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The field of computational statistics refers to statistical methods or tools that are computationally intensive. Due to the recent
advances in computing power some of these methods have become prominent and central to modern data analysis. In this article
we focus on several of the main methods including density estimation, kernel smoothing, smoothing splines, and additive models.
While the field of computational statistics includes many more methods, this article serves as a brief introduction to selected
popular topics.
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Introduction

- “Let the data speak for themselves”

In 1962, John Tukey76 published an article on ”the fu-
ture of data analysis”, which turns out to be extraordinarily
clairvoyant. Specifically, he accorded algorithmic models as
the same foundation status as algebraic models that statis-
ticians had favored at that time. More than a three decades
later, in 1998 Jerome Friedman delivered a keynote speech23

in which he stressed the role of data driven or algorithmic
models in the next revolution of statistical computing. In re-
sponse, the field of statistics has seen tremendous growth in
some research areas related to computational statistics.

According to the current Wikipedia entry on “Compu-
tational Statistics”a: “Computational statistics or statistical
computing refers to the interface between statistics and com-
puter science. It is the area of computational science (or sci-
entific computing) specific to the mathematical science of
statistics.” Two well known examples of statistical computing
methods are the bootstrap and Markov Chain Monte Carlo
(MCMC). These methods are prohibitive with insufficient
computing power. While the bootstrap has gained significant
popularity both in academic research and in practical appli-
cations its feasibility still relies on efficient computing. Sim-
ilarly, MCMC, which is at the core of Bayesian analysis, is
computationally very demanding. A third method which has
also become prominent in both academia and practice is non-
parametric estimation. Today, nonparametric models are pop-
ular data analytic tools due to their flexibility despite being
very computationally intensive, and even prohibitively inten-
sive with large datasets.

In this article, we provide summarized expositions for
some of these important methods. The choice of methods

highlights major computational methods for estimation and
for inference. We do not aim to provide a comprehensive re-
view of each of these methods, but rather a brief introduction.
However, we compiled a list of references for readers inter-
ested in further information on any of these methods. For each
of the methods, we provide the statistical definition and prop-
erties, as well as a brief illustration using an example dataset.

In addition to the aforementioned topics, the twenty first
century has witnessed tremendous growth in statistical com-
putational methods such as functional data analysis, lasso,
and machine learning methods such as random forests, neu-
ral networks, deep learning and support vector machines. Al-
though most of these methods have roots in the machine
learning field, they have become popular in the field of statis-
tics as well. The recent book by Ref. 15 describes many of
these topics.

The article is organized as follows. In Section 1, we open
with nonparametric density estimation. Sections 2 and 3 dis-
cuss smoothing methods and their extensions. Specifically,
Section 2 focuses on kernel smoothing while Section 3 in-
troduces spline smoothing. Section 4 covers additive models,
and Section 5 introduces Markov chain Monte Carlo methods
(MCMC). The final Section 6 is dedicated to the two most
popular resampling methods: the bootstrap and jackknife.

1. Density Estimation

A basic characteristic describing the behavior of any random
variable X is its probability density function. Knowledge of
the density function is useful in many aspects. By looking
at the density function chart we can get a clear picture of
whether the distribution is skewed, multi-modal, etc. In the
simple case of a continuous random variable X over an inter-
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val X ∈ (a, b), the density is defined as

P(a < X < b) =

∫ b

a
f (x)dx.

In most practical studies the density of X is not directly avail-
able. Instead, we are given a set of n observations x1, . . . , xn

that we assume are iid realizations of the random variable.
We then aim to estimate the density on the basis of these
observations. There are two basic estimation approaches: the
parametric approach, which consists of representing the den-
sity with a finite set of parameters, and the nonparametric ap-
proach, which does not restrict the possible form of the den-
sity function by assuming it belongs to a pre-specified family
of density functions.

