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Complex surgeries complications are increasing, thus making an efficient surgical assistance is a real need. In this work, an ontology-
based context-aware system was developed for surgical training/assistance during Thoracentesis by using image processing and
semantic technologies. We evaluated the Thoracentesis ontology and implemented a paradigmatic test scenario to check the efficacy
of the system by recognizing contextual information, e.g. the presence of surgical instruments on the table. The framework was able
to retrieve contextual information about current surgical activity along with information on the need or presence of a surgical

instrument.
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1. Introduction

Surgical procedures are becoming more complex with
the advent of new technologies, such as actuators, e.g.
robots, helping performing part of the intervention.
There is also an increasing availability of intra-operative
sensors, e.g. optical trackers, endoscopic cameras work-
ing during the surgery. Intra-operative sensors increase
the information overload, which may outpace surgeon’s
cognitive capacity to analyze the information to effec-
tively follow the course of the intervention when re-
quired to make a surgical decision. There are different
methods to represent conceptual knowledge, such as
first-order logic, production rules, semantic nets, frame
systems, Bayesian network, and ontologies [1]. Surgical
interventions and surgical processes were, in the past,
represented by using ontology [2, 4, 5, 18]. In order to be
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processed by computers, ontologies can be marshaled
into known data serialization formats, such as eXtensible
Markup Language (XML). Medical ontologies, such as
Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) [3] are already being used in health in-
formation systems to make it consistent, transferrable,
and interoperable by providing a common set of con-
cepts. However, surprisingly, ontology has not yet been
widely implemented in the domain of context-aware
surgery due to the complexity of surgical processes and
lack of standardization for ontologies in surgery domain.
We believe that ontology-based knowledge formalism
has an utmost importance to reduce surgical complica-
tions by providing contextual information at a specific
time, e.g. information about a surgical instrument in use
based on the step currently in progress. The major role of
ontology is to formalize and structure the domain spe-
cific knowledge e.g. surgery, to retrieve and integrate
data from sensors, e.g. for image processing, and to fa-
cilitate interoperability. Ontology-based knowledge could
help intelligent systems to understand the interventions,
using surgical process models, and the operating sce-
nario, using image processing tools. Ontologies can be
used to train and to work along with surgeons for aiding
clinical decision making through novel human-computer
interfaces. In this paper, we aim at creating a context-
aware system, which uses ontology as a knowledge base
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for the recognition of surgical instruments and phases at
a specific surgical activity as per surgeon’s requirement
during the surgical procedure.

Different methods have been explored to create con-
textual awareness during surgical interventions. Kati¢
et al. [4], as an example, used Description Logic (DL) to
achieve knowledge formalism for laparoscopic proce-
dures, such as cholecystectomy, and rule-based intra-
operative context-awareness to recognize surgical pha-
ses. Kati¢ et al [5] also developed the LapOntoSPM
ontology for laparoscopic surgeries, which was sharable,
extensible, and inter-operational with established
knowledge representations. LapOntoSPM ontology was
used for the phase recognition to help situation inter-
pretation. The ontology in the rule-based system was
evaluated with recorded surgical videos. Agrawal et al
[6] developed a context-aware fuzzy rule-based periop-
erative system to infer surgical events, such as the
onset of anesthesia, from Radio-Frequency Identification
(RFID) tags and from monitoring equipment such as
pulse oximeter. Neumuth and Meifdner [7] used redun-
dant, complementary, and co-operative information fu-
sion methodology to detect, identify, and localize surgical
instruments in the interventional suite. The performance
of information fusion-based system was good despite the
interference with metal surgical instruments on RFIDs.
Bardram et al. [8] used a similar sensor platform, con-
sisting RFID and other physiological sensors in the op-
erating suite, and machine learning approach for activity
recognition, e.g. instruments in use during the surgical
intervention. However, the sensor platform still had
issues with reflection and shielding with RFID technol-
ogy. Kassahun et al. [9] developed a classifier on ontol-
ogy-based and genetic-based machine learning to classify
epilepsy types and their localization using ictal symp-
toms. Other researchers also used machine learning such
as Hidden Markov Models (HMM) [10], statistical
modeling [11], and signal processing [12] of laparoscopic
videos to extract information and to recognize contexts
during surgical procedures. De Momi et al. [13] devel-
oped an autonomous path planner by providing a fuzzy
patient risk description, through multi-model informa-
tion and surgeon-dependent rules stored in the knowl-
edge base, for brain surgery. Most of these systems did
not explicitly use the knowledge but processed the data
and information only. In addition, most of the previous
approaches, which have been used for the detection of
surgical phases and related information through ontolo-
gy, miss the retrieval of specific contextual information of
the procedure that can arise from the integration of on-
tology, data processed through 3D image processing, and
semantic technologies.

