonlinear optimal control, Riccati equation, asymptotic stability, H-infinity Kalman Filter

1 Introduction

As a consequence of the rapid development of intelligent transportation systems, the need to provide
multi-body and articulated vehicles with self-steering features and autonomy has also emerged [1],[2-4].
Due to their complicated kinematic and dynamic model the problems of path planning and path following
for the aforementioned types of vehicles is of elevated difficulty [5-10]. To achieve accurate tracking of
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reference paths and to assure stability for the vehicles’ autonomous navigation system, nonlinear control
approaches have been proposed [11-15]. In [16-20] one can find results on global linearization-based control
of multi-body and articulated vehicles. In [21-23] the controller’s design for the above mentioned type of
vehicles is based on approximate linearization and the description of their kinematics or dynamics with
the use of local models. Moreover, in [24-26] Lyapunov theory-based control methods are developed for
such complicated vehicles. Apart from truck and trailer vehicles which are steered by the front wheels of
their truck one can also considered different kinematic models where steering comes from both the front
wheels of the truck and rear wheels of the trailer. Vehicles having such kinematic models exhibit improved
maneuverability and a typical case is the autonomous fire-truck robot [27-31] .

In this article the problems of nonlinear optimal control and the problem of autonomous navigation of truck
and trailer vehicles are considered. The kinematic model of the vehicles are formulated and the controller’s
design proceeds by carrying out an approximate linearization on these models around a time-varying equi-
librium. The linearization procedure is based on Taylor series expansion for the vehicles’ kinematic model
and on the computation of the associated Jacobian matrices [32-34]. The linearization point (equilibrium)
is updated at each time instant and is defined by the present value of the vehicles’ state vector and the last
value of the vehicles’ control inputs vector. The modelling error which is due to approximate linearization
and the cut-off of higher order terms in the Taylor series expansion is considered as a perturbation that is
compensated by the robustness of the H-infinity control scheme [35-36].

For the linearized equivalent model of the truck and trailer vehicles an H-infinity feedback controller is
designed. This is an optimal controller for the case of a system that is subject to model uncertainty and
external perturbations [37-41]. H-infinity control stands for the solution of a mini-max differential game.
Actually, the control inputs try to minimize a quadratic cost function associated with the deviation of the
vehicle’s state vector from its reference values, while the perturbations and model uncertainty terms try
to maximize this cost function [42-43]. The feedback gain of the controller is based on the solution of an
algebraic Riccati equation that is performed at each iteration of the control algorithm. The stability of the
control loop is confirmed through Lyapunov analysis. First, it is shown that the H-infinity tracking perfor-
mance criterion is satisfied. This signifies elevated robustness of the control loop against model uncertainty
and exogenous disturbances. Moreover, under moderate conditions the global asymptotic stability of the
control loop is proven. Finally, to implement feedback control for the autonomous truck and trailer systems
when their state vectors are only partially measurable, the H-infinity Kalman Filter is proposed [44-45].

The article offers one of the most effective solutions to the nonlinear optimal control problem of (a) truck
and trailer vehicles that are steered by the front wheels of their truck and (b) autonomous fire-truck robots
that are steered by both the front wheels of the truck and the real wheels of the trailer. Popular approaches
for industrial control such as MPC or NMPC may have questionable performance when applied to such
control problems. Actually, MPC has been developed for linear dynamical systems and its use in the case
of the nonlinear model of the truck and trailer systems will risk the control loop’s destabilization. Besides,
the convergence of NMPC is not assured either. The convergence of the method’s iterative search for an
optimum depends on initialization and specific parameters’ selection, therefore under NMPC one cannot
always guarantee a solution for the nonlinear optimal control problem of the truck and trailer system.
Finally, comparing to local models-based optimal control the article’s approach exhibits specific advan-
tages: (1) in the local-models based approach linearization is performed around multiple operating points
(equilibria) which are selected off-line and which are not updated in time, whereas in the article’s approach
there is linearization only around one single operating point which is updated at each iteration of the
control algorithm, (ii) in the local-models approach there is need to perform solution of multiple Riccati
equations associated with the individual models and this solution is performed offline. On the other side,
in the article’s approach there is need to solve one single Riccati equation and this solution is repeated at
each time-step of the control algorithm. (iii) in local models-based control there is need to find a common
solution for the individual Riccati equations, and one cannot assure that such a solution always exists. On
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the other side, in the article’s approach there is need to obtain solution for one single Riccati equation
and the existence of such a solution can be assured through suitable selection of the gains and coefficients
that appear in it. In conclusion, comparing to local models-based control, the article’s control method is
computationally more efficient and is subject to less constraining assumptions.

The structure of the paper is as follows: in Section 2 the kimenatic model of the truck and trailer system
that is steered by the front wheels of its truck is formulated. Moreover, through Taylor series expansion
and the computation of Jacobian matrices an approximately linearized model of the vehicle is obtained. In
Section 3 the kimenatic model of the autonomous fire-truck robot that is steered by both the front wheels
of its truck and the rear wheels of its trailer is formulated. Moreover, through Taylor series expansion
and the computation of Jacobian matrices an approximately linearized model of the vehicle is obtained.
In Section 4 an H-infinity feedback controller is designed for the linearized equivalent model of the truck
and trailer system. In Section 5 the stability of the H-infinity control method is proven through Lyapunov
analysis. In Section 6 the H-infinity Kalman Filter is introduced for implementing state estimation-based
control for the truck and trailer model. In Section 7 simulation tests are performed to further confirm the
stability and robustness properties of the control scheme for the autonomous vehicle. Finally in Section 8
concluding remarks are stated.