In parametric estimation only the parameters are un-
known. Hence, the density estimation problem is equivalent
to estimating the parameters. However, in the nonparametric
approach, one must estimate the entire distribution. This is
because we make no assumptions about the density function.

1.1. Histogram

The oldest and most widely used density estimator is the his-
togram. Detailed discussions are found in Refs. 65 and 34.
Using the definition of derivatives we can write the density in
the following form:

f (x) ≡
d
dx

F(x) ≡ lim
h→0

F(x + h) − F(x)
h

. (1)

where F(x) is the cumulative distribution function of the ran-
dom variable X. A natural finite sample analog of equation
(1) is to divide the real line into K equi-sized bins with small
bin width h and replace F(x) with the empirical cumulative
distribution function

F̂(x) =
#{xi ≤ x}

n
.

This leads to the empirical density function estimate

f̂ (x) =
(#{xi ≤ b j+1} − #{xi ≤ b j})/n

h
, x ∈ (b j, b j+1],

where (b j, b j+1] defines the boundaries of the jth bin and
h = b j+1 − b j. If we define n j = #{xi ≤ b j+1} − #{xi ≤ b j}

then

f̂ (x) =
n j

nh
. (2)

The same histogram estimate can also be obtained using
maximum likelihood estimation methods. Here, we try to find
a density f̂ maximizing the likelihood in the observations

Πn
i=1 f̂ (xi). (3)

Since the above likelihood (or its logarithm) cannot be
maximized directly, penalized maximum likelihood estima-
tion can be used to obtain the histogram estimate.

Next, we proceed to calculate the bias, variance and
MSE of the histogram estimator. These properties give us an

idea of the accuracy and precision of the estimator. If we de-
fine

B j =
[
x0 + ( j − 1)h, x0 + jh

)
, j ∈ Z,

with x0 being the origin of the histogram, then the histogram
estimator can be formally written as

f̂h(x) = (nh)−1
n∑

i=1

∑
j

I(Xi ∈ B j)I(x ∈ B j). (4)

We now define the bias of histogram estimator. Assume
that the origin of the histogram x0 is zero and x ∈ B j. Since
Xi are identically distributed

E[ f̂h(x)] = (nh)−1
n∑

i=1

E[I(Xi ∈ B j)]

= (nh)−1nE[I(X ∈ B j)]

= h−1
∫ jh

( j−1)h
f (u)du.

This last term is not equal to f (x) unless f (x) is constant in
B j. For simplicity, assume f (x) = a + cx, x ∈ B j and a, c ∈ R.
Therefore

Bias[ f̂h(x)] = E[ f̂h(x)] − f (x)

= h−1
∫

B j

( f (u) − f (x))du

= h−1
∫

B j

(a + cu − a − cx)du

= h−1hc
((

j −
1
2

)
h − x

)
= c

((
j −

1
2

)
h − x

)
.

Instead of slope c we may write the first derivative of the den-
sity at the midpoint ( j − 1

2 )h of the bin B j

Bias( f̂h(x)) = f ′
((

j −
1
2

)
h
) ((

j −
1
2

)
h − x

)
= O(1)O(h)
= O(h), h→ 0.

When f is not linear, a Taylor expansion of f to the first order
reduces the problem to the linear case. Hence the bias of the
histogram is given by

Bias( f̂h(x)) =

((
j −

1
2

)
h − x

)
f ′

((
j −

1
2

)
h
)

+ o(h), h→ 0.

(5)

Similarly, the variance for the histogram estimator can be cal-
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culated as

Var( f̂h(x)) = Var
(
(nh)−1

n∑
i=1

I(Xi ∈ B j)
)

= (nh)−2
n∑

i=1

Var
[
I(Xi ∈ B j)

]
= n−1h−2Var

[
I(X ∈ B j)

]
= n−1h−2(

∫
B j

f (u)du)(1 −
∫

B j

f (u)du)

= (nh)−1(h−1
∫

B j

f (u)du)(1 − O(h))

= (nh)−1( f (x) + o(1)), h→ 0, nh→ ∞.