Our work is focused on modeling of a percutaneous
procedure, the “Thoracentesis”. Pleural effusion is a de-
bilitating condition, often associated with other diseases,
in which there is a build-up of fluids between lung tissue
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and pleural space. Common symptoms of pleural effusion
can include pleuritic chest pain, coughing, and dyspnea
[14]. Removal of fluid from the pleural cavity is per-
formed by an invasive procedure in which a needle is
inserted into the chest cavity and the fluid withdrawn
using a syringe [14]. Procedure-related complications are
a major problem and can range from pain, dry cough, no
fluid return or subcutaneous collection which affects at
most 33% people, to life-threatening complications such
as pneumothorax, pulmonary edema, unintentional
puncture of spleen or liver and sheared off catheter in the
pleural space, and in some exceptional conditions wing-
ing of the scapula [15]. Although Thoracentesis is a very
simple procedure, procedure-related complications are
higher than expected.

The aim of our work is to create a reliable and re-
peatable aid, such as context-aware system, to assist the
novice surgeons training in performing needle Thor-
acentesis. The importance aspects of needle Thoracent-
esis are the insertion of a 50 mL syringe needle for
withdrawing the pleuritic fluid without injuring internal
organs and the identification of an accurate anatomical
landmark on the chest. For performing needle Thor-
acentesis, the surgeon needs technical skills, such as
dexterity, procedural knowledge, as well as nontechnical
skills, such as cognitive skills (context awareness, deci-
sion-making and planning) [16, 17]. Mental models,
surgeon’s knowledge, and the experience, stored in the
memory, influence judgments related to intraoperative
context awareness. Our system provides cognitive sup-
port during the surgical training to novice surgeons in
Thoracentesis performance. Therefore, considered as an
aid to cognitive decision making, the system will even-
tually reduce medical errors, iatrogenic complications
and overall improve the patient care. The paper also
demonstrates the use of open source technologies to
create a context-aware system for surgical assistance.

2. Methods

In our scenario, surgeons query the procedure ontology
(Sec. 2.1), which includes information about all the
instruments required during Thoracentesis. Based on the
queried result, the developed application (Sec. 2.3)
represents the sequence of steps and activities during
the procedure and recognizes (Sec. 2.2) the instrument,
e.g. a syringe or a surgical-swab on the surgical stand, in
use during a specific surgical step. The framework au-
tomatically identifies this information. The system fur-
ther suggests the next step and the next instrument(s) to
be used based on the semantic relations, e.g. “next step”
and “instrument in step” grounded in the ontology.
Our framework [18] integrates ontology-based surgi-
cal knowledge (Sec. 2.1), data acquired through 3D image
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Fig. 1. Data-flow diagram: The data-flow underlying the scenario mentioned above is shown. At first, user queries the surgical step
through the Graphical User Interface (GUI). The queried step is forwarded to the component containing ontology through a ROS
message. After reasoning, ontology component finds an instrument instance corresponding to the step based on semantic relations.
After identifying the instrument instance, the ontology component publishes a message containing the information on instrument
instance. After that, “Instrument Receiver” finds the point-cloud surface patch models in the dataset based on instrument instance,
which has similar nomenclature as the instrument instance grounded in ontology. Further to that, “Instrument Receiver” forwards

the obtained information to the “recognition node”

. The “recognition node”, which processes template-matching algorithm, then

finds an instrument on the table and represents the surgical phase and instrument information on the GUI In our framework,

“segmentation node”
“recognition node”.

acquisition and processing (Sec. 2.2), and a user query
interface (Sec. 2.3) to create a context-aware system. As
shown in Fig. 1, the overall system framework was re-
alized through ROSJAVA package [19], which is an open
source project in pure java for integration with Robot
Operating System (ROS) [19]. It allows java applications
to interface with ROS nodes, topics, messages, services,
and parameters. Our framework uses ROS messages, to
pass information among the “ontology”, which processes
procedural knowledge and surgical activities, the
“segmentation node” which processes segmentation
algorithms, and the “recognition node” which processes

segments instrument surface patches from 3D point-cloud and saves them in datasets to be used by

recognition algorithms. “Instrument Receiver” is an
intermediary node that manages messages exchanges
between framework components.