2 Kinematic model of the truck and trailer

2.1 State-space description of the truck and trailer system

The kinematic model of the truck and trailer system which is steered by the front wheels of its truck is
given by
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Li sin(θ − ψ)

















(1)

where (xt,yt) are the cartesian coordinates of the truck in an inertial reference frame, θ is the heading
angle of the truck formed by its transversal axis and the OX axis of the reference frame, ω is the turn
rate of the truck (turn rate of the steering wheel), (xi,yi) are the cartesian coordinates of the trailer, ψi

is the heading angle of the trailer, v is the longitudinal speed of the truck, and β is the hitch point angle
between the truck and the drawbar that connects the truck with the trailer. The parameters of the truck
and trailer system are shown in Fig. 1.

In the diagram of Fig. 1, the following distances are defined: Lt is the distance between the front and
the rear axis of the truck, Lc is the distance between the hitch point RJ and the rear axis of the trailer.
while Li is the length of the implement. The state vector of the truck and trailer system is defined as
x = [xt, yt, θ, xi, yi, ψ]T while the control inputs vector is defined as u = [v, ω]T and thus consists of the
velocity of the truck and the turn rate of the front steering wheel of the truck.

The kinematic model of the truck and trailer system is justified as follows: The velocity v of point RJ is
first projected on the longitudinal axis of the trailer, thus giving vcos(θ−ψ) and next (a) it is projected on
the OX axis thus giving vcos(θ − ψ)cos(ψ). This variable is the velocity of the trailer along the OX axis
(b) it is projected on the OY axis thus giving vcos(θ−ψ)sin(ψ). Morover, the trailer performs a rotational
motion round point RJ , with rotational speed denoted as ψ̇. The linear velocity of point RJ that is parallel
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Figure 1: Kinematic model of the truck and trailer

to the transversal axis of the vehicle is given by vsin(θ − ψ). Thus, it holds: ψ̇ = 1
Li

vsin(θ − ψ).

The kinematic model of the truck and trailer system is also written in the vector form:

ẋ = f(x, u) (2)

where x∈R6×1, f∈R6×1 and u∈R2×1. It also holds that β = θ − ψ. With the previous definition of state
variables one arrives at the following state-space description
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ẋ5
ẋ6
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(3)

2.2 Approximate linearization of the truck and trailer model

Approximate linearization is performed to the kinematic model of the truck and trailer system being steered
by the fornt wheels of its truck, around a temporary equilibrium x∗ which is re-computed at each iteration
of the control algorithm. The method is based on Taylor series expansion and on the calculation of the
associated Jacobian matrices, while the equilibrium consists of the present value of the system’s state
vector x∗ and of the last value of the control inputs vector u∗ that was exerted on it. Thus one has the
linearization point (x∗, u∗). Using that the kinematic model of the system is ẋ = f(x, u) the following
linearized description is obtained

ẋ = Ax+Bu+ d̃ (4)

where d̃ is the linearization error and the associated Jacobian matrices are:
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A = ∇xf(x, u) |(x∗,u∗) B = ∇uf(x, u) |(x∗,u∗) (5)

The elements of the Jacobian matrices are

A =
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· · · · · · · · · · · ·
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(6)

With the previous definition of the Jacobian matrices one finds

The first row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is ∂f1
∂x1

= 0, ∂f1
∂x2

= 0, ∂f1
∂x3

= −u1sin(x3),
∂f1
∂x4

= 0, ∂f1
∂x5

= 0 and ∂f1
∂x6

= 0.

The second row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is ∂f2
∂x1

= 0, ∂f2
∂x2

= 0, ∂f2
∂x3

= u1cos(x3),
∂f2
∂x4

= 0, ∂f2
∂x5

= 0 and ∂f2
∂x6

= 0.

The third row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is ∂f3
∂x1

= 0, ∂f3
∂x2

= 0, ∂f3
∂x3

= 0, ∂f3
∂x4

= 0,
∂f3
∂x5

= 0 and ∂f3
∂x6

= 0.

The fourth row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is ∂f4
∂x1

= 0, ∂f4
∂x2

= 0, ∂f4
∂x3

= −sin(x3 −

x6)cos(x6)u1,
∂f4
∂x4

= 0, ∂f4
∂x5

= 0 and ∂f4
∂x6

= [sin(x3 − x6)cos(x6)− cos(x3 − x6)sin(x6)]u1.

The fifth row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is ∂f5
∂x1

= 0, ∂f5
∂x2

= 0, ∂f5
∂x3

= −sin(x3 −

x6)sin(x6)u1,
∂f5
∂x4

= 0, ∂f5
∂x5

= 0 and ∂f5
∂x6

= [sin(x3 − x6)sin(x6) + cos(x3 − x6)cos(x6)]u1.