Bin width choice is crucial in constructing a histogram.
As illustrated in Figure 1, bandwidth choice affects the bias-
variance trade-off. The top three represent the histograms for
the normal random sample but with three different bin sizes.
Similarly bottom three histograms are from another normal
sample. From the plot it can be seen that the histograms with
larger bin width have smaller variability but larger bias and
vice versa. Hence we need to strike a balance between bias
and variance to come up with a good histogram estimator.
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Fig. 1. Histograms for two randomly simulated normal samples with 5
bins (left), 15 bins (middle), and 26 bins (right).

We observe that the variance of the histogram is propor-
tional to f (x) and decreases as nh increases. This contradicts
with the fact that the bias of the histogram decreases as h de-
creases. To find a compromise we consider the mean square
error (MSE):

MS E( f̂h(x)) = Var( f̂h(x)) + (Bias( f̂h(x)))2

=
1

nh
f (x) + (( j − 1/2)h − x)2 f ′(( j − 1/2)h)2

+ o(h) + o(
1
nh

).

In order for the histogram estimator to be consistent, the
MS E should converges to zero asymptotically. Which means
that the bin width should get smaller with the number of ob-
servations per bin n j getting larger as n → ∞. Thus, un-

der nh → ∞, h → 0, the histogram estimator is consistent;
f̂h(x)

p
−→ f (x).

Implementing the MSE using the formula is difficult in
practice because of the unknown density involved. In addi-
tion, it should be calculated for each and every point. Instead
of looking at the estimate at one particular point it might be
worth calculating a measure of goodness of fit for the entire
histogram. For this reason the mean integrated squared error
(MISE) is used. It is defined as:

MIS E( f̂h(x)) = E
[ ∫ ∞

−∞

( f̂ − f )2(x)dx
]

=

∫ ∞

−∞

MS E( f̂h(x))dx)

= (nh)−1 + h2/12|| f ′||22 + o(h2) + o((nh)−1).

Note that || f ′||22 (dx is omitted in shorthand notation)is the
square of the L2 norm of f ′ which describes how smooth the
density function f is. The common approach for minimiz-
ing MISE is to minimize it as a function of h without higher
order terms (Asymptotic MISE, or AMISE). The minimizer
(h0), called an optimal bandwidth, can be obtained by differ-
entiating AMISE with respect to h.

h0 =

( 6
n|| f ′||22

)
. (6)

Hence we see that for minimizing AMISE we should theoret-
ically choose h0 ∼ n−1/3, which if we substitute in the MISE
formula, would give the best convergence rate O(n−2/3) for
a sufficiently large n. Again, the solution of equation 6 does
not help much as it involves f ′ which is still unknown. How-
ever, this problem can be overcome by using any reference
distribution (e.g., Gaussian). This method is often called the
“plug-in” method.

1.2. Kernel Density Estimation

The idea of the kernel estimator was introduced by Ref. 57.
Using the definition of the probability density, suppose X has
density f . Then

f (x) = lim
h→0

1
2h

P(x − h < X < x + h).

For any given h, we can estimate the probability P(x − h <
X < x + h) by the proportion of the observations falling in the
interval (x − h, x + h). Thus a naive estimator f̂ of the density
is given by

f̂ (x) =
1

2hn

n∑
i=1

I(x−h,x+h)(Xi).

To express the estimator more formally, we define the weight
function w by

w(x) =

 1
2 if |x| < 1
0 otherwise.
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Then it is easy to see that the above naive estimator can be
written as

f̂ (x) =
1
n

n∑
i=1

1
h

w
( x − Xi

h

)
. (7)

However, the naive estimator is not wholly satisfactory be-
cause f̂ (x) is of a “stepwise” nature and not differentiable
everywhere. We therefore generalize the naive estimator to
overcome some of these difficulties by replacing the weight
function w with a kernel function K which satisfies the con-
ditions∫

K(t)dt = 1,
∫

tK(t) = 0, and
∫

t2K(t)dt = k2 , 0.