2.1. Surgical procedure

Knowledge representation is an imperfect approximation
[1] of real-world entities. In our case, generalized con-
cepts for Thoracentesis were tailored to represent con-
textual information by integrating entities of the
procedure and sensory data from an imaging sensor.
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Ontology for Thoracentesis was constructed using a top-
down approach, where most general concepts of the
domain, such as phases (e.g. “Anesthesia”) were ana-
lyzed first and thereafter specialized concepts, such as
actions (e.g. “WithDrawLargeSyringe”), were imple-
mented. The needed information about Thoracentesis
was obtained from a journal paper [20], online web
resources, which were verified through HONCode [21]
for health information authenticity and analyzed using
the methodology described in [2], and an opinion from a
physician. Ontology encompassed surgical entities, for
example surgical steps, surgical process model, and in-
formation about different spatiotemporal events that
occurs during Thoracentesis procedure. After identifying
appropriate classes, the procedure was formalized using
an approach similar to [22], where logical sentences
were divided into triplets in the format of “Phase
(Instrument, Step, Body Structure)”, specified for
each surgical phase. For example, withdrawal of a large
syringe (50 mL) from the area of insertion on inter-
costal space is expressed as “Closure (LargeSyringe,
WithdrawLargeSyringe, AreaOflnsertionIntercostal)”.
“Closure” represents the phase of Thoracentesis. It
involves the surgical activities carried out during the end
of an intervention, where the surgeon removes the
syringe from chest cavity after all the fluid is withdrawn.
All of these classes were considered as sub-classes of the
procedure class. Actions were considered as temporal
parts of the phases. The instances of the instrument’s
models were also created in the ontology (e.g.
“LargeSyringe.pcd”) and configured in the application
developed for detection. We also added seven data
properties to define variables for the instruments point-
cloud model “data” (range:double), “fields” (range:
string), “height” (range:integer), “points” (range:inte-
ger), “size” (range:integer), “type” (range:string),
“width” (range:integer). Instrument’s model centroid
information (“x”, “y”, and “z”) is also specified.
Instrument’s instances have been assigned this data
property. All the procedure-related classes, object prop-
erties, and data properties were specified in Terminology
Box (TBOX), while real-world procedure events were
specified in the Assertion Box (ABOX) using indicative
propositions. Each of these latter represents knowledge
for the instances of the surgical entities. Automated de-
scription logic-based reasoners constantly check the
ontology. We also used Jena’s generic reasoner to reason
over the ontology and performed manipulation over the
ABOX in the application developed for the evaluation.
Ontology provides a knowledge base and allows the
surgeon to query on phases, steps, body structures, and
instruments. Body structures or anatomical entities, re-
lated to Thoracentesis, are selected by analyzing the
procedure as described in the literature and by sugges-
tions of an expert. The relevant subset of classes, perti-
nent to Thoracentesis, are extracted from SNOMED-CT
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and merged with the developed ontology using Protégé
[23]. The use of SNOMED-CT ensures inter-operability
with other health information systems. Use of SNOMED-
CT also allows making a balance between vocabulary
reusability and granularity required for domain knowl-
edge. The ontology was serialized using (Resource De-
velopment Framework) RDF/XML format by Protégé.
RDF/XML allows ontology to be processed by a wide
range of XML and RDF processing tools and thus
facilitates easy integration with other semantic web
technology platforms.

2.1.1. Surgical workflow

The surgical workflow consists here of sequence of all
the activities performed during Thoracentesis procedure
and their connection to the higher levels of granularity,
e.g. surgical phases. Our current approach represents
individual occurrences during the intra-operative pro-
cedure and hence, the ontology is described with a lim-
ited number of instances. The workflow does not contain
people, their roles or any other perioperative and ad-
ministrative tasks in execution of surgery. The workflow
only represents hierarchical steps of the activities
performed in the procedure, thus, it keeps the compu-
tational time short, by excluding surgical administrative
information, which is beneficial for the quick ontology
reasoning by the reasoners. As shown in Fig. 1, steps are
represented by an instance of the surgical activity, which
are connected to the instrument through “has-
InstrumentInStep” relation and to the body structure
through “involvesAnatomicalPart”. Moreover, each ac-
tivity is associated with the phases through “isInPhase”
relation. Each surgical phase is also connected to the
instrument through “haslnstrumentinPhase” and steps
through “hasStep” relation. To form a surgical plan,
which are the possible sets of surgical activities divided
into phases, different classes and its instances are
related to each other by object properties, which help to
identify temporal order of the phases and steps. These
properties are specified in chronological orders such
as “hasNextStep”, “hasPreviousStep”, “hasNextPhase”,
“hasPreviousPhase”. Surgical plan enforces constraints
for possible temporal sequences of the surgical procedure
and allows consistent guidance to surgeons during the
surgical intervention.

2.2. 3D image processing

2.2.1. Acquisition system and system architecture

A Microsoft Kinect for Xbox 360 (Microsoft, Redmond,
WA, USA) was used to acquire the registered point-cloud
from the scene, which includes the tabletop, several
surgical instruments, and materials. We used the Open
Natural Interaction library (OpenNI) [24] to transform
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raw data from Kinect into point clouds for processing
through algorithms included in the Point Cloud Library
(PCL) [25] in ROS.

2.2.2. Segmentation algorithms

The segmentation process is described in Fig. 2. After the
acquisition of registered point-cloud, the user chooses
the segmentation algorithms (either RANSAC [26] based
plane segmentation [27] or color-based region growing
segmentation [28]) based on object’s features e.g.
object’s shape.

Conversely, a set of instrument models is also
obtained by using RANSAC-based plane segmentation
from the 3D meshes reconstructed from the object
reconstruction algorithm, e.g. “KinectFusion” [29], to
obtain better instrument’s surface patches. Eventually,
user saves the identified models in database.

(i) RANSAC-based plane segmentation

To downsample the point-clouds and to approximate the
region of interest, voxel-grid and pass-through filters
were implemented to decrease point-cloud density and

Pra——
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Fig. 2. Flowchart representing the segmentation process of
3D object surface patches.

to remove the outlier points such as walls [30] respec-
tively. We used the RANSAC algorithm [26, 27], which is
a widely used computer vision technique to segment
planes from data points, even in case of outliers. More-
over, after segmentation, remaining outliers were re-
moved with the statistical outlier removal method [31].

(ii) Color-based region growing segmentation

We also used color-based region growing segmentation
[28], which groups together points that have similar
color characteristics. There are two post-processing steps
in this algorithm. In the first step, neighboring clusters
were found out using point distance threshold, then a
point color threshold was defined which was used for
testing the points colors. A value for cluster color
threshold was also defined through ROS dynamic re-
configure package which was useful during the cluster
merging process and in the second step, clusters, whose
size was smaller than minimum size specified, were
merged with their neighbors.