The sixth row of the Jacobian matrix A = ∇xf(x, u) |(x∗,u∗) is
∂f6
∂x1

= 0, ∂f6
∂x2

= 0, ∂f6
∂x3

= 1
Li

cos(x3 − x6)u1,
∂f6
∂x4

= 0, ∂f6
∂x5

= 0 and ∂f6
∂x6

= − 1
Li

cos(x3 − x6)u1.

In a similar manner one finds

The first row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f1
∂u1

= cos(x3),
∂f1
∂u2

= 0,

The second row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f2
∂u1

= sin(x3),
∂f2
∂u2

= 0,

The third row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f3
∂u1

= 0, ∂f3
∂u2

= 1,

The fourth row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f4
∂u1

= cos(x3 − x6)cos(x6),
∂f4
∂u2

= 0,

The fifth row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f5
∂u1

= cos(x3 − x6)sin(x6),
∂f6
∂u2

= 0,

The sixth row of the Jacobian matrix B = ∇uf(x, u) |(x∗,u∗) is
∂f6
∂u1

= 1
Li sin(x3 − x6),

∂f6
∂u2

= 0,
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3 Kinematic model of the autonomous fire-truck robot

3.1 State-space description of the autonomous fire-truck robot

The autonomous fire-truck comprises the truck (cab) and the trailer, as shown in Fig. 2. The vehicle is
steered by both the front wheels of its truck and by the rear wheels of its trailer. The main parameters of
the model of the autonomous fire-truck are as follows [27],[31]: (x0, y0): are the coordinates of the center
of the front axle of the truck, (x1, y1) are the coordinates of the center of the rear axle of the truck, (φ1)
is the angle of the steering wheels of the truck with respect to the longitudinal axis of the truck, θ1 is the
angle between the longitudinal axis of the truck and the Ox axis of the inertial coordinates system, (x2, y2)
are the coordinates of the center of the real axle of the trailer, φ2 is the angle of the steering wheels of the
trailer with respect to the longitudinal axis od the truck, θ2 its the angle between the longitudinal axis of
the trailer and the Ox axis of the inertial coordinates system. The length of the cab is denoted as L0 and
the length of the trailer is denoted as L1.

Figure 2: Diagram of the autonomous fire-truck robot which comprises the truck (cab) and the trailer

The kinematic model of the autonomous fire-truck is given by [27],[31]:

ẋ = g1(x)u1 + g2(x)u2 + g3(x)u3 (7)

where the control inputs of the vehicle are defined as u1: is the forward driving velocity of the truck vf ,

u2 is the steering speed of the front wheels of the cab φ̇1 and u3 is the steering speed of the rear wheels of
the trailer φ̇2. Vector fields g1(x)∈R

6×1, g2(x)∈R
6×1 and g3(x)∈R

6×1 are defined as:
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g1(x) =
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0
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g3(x) =

















0
0
0
0
1
0

















(8)

The state vector of the system is defined as x = [x, y, φ1, θ1, φ1, θ2]
T or x = [x1, x2, x3, x4, x5, x6]

T . Using
this state variables’ notation and the model of Eq. (7) and Eq. (8) one obtains the following form of the
state-space equations

ẋ1 = cos(x4)u1 (9)

ẋ2 = sin(x4)u1 (10)

ẋ3 = u2 (11)

ẋ4 = 1
Lo

tan(x3) (12)

ẋ5 = u3 (13)

ẋ6 = − 1
L1

1
cos(x5)

sin(x5 − x4 + x6) (14)

3.2 Approximate linearization of the autonomous fire-truck robot

By applying first-order Taylor series expansion in the kinematic model of the fire-truck

ẋ = g1(x)u1 + g2(x)u2 + g3(x)u3 (15)

one obtains the following state-space description

ẋ = Ax+Bu+ d̃ (16)

where matrices A and B rely on the computation of the system’s Jacobians

A = ∇xg1(x)u1 |(x∗,u∗) +∇xg2(x)u1 |(x∗,u∗) +∇xg3(x)u3 |(x∗,u∗) (17)

B = [g1(x) g2(x) g3(x)] |(x∗,u∗) (18)

First, the following Jacobian matrix is computed

∇xg1(x) = ∇x

















cos(x4)
sin(x4)

0
1
L0

tan(x3)

0
− 1

L1

1
cos(x5)

sin(x5 − x4 + x6)

















(19)

1st row of the Jacobian matrix ∇xg1(x):
∂g11
∂x1

= 0, ∂g11
∂x2

= 0, ∂g11
∂x3

= 0, ∂g11
∂x4

= −sin(x4),
∂g11
∂x5

= 0 and
∂g11
∂x6

= 0.
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2nd row of the Jacobian matrix ∇xg1(x):
∂g12
∂x1

= 0, ∂g12
∂x2

= 0, ∂g12
∂x3

= 0, ∂g12
∂x4

= cos(x4),
∂g12
∂x5

= 0 and
∂g12
∂x6

= 0.

3rd row of the Jacobian matrix ∇xg1(x):
∂g13
∂x1

= 0, ∂g13
∂x2

= 0, ∂g13
∂x3

= 0, ∂g13
∂x4

= 0, ∂g13
∂x5

= 0 and ∂g13
∂x6

= 0.