Usually, but not always, K will be a symmetric probability
density function. Now the kernel density estimator becomes

f̂ (x) =
1

nh

n∑
i=1

K
( x − Xi

h

)
.

From the kernel density definition it can be observed that

• Kernel functions are symmetric around 0 and integrate to 1
• Since the kernel is a density function, the kernel estimate is a

density too:
∫

K(x)dx = 1 implies
∫

f̂h(x)dx = 1.
• The property of smoothness of kernels is inherited by f̂h(x).

If K is n times continuously differentiable, then f̂h(x) is also
n times continuously differentiable.

• Unlike histograms, kernel estimates do not depend on the
choice of origin.

• Usually kernels are positive to assure that f̂h(x) is a density.
There are reasons to consider negative kernels but then f̂h(x)
may be sometimes negative.

We next consider the bias of the kernel estimate:

Bias[ f̂h(x)] = E[ f̂h(x)] − f (x)

=

∫
K(s) f (x + sh)ds − f (x)

=

∫
K(s)[ f (x) + sh f ′(x) +

h2s2

2
f ′′(x)

+ o(h2)]ds − f (x)

=
h2

2
f ′′(x)k2 + o(h2), h→ 0.

For the proof see Ref. 53. We see that the bias is quadratic in
h. Hence we must choose h small to reduce the bias. Similarly
the variance for the kernel estimate can be written as

var( f̂h(x)) = n−2var
( n∑

i=1

Kh(x − Xi)
)

= n−1var[Kh(x − X)]

= (nh)−1 f (x)
∫

K2 + o((nh)−1), nh→ ∞.

Similar to the histogram case, we observe a bias-variance
tradeoff. The variance is nearly proportional to (nh)−1, which
requires choosing h large for minimizing variance. However,

this contradicts with the aim of decreasing bias by choosing
small h. From a smoothing perspective, smaller bandwidth
results in under-smoothing and larger bandwidth results in
over-smoothing. From the illustration in Figure 2, we see that
when the bandwidth is too small (left) the kernel estimator
under-smoothes the true density and when the bandwidth is
large (right) the kernel estimator over-smoothes the underly-
ing density. Therefore we consider MISE or MSE of h as a
compromise.

MS E[ f̂h(x)] =
1

nh
f (x)

∫
K2 +

h4

4
( f ′′(x)k2)2 + o((nh)−1)

+ o(h4), h→ 0, nh→ ∞.

Note that MS E[ f̂h(x)] converges to zero, if h → 0 and
nh → ∞. Thus the kernel density estimate is consistent, that
is f̂h(x)

p
−→ f (x). On the whole, the variance term in MSE

penalizes under smoothing and the bias term penalizes over
smoothing.
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Fig. 2. Kernel densities with three bandwidth choices (0.1, 0.5, and 1)
for a sample from an exponential distribution.

Further, the asymptotic optimal bandwidth can be ob-
tained by differentiating MSE with respect to h and equating
it to zero:

h0 =

( ∫
K2

( f ′′(x))2k2
2n

)1/5
.

It can be further verified that if we substitute this bandwidth
in the MISE formula then

MIS E( f̂h0 ) =
5
4

( ∫
K2

)4/5
k2/5

2

( ∫
f ′′(x)2

)1/5
n−4/5

=
5
4

C(K)
( ∫

f ′′(x)2
)1/5

n−4/5,where

C(K) =
( ∫

K2
)4/5

k2/5
2 .