After the segmentation, we selected instrument’s
surface patches for experiments and saved them in the
file-system database. Examples of such surface patches
are shown in Table 1. We used the state-of-the-art
“KinectFusion” algorithm [29] to reconstruct dense
surface meshes of the objects lying on the table. Then, we
converted the surface mesh into a point-cloud data for-
mat to process by PCL. After segmenting the point-cloud,
we extracted partial object models of the instruments
through the Euclidean cluster extraction method [32]
with RANSAC-based plane segmentation. A cluster tol-
erance was set to divide segmented point-cloud in the
separate object clusters. KdTree [33] was used to search
through the entire point-cloud for cluster extractions. We

Table 1. Instruments and their point-clouds.
Dimension with points
Instrument Model information
A syringe Approx.
(50 mL) 17.0cm x 5.0cm x 3.5cm

Points: 853

Needles Approx. 8.0 cm (length); 14G,
16G, 18G (gauge)
Points: 548

A surgical swab Approx.

10.0cm x 10.0cm x 1.0 cm
Points: 8742

A small syringe Approx.
(10 mL) 10.0cm x 2.5cm x 2.0 cm
Points: 405
A flexible Approx. 40.0 cm (length)
catheter Points: 2138

~
/

=
O
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verified each of the segmented surface patches by visual
inspection in ROS Rviz module and then saved them in
the file system database.

2.2.3. Template matching for instrument recognition
Object recognition is the process of identifying a model of
the object in the environment. 3D object recognition
methods can be: (i) appearance-based methods, where
objects matched against templates or exemplars of the
objects to perform recognition, e.g. edge matching, and
(ii) feature-based methods, where algorithms find an
object in the environment by matching its image features
with object features such as pose consistency. We used
SAmple Consensus Initial Alignment (SAC-1A) [34], which
tries to maintain the same geometrical relationship of the
correspondences candidates, selected based on pairwise
distances between clouds, from a scene point-cloud
dataset, hereafter referred to as a scene, to align an ob-
ject template [34]. The error metric for the rigid trans-
formation is determined using Huber penalty measure
[34]. We used Fast Point Feature Histogram (FPFH) [34],
as feature descriptor, to describe local geometry around
the points. The FPFH considers the direct connections
between the corresponding candidates and its neighbors.
The latter is pose invariant and its discriminative power
makes it a good candidate for point correspondence
search in 3D registration.
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The surgical workflow retrieves instrument’s models,
stored in the local databases as templates, based on
clinician’s requirements at a specific instance of phase
and step of the procedure. After obtaining the results, the
model’s information is forwarded to the template
matching node implemented in the ROS, which executes
the above-mentioned algorithm for aligning the
instrument’s model and the real instrument present in the
scene. The instrument identification provides the context
to users for identifying the instruments on the table,
which will be helpful to novice surgeons. Moreover, the
detected instrument can also be represented as the 3D
model to guide the surgeons further on the instruments
along with the information on the surgical phase.

2.3. User application interface - NEAR surgical
interface
2.3.1. Graphical user interface

The developed Graphical User Interface (GUI), shown in
Fig. 3, helps to reason and query the ontology. The ap-
plication contains a section for ontology, query (SPARQL
language [35]) and results (Instrument point-cloud in-
formation such as points and model’s centroid informa-
tion, surgical phases, steps and body structures/
anatomical entity).

The user can load the ontology or the ontology can be
pre-loaded before the start of the procedure. The

| NEAR Surgical Support Systerm

P m— - - —— [ —

NEAR Surgical Interface
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Fig. 3. NEAR Surgical Interface. The loaded ontology, a SPARQL query and identified instrument, with information about cloud-
points and its centroid, is linked to instrument’s instances that can be forwarded for the recognition.
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software was configured, with local resources, through a
key-value pair method [36], e.g. to obtain template model
from the database.

The highly configurable software allows manipulating
the ontology for different surgical procedures if ontology
is constructed using the triplets of phases as described
before. The software specifically searches resources in
the ontology graph for phases, steps, body structures,
and instruments. The user interface is also helpful to
identify user-specific requirements of instruments. After
the application retrieves the information about the in-
strument, its model information is forwarded to the
recognition algorithm to find out an instance of the in-
strument in the scene. A surgeon can query context
about a single instrument at the specific step (e.g.
“Anesthesia” phase has more than one action and in-
strument, however system will allow querying at the
specific instance, e.g. “step:InjectWithLargeSyringe”, and
retrieve the information about 10 mL syringe). Figure 4
represents the information-flow between the system
components.

2.3.2. Query

We implemented the queries to retrieve information
about the instruments used in specific steps and surgical
phases while acting on a specific body structure. For
example, information about instrument can be extracted
using the query construct as shown in Fig. 5.

Most of the SPARQL queries contain a set of triplets,
which are required to query the RDF graph data struc-
ture, i.e. the ontology, which we recall, consists of triplets
of phases. SPARQL query matches the similar patterns
between RDF sub-graph and requests triplets, which
retrieve the queried information.