4th row of the Jacobian matrix ∇xg1(x):
∂g14
∂x1

= 0, ∂g14
∂x2

= 0, ∂g14
∂x3

= 1
L0

1
cos2(x3)

, ∂g14
∂x4

= 0, ∂g14
∂x5

= 0 and
∂g14
∂x6

= 0.

5th row of the Jacobian matrix ∇xg1(x):
∂g15
∂x1

= 0, ∂g15
∂x2

= 0, ∂g15
∂x3

= 0, ∂g15
∂x4

= 0, ∂g15
∂x5

= 0 and ∂g15
∂x6

= 0.

6th row of the Jacobian matrix ∇xg1(x): ∇xg1(x):
∂g16
∂x1

= 0, ∂g16
∂x2

= 0, ∂g16
∂x3

= 0, ∂g16
∂x4

= 1
L1

1
cos(x5)

cos(x5 −

x4+x6),
∂g16
∂x5

= − 1
L1

sin(x5)
cos2(x5)

sin(x5−x4+x6)−
1
L1

1
cos(x5)

cos(x5 −x4+x6) and
∂g16
∂x6

= − 1
L1

1
cos(x5)

cos(x5−

x4 + x6).

Next, about the rest of the Jacobian matrices of the system one has: ∇xg2(x) = 0∈R6×6 and ∇xg3(x) =
0∈R6×6.

4 The nonlinear H-infinity control

4.1 Mini-max control and disturbance rejection

The generic nonlinear kinematic model of the truck and trailer systems is in the form

ẋ = f(x, u) x∈Rn, u∈Rm (20)

Linearization of the truck and trailer systems is performed at each iteration of the control algorithm
round its present operating point (x∗, u∗) = (x(t), u(t− Ts)). The linearized equivalent of these systems is
described by

ẋ = Ax+Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (21)

where matrices A and B are obtained from the computation of the Jacobians

A =











∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · · · · · · · · · ·
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn











|(x∗,u∗) B =











∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂um

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂um

· · · · · · · · · · · ·
∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂um











|(x∗,u∗) (22)

and vector d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection
for the linearized model that is described by

ẋ = Ax+Bu+ Ld̃
y = Cx

(23)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical LQR control scheme
is applied. This because of the existence of the perturbation term d̃. The disturbance term d̃ apart from
modeling (parametric) uncertainty and external perturbation terms can also represent noise terms of any
distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the system’s
state vector and simultaneous disturbance rejection, considering that the disturbance affects the system
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in the worst possible manner. The disturbances’ effects are incorporated in the following quadratic cost
function:

J(t) = 1
2

∫ T

0
[yT (t)y(t) + ruT (t)u(t)− ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (24)

The significance of the negative sign in the cost function’s term that is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J(t) while the control signal
u(t) tries to mininize it. The physical meaning of the relation given above is that the control signal and
the disturbances compete to each other within a mini-max differential game. This problem of min-max
optimization can be written as

minumaxd̃J(u, d̃) (25)

The objective of the optimization procedure is to compute a control signal u(t) which can compensate for
the worst possible disturbance, that is externally imposed to the system of the truck and trailer system.
However, the solution to the mini-max optimization problem is directly related to the value of the param-
eter ρ. This means that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

4.2 H-infinity feedback control

For the linearized system given by Eq. (23) the cost function of Eq. (24) is defined, where the coefficient
r determines the penalization of the control input and the weight coefficient ρ determines the reward of
the disturbances’ effects. It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫

∞

0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A,B] and [A,L] are stabilizable, (iii) matrix
[A,C] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (26)

with K = 1
r
BTP , where P is a positive semi-definite symmetric matrix which is obtained from the solution

of the Riccati equation

ATP + PA+Q− P (1
r
BBT − 1

2ρ2LL
T )P = 0 (27)

where Q is also a positive definite symmetric matrix. The worst case disturbance is given by d̃(t) =
1
ρ2L

TPx(t). This equation is obtained by solving the optimal control problem for the case that the system

receives as input only the disturbance d̃(t). The diagrams of the considered control loop is depicted in Fig. 3.

4.3 The role of Riccati equation coefficients in H∞ control robustness

The parameter ρ in Eq. (24), is an indication of the closed-loop system robustness. If the values of ρ > 0
are excessively decreased with respect to r, then the solution of the Riccati equation is no longer a positive
definite matrix. Consequently there is a lower bound ρmin of ρ for which the H∞ control problem has a
solution. The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used in the design
of the H∞ controller, then the closed-loop system will have increased robustness. Unlike this, if a value
ρ > ρmin is used, then an admissible stabilizing H∞ controller will be derived but it will be a suboptimal
one. The Hamiltonian matrix

H =

(

A −(1
r
BBT − 1

ρ2LL
T )

−Q −AT

)

(28)

provides a criterion for the existence of a solution of the Riccati equation Eq. (27). A necessary condition
for the solution of the algebraic Riccati equation to be a positive semi-definite symmetric matrix is that H
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(a) (b)

Figure 3: (a) Diagram of the nonlinear optimal control scheme for the truck and trailer system that is
steered by the front wheels of its truck, (b) Diagram of the nonlinear optimal control scheme for the
autonomous fire-truck robot that is steered by both the front wheels of its truck and the real wheels of its
trailer

has no imaginary eigenvalues [37].