From the above formula it can be observed that we should
choose a kernel K with a small value of C(K), when all
other things are equal. The problem of minimizing C(K) can
be reduced to that of minimizing

∫
K2 by allowing suitable

rescaled version of kernels. In a different context, Ref. 38
showed that this problem can be solved by setting K to be
a Epanechnikov kernel17 (see Table 1.2).
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We define the efficiency of any symmetric kernel K by
comparing it to the Epanechnikov kernel:

e f f (K) = C(Ke)/C(K)5/4

=
3

5
√

5
k−1/2

2

∫
K2
−1

.

The reason for the power 5/4 in the above equation is that
for large n, the MISE will be the same as whether we use n
observations with kernel K or neff(K) observations and the
kernel Ke

72. Some kernels and their efficiencies are given in
the Table 1.2.

Table 1. Definitions of some kernels and their efficiencies.

Kernel K(t) Efficiency

Rectangular

 1
2 for|t| ≤ 1,
0 otherwise.

0.9295

Epanechnikov

 3
4 (1 − 1

5 t2)/
√

5 for |t| ≤ 5,
0 otherwise.

1

Biweight

 15
16 (1 − t2)2 for |t| ≤ 1,
0 otherwise.

0.9939

Triweight

 35
32 (1 − t2)3 for |t| ≤ 1,
0 otherwise.

0.987

Triangular

1 − |t| for |t| ≤ 1,
0 otherwise.

0.9859

Gaussian 1√
2π

e−(1/2)t2 0.9512

The top four kernels are particular cases of the following
family:

K(x; p) = {22p+1B(p + 1, p + 1}−1(1 − x2)pI{|x|<1},

where B(·, ·) is the beta function. These kernels are symmetric
beta densities on the interval [−1, 1]. For p = 0 the expression
gives rise to a rectangular density, p = 1 to Epanechnikov, and
p = 2 and p = 3 are bivariate and trivariate kernels, respec-
tively. The standard normal density is obtained as the limiting
case p→ ∞.

Similar to the histogram scenario, the problem of choos-
ing the bandwidth (smoothing parameter) is of crucial im-
portance to density estimation. A natural method for choos-
ing the bandwidth is to plot several curves and choose the
estimate that is most desirable. For many applications this
approach is satisfactory. However, there is a need for data-
driven and automatic procedures that are practical and have
fast convergence rates. The problem of bandwidth selection
has stimulated much research in kernel density estimation.
The main approaches include cross-validation and “plug-in”
methods (see the review paper by Ref. 39).

As an example, consider least squares cross validation,
which was suggested by Ref. 58 and 3 - see also Ref. 4,32

and 69. Given any estimator f̂ of a density f , the integrated
squared error can be written as∫

( f̂ − f )2 =

∫
f̂ 2 − 2

∫
f̂ f +

∫
f 2.

Since the last term (
∫

f 2) does not involve f ′, the updated
quantity R( f̂ ) of the above equation, is

R( f̂ ) =

∫
f̂ 2 − 2

∫
f̂ f .

The basic principle of least squares cross validation is to con-
struct an estimate of R( f̂ ) from the data themselves and then
to minimize this estimate over h to give the choice of window
width. The term

∫
f̂ 2 can be found from the estimate f̂ . Fur-

ther, if we define f̂−i as the density estimate constructed from
all the data points except Xi, then

∫
f̂ f can be computed using

f̂−i(x) = (n − 1)−1h−1
∑
j,i

Kh−1(x − X j).

Now we define the required quantity without any unknown
terms f , as

M0(h) =

∫
f̂ 2 − 2n−1

∑
i

f̂−i(Xi).

The score M0 depends only on data and the idea of least
squares cross validation is to minimize the score over h. There
also exists a computationally simple approach to estimate M0
- Ref. 69 provided the large sample properties for this es-
timator. Thus, asymptotically, least squares cross validation
achieves the best possible choice of smoothing parameter, in
the sense of minimizing the integrated squared error. For fur-
ther details see Ref. 63.