We used Jena API [37] along with GUI provided by
Java Foundation Classes (JFC)/Swing [38] to query, rea-
son and update the ontology. Figure 6 summarizes the
framework components and corresponding open-source
technologies used.

2.4. Experimental protocol

In order to verify the system performances, we imple-
mented a set of experiments using the setup shown in
Fig. 7. The purpose of our experiments was to check
usability of the ontology as a knowledge base to retrieve
surgical information and to find contextual information
related to specific surgical activities detected using image
processing algorithms. Our experimental protocol was
divided into three steps, ontologies, segmentation algo-
rithms and recognition algorithm, which are explained in
the next subsections.

(i) The ontology for Thoracentesis is uploaded in the
application as shown in Fig. 3. The user queries the
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Fig. 4. The flowchart represents the information-flow in our
software framework, where surgeon asks about information on
a step currently in progress to the ontology, which retrieves
information on instrument’s models that may be in use. After
retrieving the instrument model, the system retrieves the cur-
rent scene of the surgical table on which the system recognizes
the instrument and obtains its pose information.

ontology through SPARQL after the ontology is
loaded in the interface. As an example, as shown in
Fig. 3, user queries the system to find information
about an instrument and its point-cloud, lying on the
table (e.g. 50 mL syringe), which is withdrawn from
the chest during the “Closure” phase at the proce-
dure step “WithDrawLargeSyringe” where the step
is decided by the surgeon. The GUI also shows in-
formation about current step and involved body
structure to provide assistance during surgery.

The segmented instrument model’s template is
selected based on the instances created in the on-
tology (e.g. “LargeSyringe.pcd”). To evaluate the

WithDrawLargeSyringe (?Step) A haslnstrument (?InstrumentinStep) A
hasPhase (?Phase) ” involvesAnatomicalLocation (?AnatomicalEntity)

Fig. 5. Query for identification of an instrument 50 mL
syringe.
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Knowledge-driven context-aware system framework

(i)
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ontology, we iteratively checked it through
“FaCT++"” [39] and “Pellet” [40] reasoners, which
are in-built plug-in in Protégé, during the building
process to minimize the inconsistencies in the on-
tology and through different queries during building
and after inclusion of all assertions. If the ontology
was found to be inconsistent, then it was incre-
mentally updated or adjusted. We computed True
Positives (TP), False Positives (FP), True Negatives
(TN) and False Negatives (FN), by asking positive
and negative queries, by comparing surgical steps
and activities of Thoracentesis procedure described
in the literature, as a gold-standard, to calculate the
error metrics.

We computed the classification sensitivity, which
represents the proportions of positives retrievals of
information about the instruments that are associ-
ated with steps and phases. Specificity represents
the proportions of the negative retrievals of infor-
mation about the instruments that are not associ-
ated with step and phase. Accuracy represents the
proportion of true results (TP and TN) among the
total numbers of the query performed.

To verify the segmentation algorithms accuracy, we
segmented instrument clusters in different poses as
mentioned in Table 1. We also used different envi-
ronmental conditions, such as in the natural sun
light, hereafter referred as “without illumination”,
and with white fluorescent illumination to check
the repeatability of the segmentation algorithms
on raw point-clouds. It has been proven that

1740007-8

“KinectFusion” is suitable for fast acquisition of
medium scale scenes to create ground-truth images
[41]. Further to test the plane segmentation algo-
rithm, we acquired 10 surface meshes, where the
scene contains an instrument, e.g. surgical swab, in
different poses on the surgical stand/table-top. We
converted meshes into point clouds to be processed
by the plane segmentation algorithm.

To create the ground truth, we manually seg-
mented point-clouds by extracting the points that
fall inside of a 2D polyline once it is projected on
screen. Then we segmented the identical converted
point cloud with the help of plane segmentation al-
gorithm. After obtaining surface model patches of
the instrument by the latter from scene, we com-
puted appreximate Euclidean distance between
manually segmented model’s point cloud, as a ref-
erence, to a target model’s point cloud obtained
using plane segmentation from scene. The distance
is computed by the shortest nearest point distance
between both the segmented models to assess ac-
curacy of the plane segmentation algorithm, where
nearest neighbor point Euclidean distance D is
shown in Eq. (1).

D(x’y) =

In Eq. (1), k represents the number of neighbors, and
x; and y; are the source and target points. We fixed a
default set of parameters, as mentioned in Table 2,
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Fig.
the table-top and surgical instruments. Kinect was setup ap-
proximately 60 cm away from the table-top. The figure shows
surgical instruments generally used for Thoracentesis proce-
dures. We have illuminated surgical instruments from the front
side whenever it is required.

(iii)

4:49:13pm WSPC/300-JMRR 1740007

7. The experimental setup includes a Microsoft Kinect,

for the algorithms throughout the entire experi-
ments in order not to bias the results.
We used a 50 mL syringe to check our framework
and to check the feasibility to use a template-
matching algorithm for object recognition. We cre-
ated 15 scenes containing multiple instruments, e.g.
a syringe and a surgical-swab, and a table-top from
different view-points. Using the “KinectFusion”
algorithm, we obtained object templates.

We checked the instrument partial model’s map-
ping with these scenes through template matching.
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Table 2. Parameters of the plane segmentation algorithm.