5 Lyapunov stability analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures
H∞ tracking performance for the control loop of the truck and trailer systems, that is (a) the truck and
trailer that is steered by the front wheels of its truck, (b) the autonomous fire-truck robot that is steered by
both the front wheels of its truck and by the rear wheels of its trailer. Moreover, under moderate conditions
asymptotic stability is proven and convergence to the reference setpoints is achieved. The tracking error
dynamics for the truck and trailer systems is written in the form

ė = Ae+Bu+ Ld̃ (29)

where in such vehicles’ case L = I∈R6×6 with I being the identity matrix. Variable d̃ denotes model
uncertainties and external disturbances of the truck and trailer models, as well as sensors’ measurement
noise. The following Lyapunov equation is considered

V = 1
2e

TPe (30)

where e = x− xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ė

TPe+ 1
2eP ė⇒

V̇ = 1
2 [Ae+Bu+ Ld̃]TP + 1

2e
TP [Ae+Bu+ Ld̃]⇒

(31)

V̇ = 1
2 [e

TAT + uTBT + d̃TLT ]Pe+

+ 1
2e

TP [Ae+Bu + Ld̃]⇒
(32)
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V̇ = 1
2e

TATPe+ 1
2u

TBTPe+ 1
2 d̃

TLTPe+
1
2e

TPAe+ 1
2e

TPBu+ 1
2e

TPLd̃
(33)

The previous equation is rewritten as

V̇ = 1
2e

T (ATP + PA)e+ (12u
TBTPe+ 1

2e
TPBu)+

+(12 d̃
TLTPe+ 1

2e
TPLd̃)

(34)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a positive definite
matrix P , which is the solution of the following matrix equation

ATP + PA = −Q+ P (2
r
BBT − 1

ρ2LL
T )P (35)

Moreover, the following feedback control law is applied to the system

u = − 1
r
BTPe (36)

By substituting Eq. (35) and Eq. (36) one obtains

V̇ = 1
2e

T [−Q+ P (2
r
BBT − 1

2ρ2LL
T )P ]e+

+eTPB(− 1
r
BTPe) + eTPLd̃⇒

(37)

V̇ = − 1
2e

TQe+ (2
r
PBBTPe− 1

2ρ2 e
TPLLT )Pe

− 1
r
eTPBBTPe) + eTPLd̃

(38)

which after intermediate operations gives

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+ eTPLd̃ (39)

or, equivalently

V̇ = − 1
2e

TQe− 1
2ρ2 e

TPLLTPe+

+ 1
2e

TPLd̃+ 1
2 d̃

TLTPe
(40)

Lemma: The following inequality holds

1
2e

TLd̃+ 1
2 d̃L

TPe− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (41)

Proof : The binomial (ρα− 1
ρ
b)2 is considered. Expanding the left part of the above inequality one gets

ρ2a2 + 1
ρ2 b

2 − 2ab ≥ 0 ⇒ 1
2ρ

2a2 + 1
2ρ2 b

2 − ab ≥ 0 ⇒

ab− 1
2ρ2 b

2 ≤ 1
2ρ

2a2 ⇒ 1
2ab+

1
2ab−

1
2ρ2 b

2 ≤ 1
2ρ

2a2
(42)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous relation becomes

1
2 d̃

TLTPe+ 1
2e

TPLd̃− 1
2ρ2 e

TPLLTPe≤1
2ρ

2d̃T d̃ (43)

Eq. (43) is substituted in Eq. (40) and the inequality is enforced, thus giving

V̇≤− 1
2e

TQe+ 1
2ρ

2d̃T d̃ (44)

Eq. (44) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇ from 0 to T
gives

∫ T

0
V̇ (t)dt≤ − 1

2

∫ T

0
||e||2Qdt+

1
2ρ

2
∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt≤2V (0) + ρ2

∫ T

0
||d̃||2dt

(45)
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Moreover, if there exists a positive constant Md > 0 such that

∫

∞

0
||d̃||2dt ≤Md (46)

then one gets

∫

∞

0 ||e||2Qdt ≤ 2V (0) + ρ2Md (47)

Thus, the integral
∫

∞

0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the definition of the
Lyapunov function V in Eq. (30) it becomes clear that e(t) will be also bounded since e(t) ∈ Ωe =
{e|eTPe≤2V (0) + ρ2Md}.

According to the above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

The outline of the global stability proof is that at each iteration of the control algorithm the state vector of
the truck and trailer vehicles converges towards the temporary equilibrium and the temporary equilibrium
in turn converges towards the reference trajectory [1]. Thus, the control scheme exhibits global asymptotic
stability properties and not local stability. Assume the i-th iteration of the control algorithm and the
i-th time interval about which a positive definite symmetric matrix P is obtained from the solution of the
Riccati equation appearing in Eq. (35). By following the stages of the stability proof one arrives at Eq.
(44) which shows that the H-infinity tracking performance criterion holds. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||

2 one has that the first
derivative of the Lyapunov function is upper bounded by 0. Therefore for the i-th time interval it is proven
that the Lyapunov function defined in Eq (30) is a decreasing one. This signifies that between the begin-
ning and the end of the i-th time interval there will be a drop of the value of the Lyapunov function and
since matrix P is a positive definite one, the only way for this to happen is the Euclidean norm of the state
vector error e to be decreasing. This means that comparing to the beginning of each time interval, the
distance of the state vector error from 0 at the end of the time interval has diminished. Consequently as
the iterations of the control algorithm advance the tracking error will approach zero, and this is a global
asymptotic stability condition.

6 Robust state estimation with the use of the H
∞

Kalman Filter

The control loop for the truck and trailer systems can be implemented with the feedback of a partially
measurable state vector and by processing only a small number of state variables. To reconstruct the miss-
ing information about the state vector of the autonomous vehicles it is proposed to use a filtering scheme
and based on it to apply state estimation-based control [39]. The recursion of the H∞ Kalman Filter, can
be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) +K(k)[y(k)− Cx̂−(k)]
(48)

Time update:

x̂−(k + 1) = A(k)x(k) +B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) +Q(k)

(49)

where it is assumed that parameter θ is sufficiently small to assure that the covariance matrix P−(k) −
θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ = 0 the H∞ Kalman Filter becomes equiv-
alent to the standard Kalman Filter. One can measure only a part of the state vector of the system of
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the truck and trailer systems, such as the cartesian coordinates of the vehicle, and can estimate through
filtering the rest of the state vector elements.

7 Simulation tests

7.1 Path tracking by the autonomous truck and trailer system

The performance of the proposed nonlinear optimal control scheme for the autonomous truck and trailer
vehicle that is steered by the front wheels of its truck has been tested in the case of tracking of different
reference setpoints. The control scheme exhibited fast and accurate tracking of the reference paths. The
computation of the feedback control gain required the solution of the algebraic Riccati equation given in
Eq. (27), at each iteration of the control algorithm. The obtained results are depicted in Fig. 4 to Fig.
8. The measurement units for the state variables of the vehicle’s model were in the SI system (position
coordinates measured in m). The H-infinity Kalman Filter has provided estimates of the state vector of
the system by processing measurements of a subset of state variables, such as: x3 = θ, x4 = xi, x5 = yi

and x6 = ψ. It can be noticed that the H-infinity controller achieved fast and accurate convergence to the
reference setpoints for all elements of the vehicle’s state-vector. Moreover, the variations of the control
inputs, that is of the truck’s velocity and of the truck’s steering angle were smooth.

Yet computationally simple, the proposed H∞ control scheme has an excellent performance. Comparing to
the control of the truck and trailer system that can be based on global linearization methods the presented
nonlinear H-infinity control scheme is equally efficient in setpoint tracking while also retaining optimal
control features [39]. The tracking accuracy of the presented nonlinear optimal (H∞) control method has
been monitored in the case of several reference setpoints. The obtained results are given in Table I.

Table I: RMSE of the truck and trailer’s state variables
path RMSE θ RMSE xi RMSE yi RMSE ψ
1 0.0001 0.0017 0.0017 0.0001
2 0.0023 0.0211 0.0084 0.0019
3 0.0004 0.0548 0.0831 0.0032
4 0.0054 0.0706 0.0984 0.0081
5 0.0084 0.0667 0.0998 0.0165

The tracking performance of the nonlinear H-infinity control method for the model of the truck and trailer
system and under uncertainty, imposing a change equal to ∆a% to the length of the implement Li, is out-
lined in Table II. It can be noticed that despite model perturbations the tracking accuracy of the control
method remained satisfactory.

Table II: RMSE of state variables under model disturbance
∆a RMSE θ RMSE x RMSE y RMSE ψ
0 % 0.0023 0.0211 0.0084 0.0019
25 % 0.0036 0.0217 0.0056 0.0018
50 % 0.0047 0.0223 0.0053 0.0018
75 % 0.0057 0.0228 0.0053 0.0018

100 % 0.0068 0.0232 0.0060 0.0018

7.2 Path tracking by the autonomous fire-truck robot

The efficiency of the proposed nonlinear optimal control method for the model of the autonomous fire-truck
robot that is steered by both the front wheels of its truck and the rear wheels of its trailer has been tested
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Figure 4: (a) tracking of reference setpoint 1 (red-line) by the heading angle θ of the truck (blue line), (b)
tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 5: (a) tracking of reference setpoint 2 (red-line) by the heading angle θ of the truck (blue line), (b)
tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 6: (a) tracking of reference setpoint 3 (red-line) by the heading angle θ of the truck (blue line), (b)
tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 7: (a) tracking of reference setpoint 4 (red-line) by the heading angle θ of the truck (blue line), (b)
tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 8: (a) tracking of reference setpoint 5 (red-line) by the heading angle θ of the truck (blue line), (b)
tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of the trailer (blue
line)

through simulation experiments. The obtained results are depicted in Fig. 9 to Fig. 20.These demon-
strate that fast and accurate tracking of the reference setpoints is achieved by all state vector elements
of the robotic vehicle. The variations of the control inputs were moderate. For the computation of the
control signal the algebraic Riccati equation of Eq. (35) had to be repetitively solved at each time-step of
the control algorithm. The control inputs were applied on the initial nonlinear model of the vehicle and
not on the equivalent linearized description of it that was obtained through the system’s Jacobian matrices.