Parameters

Details

Voxel grid size

Passthrough axis
dimensions

Maximum
iterations

Euclidean cluster
distance
threshold

It is used to adjust the point cloud
density by specifying the size of 3D
voxels in meters

Passthrough filter, filters the planes
through X-, Y- and Z-axis with respect
to camera frame

It is used to ensure that at the probability
(usually set to 0.99) that at least one of
the sets of random samples does not
include the outliers.

Set the tolerance in meters for
difference in perpendicular distance
(d component of plane equation) to

Euclidean cluster

Minimum cluster

Maximum cluster

the plane to be considered the
neighboring points the part of plane.

Set the spatial cluster tolerance as a
measure in L2 Euclidean space

Set the minimum number of points that a
cluster needs to contain in order to be
considered valid

Set the maximum number of points that a

tolerance

size

size cluster needs to contain in order to be
considered valid
The error metric — Huber penalty measure —

hereafter also represented as fitness score, L, was
calculated as shown in Eq. (2).

1
Eezz ||el|| S te7

Ly(e) = ] (2)
Stellell =) el > t..

In Eq. (2), e; represents the error of alignment be-
tween the source and target point cloud. t, represents
the distance threshold that is used to limit the points
whose values are greater than the specified value,
which is sum of squared distances from two sets of
correspondence distances between source and target
points. We designed a paradigmatic test scenario to
test the framework and to identify the pose of a large
syringe (50 mL) from the scene, with model contain-
ing different point density, during the “Closure”
phase, which is required during the withdrawal of the
syringe to drain the fluid from the chest. In this case,
the surgeon asks about the correct instrument, while
reaching the “Closure” phase and the contextual in-
formation was retrieved by the system. Figure 7
shows the experimental setup which was used during
segmentation and recognition of surgical instruments.
We measured the execution time to identify system’s
requirement to be used in real time.
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3. Results

Results are described in the next subsections.

(i) The ontology that we designed as an example of the
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Table 4. Ontology classification time
during consistency checking.

DL reasoner Classification time (ms)

Thoracentesis workflow is reported in Fig. 8. The
procedure class for Thoracentesis is populated and
it has relationships with steps, phases, surgical
instruments, and body structures. Relations are
formulated through the indicative propositions in
ABOX. For example, as seen in Fig. 8, the class re-
lationship between “Step” and “Instrument” is
reported (“Withdraw” step has instrument aspira-
tion syringe which is a 50 mL large syringe). We
collected a list of instruments that are used during
phases and steps of Thoracentesis procedure and
populated the instrument class with instrument
specific characteristics (e.g. instrument dimension,
its 3D model instance, and so on). Ontology metrics
are shown in Table 3.

As shown in Table 4, the average time to classify
ontology is less than 1s. The ontology consistency
checking confirms that the ontology is syntactically
valid and classification time confirms the ontology
can be used as a surgical process model for context
awareness in context-aware surgical systems.

For semantic analysis and ontological satisfiability,
to check whether the ontology represents Thor-
acentesis, we run a total of 200 queries and we
found a sensitivity of 100%, with specificity 99.1%
and accuracy 99.5% of the knowledge

Thoracentesis

FaCT++ 83
Pellet 357

representation. The specificity and accuracy are high
because the procedure is based on a relatively small
model and we used iterative and increment devel-
opment approach for building the ontology. As
shown in Table 3, it is not necessary to ground all
individuals/instances of classes for the realization of
Thoracentesis workflow.

(ii) We repeated the segmentation experiment for each
instrument of Thoracentesis procedure using both
segmentation algorithms e.g. RANSAC-based plane
segmentation and color-based region growing seg-
mentation, with white illumination and without il-
lumination, for 12 times. Algorithms were able to
segment surface patches for instruments as repor-
ted in Tables 5 and 6. The segmented surface pat-
ches were verified through visual inspection in ROS
Rviz Module. As shown in Tables 5 and 6, we were
able to get cluster point indices with less variability
when we conducted experiments without illumina-
tion. However, RANSAC-based plane segmentation
was unable to segment the object cluster for
needles and a flexible catheter. The number of
points represents precision or repeatability of

Table 5. Segmentation results without illumination (R
represents RANSAC-based plane segmentation and C repre-
sents color-based region growing segmentation).

Instrument Number of points Execution time (s)

Syringe 50 mL 776.2 £ 166.0 (C) 4.724+0.14 (C)

7 b 4
| = ! Closure
Y@ ‘Anatomical
structure’ by > |®@ jnstrument
Step  hasinstrumentinstep (Domain>Range) > Instrument
+ . + . +
WithdrawlLarge Syringe [ Syringe ] [

Fig. 8. The rectangles represent classes of the ontology, while
blue edges represent hierarchies and other colored edges rep-
resent the relationship between the classes.

AspirationSyringe ]

Table 3. Resulted ontology metrics.