The transient performance of the control scheme relied on the control loop gains r and ρ and well as on
the value of the diagonal elements of matrix Q. As explained above, the smallest value of the attenuation
coefficient ρ for which the algebraic Riccati equation of Eq. (35) admits a solution, is the one that provides
maximum robustness to the control system. It is also noted that by using the H-infinity Kalman Filter a
state estimation-based implementation of the control method has been achieved. This allows the reliable
functioning of the control loop after receiving measurements from a small number of sensors. Actually, the
H-infinity Kalman Filter can be fed with measurements of the following state variables, such as: x1 = x,
x2 = y and x6 = θ2. In the simulation diagrams, the real values of the state vector elements are depicted
in blue, the estimated values are plotted in green and the related reference setpoints are printed in red.

As noted, the proposed nonlinear optimal control method for the truck and trailer model (that is steered
by the front wheels of its truck), as well as for the autonomous fire-truck robot (that is steered by both
the front wheels of its truck and the rear wheels of its trailer), was based on an approximate linearization
of the vehicles’ kinematics. The advantages that the proposed control method exhibits are outlined as
follows: (i) it is applied directly on the nonlinear dynamical model of the truck and trailer systems and
not on an equivalent linearized description of it, (ii) It avoids the elaborated linearizing transformations
(diffeomorphisms) which can be met in global linearization-based control methods for autonomous vehi-
cles (iii) the controller is designed according to optimal control principles which implies the best trade-off
between precise tracking of the reference setpoints on the one side and moderate variations of the control
inputs on the other side (iv) the control method exhibits robustness to parametric uncertainty, modelling
errors as well as to external perturbations (v) the computational implementation of the control method is
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Figure 9: Tracking of setpoint 1 for the autonomous fire-truck robot (a) convergence of state variables x1
to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 10: Tracking of setpoint 1 for the autonomous fire-truck robot (a) variation of the control inputs
u1 to u3 (b) path followed by the autonomous fire-truck robot on the xy-plane
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Figure 11: Tracking of setpoint 2 for the autonomous fire-truck robot (a) convergence of state variables
x1 to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 12: Tracking of setpoint 2 for the autonomous fire-truck robot (a) variation of the control inputs
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Figure 13: Tracking of setpoint 3 for the autonomous fire-truck robot (a) convergence of state variables
x1 to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 14: Tracking of setpoint 3 for the autonomous fire-truck robot (a) variation of the control inputs
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Figure 15: Tracking of setpoint 4 for the autonomous fire-truck robot (a) convergence of state variables
x1 to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 16: Tracking of setpoint 4 for the autonomous fire-truck robot (a) variation of the control inputs
u1 to u3 (b) path followed by the autonomous fire-truck robot on the xy-plane
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Figure 17: Tracking of setpoint 5 for the autonomous fire-truck robot (a) convergence of state variables
x1 to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 18: Tracking of setpoint 5 for the autonomous fire-truck robot (a) variation of the control inputs
u1 to u3 (b) path followed by the autonomous fire-truck robot on the xy-plane
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Figure 19: Tracking of setpoint 6 for the autonomous fire-truck robot (a) convergence of state variables
x1 to x3 to their reference setpoints (b) convergence of state variables x4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 20: Tracking of setpoint 6 for the autonomous fire-truck robot (a) variation of the control inputs
u1 to u3 (b) path followed by the autonomous fire-truck robot on the xy-plane
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simple since it requires only the solution of an algebraic Riccati equation.

Remark 1 : The nonlinear optimal approach proposed in this article for solving the control and trajectory
tracking problem for the autonomous truck and trailer systems exhibits advantages to other optimal control
methods such MPC and NMPC. For instance, MPC can be applied at specific operating points where the
dynamic model of the truck and trailer systems is taken to be linear. However, in reality the model of
the articulated vehicle is a nonlinear one therefore the MPC approach lacks a global stability proof and is
likely to result into an unstable control loop. Besides, the NMPC control method is based on an iterative
search of the optimum which is a procedure of non-confirmed convergence and again the global stability
features of this method are questionable. Moreover, global linearization methods for the truck and trailer
models cannot be directly applied and require elaborated and intuitive state variables transformations
(diffeomorphisms). The latter approach may require the application of dynamic feedback linearization as
it usually happens in the global linearization based control of underactuated dynamical systems.

Remark 2 : H-infinity control is typically addressed to linear dynamical systems and stands for the solution
of the optimal control problem under model uncertainty and external perturbations. However, H-infinity
control cannot be applied to nonlinear dynamical systems. The article demonstrates that after approximate
linearization for the system’s dynamic model with the use Taylor series expansion, around a temporary
operating point (equilibrium) which is recomputed at each iteration of the control method, then one can
also solve the optimal (H-infinity) control problem for the linearized equivalent model of the system. The
concept of the proposed control method is entirely novel and stands for a genuine contribution to the
area of nonlinear control: (i) the model of the articulated vehicles is approximately linearized round a
time-varying equilibrium which is re-computed at each step of the control method (ii) with the proposed
H-infinity control law the system’s state-space vector is made to converge to the temporary equilibrium
(iii) the temporary equilibrium is made to convergence to the system’s reference parh. Thus implicitly the
system’s state vector is also made to track the reference setpoint and the tracking error gets asymptotically
eliminated.

Remark 3 : The article’s nonlinear optimal (H-infinity) control approach can be classified among purely
nonlinear control methods. Actually, a control scheme is classified as nonlinear if it is addressed to systems
with nonlinear dynamics, which are described by a nonlinear state-space model. Even if the control signal
contains in parts of it linear feedback of the state vector’s error the control method is classified as nonlin-
ear if it can stabilize and eliminate the tracking error for the initial nonlinear dynamics of the system. A
typical example of such a case of controllers are the so-called global linearization-based control schemes,
such as Lie algebra-based control and differential flatness-theory-based control. Such controllers rely on the
transformation of the nonlinear dynamics of the system into an equivalent linear form for which one can
solve the control and stabilization problem through the design of a linear feedback-based controller. Next,
with the use of an inverse nonlinear transformation one finds the control inputs which are applied to the
initial nonlinear system. In a similar concept the article’s nonlinear optimal (H-infinity) control method
can be considered to be purely nonlinear. The method applies H-infinity control and the related linear
state error feedback to the model that is obtained from the Taylor-series-based approximate linearization
of the initial nonlinear state-space description of the system. The computed control inputs are applied
directly to the initial nonlinear model of the system and as proven through Lyapunov analysis global
asymptotic stability is achieved. Finally, there should be no comparison of the article’s control method
to PID control. Unlike PID control the method is of proven global stability, does not require heuristic
tuning and remains reliable in the change of operating points as well as to external perturbations. PID
control can be efficiently tuned for linear dynamical systems and only around local operating points while
its use in the case of the nonlinear model of the truck and trailer systems will risk the control loop’s stability.

Remark 4 : (i) Autonomous navigation of the vehicles is practically achieved if control can be implemented
through the vehicles’ kinematic model. In such a case one computes the velocity of the vehicles and the
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angle of the steering wheels that make the cartesian coordinates (position) of a specific reference point on
the vehicles (e.g. center of gravity) follow precisely the designated reference path. Once this first problem
is solved one can use the dynamic model of the vehicles to compute the forces and torques that should
be exerted on them (generated by its engine and their wheels) so to achieve convergence of the vehicles’
velocity and heading angle to those values that are used as control inputs in the kinematics-based con-
trol problem of the first stage. Consequently, if one demonstrates solution of the control problem of such
vehicles with the use of their kinematic model, the problem of their autonomous navigation is considered
to have been solved in a complete manner. (ii) uncertainty in the kinematic model of the vehicles can be
due to wrong information about its dimensions as well as due to additive input disturbance affecting the
control inputs, of finally die to perturbations affecting the sensors’ measurements.

Remark 5 : The linearization of the vehicles’ kinematic model is performed through first-order Taylor se-
ries expansion and through the computation of the associated Jacobian matrices. The partial derivatives
which stand for the elements of these Jacobian matrices are computed off-line, while at each iteration of
the control algorithm the numerical values of these terms are updated. Such a procedure does not incur
much computational burden to the control scheme. The computation of the feedback gain of the H-infinity
controller requires the solution of an algebraic Riccati equation which takes place at each iteration of the
control method. The solution of this Riccati equation in Matlab and with the use of an i7 Intel processor
takes place in miliseconds and in time interval which is much shorter than the samploing period of the
control algorithm (0.1KHz). Consequently, the implementation of the proposed nonlinear optimal control
method is time efficient.

8 Conclusions

The article has proposed a solution to the nonlinear optimal control problem of autonomous truck and
trailer vehicles. Two different types of truck and trailer vehicles were examined: (a) truck and trailers
which are steered by the front wheels of their truck (b) autonomous fire-truck robots which are steered by
both the front wheels of their ruck and the rear wheels of their trailer. The kinematic model of the vehicles
has undergone linearization through Taylor series expansion round a temporary equilibrium and with the
computation of the associated Jacobian matrices. The equilibrium was redefined at each iteration of the
control algorithm by the value of the vehicles’ state vector and the last value of the vehicles’ control input
vector. The modelling error that was due to approximate linearization was considered to be a disturbance
term that was compensated by the robustness of the control algorithm.

For the equivalent linearized model of the vehicles an H-infinity feedback controller was designed. The
controller’s feedback gain was calculated at each sampling instant through the solution of an algebraic
Riccati equation. The H-inifnity controller is the optimal controller one can obtain for the vehicles’ model
under modelling uncertainty and external perturbations. The stability of the control scheme was analyzed
with the use of the Lyapunov method. It has been demonstrated that the control loop satisfies the H-
infinity tracking performance criterion and this is indicative of the controller’s robustness. Moreover, it has
been shown that under moderate conditions the global asymptotic stability of the control loop is assured.
Finally, to implement state estimation-based control through the processing of measurements from a small
number of sensors the use of the H-infinity Kalman Filter has been proposed.
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