Axiom 1805
Logical axiom count 569
Class count 105
Object property count 13
Data property count 18
Individual count 66

DL expressivity ALCHIF(D)

Syringe 10 mL
Surgical-Swab

Needle

Flexible catheter

915.9 +90.9 (R)
379 +37.9 (C)
471.8 +96.3 (R)

7978.1 4 2244.0 (C)

8655.5 + 150.2 (R)
444.1 +61.38 (C)

2136.1 + 86.51 (C)

0.59 +0.62 (R)
5.04 +0.19 (C)
0.78 £ 0.09 (R)
4.96 4 0.15 (C)
1.34+0.10 (R)
5.36 4 0.28 (C)
5.57 4 0.25 (C)

Table 6.

Segmentation results with white

illumination

(R represents RANSAC-based plane segmentation and C
represents color-based region growing algorithm).

Instrument

Number of points

Execution time (s)

Syringe 50 mL
Syringe 10 mL
Surgical-Swab

1438.6 +0.18 (C)

563.6 + 98.2 (C)

727.18 + 31.86 (R)

4.48£0.184 (C)
4.52+0.15 (C)
0.27 £ 0.01 (R)
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March 8, 2017

(iii)

Znd Reading

4:49:19pm WSPC/300-JMRR 1740007 ISSN: 2424-905X

Toward a Knowledge-Driven Context-Aware System for Surgical Assistance

Table 7. Plane segmentation results with respect to annotated ground truth with manual segmentation.

Points (RANSAC-based Ground-truth model points Models’ cloud-to-cloud
Instrument plane segmentation) (Manual segmentation) distance (m)
Syringe 50 mL 4763.1 +602.3 6001.04 +2364.2 0.001 £ 0.001
Syringe 10 mL 1029.6 £ 247.5 1626.8 £ 327.9 0.002 £ 0.001
Surgical-Swab 7567.1 £ 486 7653.6 = 408.6 0.0005 £ 0.0002

segmentation algorithms, while execution time
represents amount of computational needs for
processing required activity of the procedure.

As seen in Tables 5 and 6, RANSAC-based plane
segmentation provides good results with less vari-
ability in a number of points and faster processing of
the raw point clouds.

As shown in Table 7, RANSAC-based plane seg-
mentation is able to efficiently segment the instru-
ments. The repeatability is higher than the gold
standard ground-truth model points, obtained using
manual segmentation as explained in the experimen-
tal protocol, except for the surgical swab, which is also
almost similar. We kept point cloud density higher for
the reference clouds, e.g. ground truth models. Thus,
the reference clouds are represented with high num-
ber of vertices that removes FP to cover the properties
of an object we wish to compare for accurately mea-
suring the distances between segmented models. As
shown in Fable—6, model cloud-to-cloud distance,
surgical-swab was segmented with the highest accu-
racy followed by 50 mL and 10 mL syringes.

We were able to segment syringes with the color-
based region growing segmentation and surgical-
swab with RANSAC-based plane segmentation when
experiments were done under the white illumina-
tion. Neither of these methods did segment the other
two instruments, needles, and flexible catheters,
during experiments under white illumination. The
reason was a light reflection from the instruments,
which was creating missing depth information at a
particular instrument space. The system heavily
relies on the segmentation algorithm because rec-
ognition of instruments needs accurately segmented
models. Moreover, we believe that 3D models would
have allowed achieving results that are more accu-
rate, however, in surgery when uncertainty is much
higher, online segmentation of instrument is more
appropriate to create context awareness. Higher re-
peatability means we had consistent segmentations,
so the performance on recognition was consistent as
well during recognition of instruments.

The instrument, e.g. a 50 mL syringe, could be rec-
ognized in the scene by template matching as shown
in Fig. 9. In this experiment, we used RANSAC-based
plane segmentation to segment the partial surface

Fig. 9. Object recognition results. The light blue/green dataset
is the partial surface point-cloud of the large syringe (50 mL)
whose information (LargeSyringe.pcd) was obtained by the
ontology. The red dataset, is representing two objects a syringe
and a surgical swab on the table-top, alignment shows instru-
ment, i.e. large syringe in the scene, in a specific context
“WithDrawLargeSyringe”. Two individual registered datasets are
shown with red/blue and light blue/green colors, respectively.

point-cloud model of the large syringe (50 mL) from
the reconstructed scene obtained with the help of
“KinectFusion”.

Figure 9 shows the results of template matching of
a large syringe in two different poses. The fitness
score, i.e. the alignment result based on Huber
penalty measure, based on threshold Euclidean dis-
tance value below 0.0020 mm indicates better tem-
plate alignment with the scene images as reported in
[34, 42]. We repeated this experiment with 15 dif-
ferent poses and the obtained results are listed in
Table 8.

The results show the matching is more accurate
with downsampled model at approximately 82% than
with raw point cloud; however, further downsampling
makes the results worse as reducing matching points
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Table 8. Template matching results.

Template matching for an instrument

Execution time (s)

Average fitness score (mm) Model’s number of points

50 mL syringe - model 1 (obtained from 99.04 £ 6.4
downsampled point-cloud)

50 mL syringe - model 2 (obtained from 96.65 +5.15
downsampled point-cloud)

50 mL syringe - model 3 (obtained from 107.2 £ 20.6
downsampled point-cloud)

50 mL syringe - model 4 (obtained from a 114.7 £10.2

raw point-cloud)

0.020 £ 0.0053 109
0.022 £ 0.0025 307
0.016 £ 0.0047 771
0.019 £ 0.0043 4322

for alignment. While we achieved approximately
93.3% repeatability and approximately 93.3% accu-
racy in determining 50 mL syringe, the template
matching had higher false positives, up to 80%, for the
surgical swab and the 10 mL syringe verified by the
visual inspection. The implemented template match-
ing uses SAC-IA pipeline, which computes corre-
spondences, based on normal vectors alignment. The
template matching had less favorable results in the
case of surgical swab due to geometrical issues.

The 10 mL syringe was too small so it was not
possible to separate the syringe cluster from the
plane. However, the results can be further improved
by tuning some parameter, e.g. the search radius,
which requires to search nearest neighbors and
performing feature mapping between points. More-
over, the algorithm relies analyzing points’ XYZ, i.e.
position information only. It loses information about
RGB, i.e. color information, which might aid in rec-
ognition. Our experiments with 50 mL syringe were
promising as the syringe has bigger dimension and a
lower surface curvature. Our experiments with
50 mL syringe showed that point sampling (down or
up) does not affect execution time for the algorithm.
However, we noticed that downsampling increases
accuracy at certain level of approximation for rec-
ognition. The execution time is higher than expected,
which limits its use during the real-time execution of
the framework that can be improved by reducing
point density of the scene. We also performed
experiments during continuous real-time acquisition
of the point-clouds but the results were impeded
due to noisy acquisition of depth information.

4, Conclusions and Future Work

We presented a context-aware system, which we imple-
mented using ontology-based framework. Context-aware
systems are expected to enhance decision-making capa-
bility of the surgeons while operating in complex surgical
environments, during robotic surgery for instance, where
specialized knowledge is required to perform the

procedure. The framework, which integrates ontology
and data obtained using computer vision algorithms, has
potential to create a context-aware system.

The highly configured system components have the
potential to extend this framework to the laparoscopic
surgeries, which can be robot-assisted. While laparo-
scopic surgery has special needs (e.g. complex instru-
ments), our hardware profile, e.g. using Kinect, would be
rudimentary. The approach could be enhanced by indi-
rect sensor fusion, from vision, tracking, and imaging
sensors, by grounding possible variables in the ontology.
Indirect sensor fusion would be helpful to extend
the support to existing robotic surgical applications e.g.
selection of the best hardware to process specific data.
When instruments are more unorganized in realistic
environments, 3D lidar, stereoscopic cameras and optical
or magnetic trackers would require accurately locating
and tracking all the instruments for such procedures.
Ontology along with imaging sensors, such as ultra-
sonography or computed tomography could enhance
ontology-based intra-operative assistance, for example,
to detect accurate body structure (e.g. needle insertion
region on chest). As far as ontology is concerned, each
surgical procedure has different steps, body structures,
and different sets of instruments. It adds significant
complexity and restrictions to the ontological scalability.
The ontology could be scaled with OntoSPM [5] standard
and state-of-the-art robotics ontology, such as Core On-
tology for Robotics and Automation (CORA) [43]. The
ontology can also be scaled by semantic mapping of
meta-data, which is represented by ontological classes
such as instruments characteristics. Meta-data can be
included in the ontology as annotations for the ontolog-
ical classes. Consequently, this common metadata could
be used by different procedures to get information about
similar instruments and thus removing architectural
complexity to handle heterogeneous information. While
our ontology is not extendable to such implementations,
the basic design could improve with the inclusion of
upper ontology such as Suggested Upper Merged Ontol-
ogy (SUMO) [44]. The current ontology can be reusable
within similar context only because the ontology lacks
upper ontological axioms. The system performance was
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hindered by the limitation in detecting small and trans-
parent instruments by Kinect. Another limitation was
selecting optimal parameters for these algorithms;
however, the approach can be solved by integrating
parameters for each instrument in the ontology [45]. We
found the fitness score below 0.020 mm during 14
experiments while template was not aligned properly
with one experiment where fitness score was 0.029 mm
due to the point-cloud obtained from improperly recon-
structed mesh, which has holes surrounding syringe re-
gion as verified using visual inspection in ROS Rviz
module. Template-based recognition algorithm might
provide a different result during real-time processing
however, it is also highly dependent on object features
and its geometry. As edges can be a good representative
for the object recognition, deep learning technologies
could enhance the results with noisy datasets. The ap-
plication-specific ontology contains linguistic variables
such as “LargeNeedle”, “SmallNeedle” and so on.
Therefore, the system would not be able to understand
task-specific needle size until the user provides the in-
formation explicitly through the queries during the
run-time. Fuzzy extension to the ontology can handle
uncertainty associated with such ontological classes and
its assertions or indicative prepositions e.g. a linguistic
variable and ontological entity “NeedleSize”. The par-
ticular problem could be solved by developing fuzzy
ontology where ontology provides the surgeon the best
recommendation based on the rankings, constructed
using conditional rules, for the instruments and hence it
may improve the accuracy of the recognition system.
Further to surgical training, the knowledge-based
framework could be possibly extended to the intra-
operative robotic assistance, e.g. robotic scrub nurse,
where instrument’s contextual information is forwarded
to robotic scrub nurse and the robot will handle the
instruments and assist surgeons during the procedure
also detecting surgeon’s intent [46].
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