Another possible approach related to “plug-in” estima-
tors is to use a standard family of distributions as a reference
for the value

∫
f ′′(x)2dx which is the only unknown in the

optimal bandwidth formula hopt. For example, if we consider
the normal distribution with variance σ2, then∫

f ′′(x)2dx = σ−5
∫

φ′′(x)2dx =
3
8
π−1/2σ−5 ≈ 0.212σ−5.

If a Gaussian kernel is used, then the optimal bandwidth is

hopt = (4π)−1/10 3
8
π−1/2σn−1/5

=

(
4
3

)1/5

σn−1/5

= 1.06σn−1/5.

A quick way of choosing the bandwidth is therefore esti-
mating σ from the data and substituting it in the above for-
mula. While this works well if the normal distribution is a
reasonable approximation, it may oversmooth if the popula-
tion is multimodal. Better results can be obtained using a ro-
bust measure of spread such as the interquartile (R) range,
which in this example yields hopt = 0.79Rn−1/5. Similarly,
one can improve this further by taking the minimum of the
standard deviation and the interquartile range divided by 1.34.
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For most applications these bandwidths are easy to evaluate
and serve as a good starting value.

Although the underlying idea is very simple and the first
paper was published long ago, the kernel approach did not
make much progress until recently, with advances in comput-
ing power. At present, without an efficient algorithm, the cal-
culation of a kernel density for moderately large datasets can
become prohibitive. The direct use of the above formulas for
computations is very inefficient. Researchers developed fast
and efficient Fourier transformation methods to calculate the
estimate using the fact that the kernel estimate can be written
as a convolution of data and the kernel function 43.

2. Kernel Smoothing

The problem of smoothing sequences of observations is im-
portant in many branches of science and it is demonstrated by
the number of different fields in which smoothing methods
have been applied. Early contributions were made in fields
as diverse as astronomy, actuarial science, and economics.
Despite their long history, local regression methods have re-
ceived little attention in the statistics literature until the late
1970s. Initial work includes the mathematical development of
Refs. 67, 40 and 68, and the LOWESS procedure of Ref. 9.
Recent work on local regression includes Refs. 19, 20 and 36.

The local linear regression method was developed
largely as an extension of parametric regression methods and
accompanied by an elegant finite sample theory of linear esti-
mation methods that build on theoretical results for paramet-
ric regression. It is a method for curve estimation by fitting
locally weighted least squares regression. One extension of
local linear regression, called local polynomial regression, is
discussed in 59 and in the monograph by Ref. 21.

Assume that (X1,Y1), . . . , (Xn,Yn) are iid observations
with conditional mean and conditional variance denoted re-
spectively by

m(x) = E(Y |X = x) and σ2(x) = Var(Y |X = x). (8)

Many important applications involve estimation of the regres-
sion function m(x) or its νth derivative m(ν)(x). The perfor-
mance of an estimator m̂ν(x) of m(ν)(x) is assessed via its MSE
or MISE defined in previous sections. While the MSE crite-
rion is used when the main objective is to estimate the func-
tion at the point x, MISE criterion is used when the main goal
is to recover the whole curve.

2.1. Nadaraya-Watson Estimator

If we do not assume a specific form for the regression func-
tion m(x), then a data point remote from x carries little infor-
mation about the value of m(x). In such a case, an intuitive
estimator of the conditional mean function is the running lo-
cally weighted average. If we consider a kernel K with band-
width h as the weight function, the Nadaraya-Watson kernel

regression estimator is given by

m̂h(x) =

∑n
i=1 Kh(Xi − x)Yi∑n

i=1 Kh(Xi − x)
, (9)

where Kh(·) = K(·/h)/h. For more details see Refs. 50,80 and
33.

2.2. Gasser-Müller Estimator

Assume that the data have already been sorted according to
the X variable. Ref. 24 proposed the following estimator:

m̂h(x) =

n∑
i=1

∫ si

si−1

Kh(u − x)duYi, (10)

with si = (Xi + Xi+1)/2, X0 = −∞ and Xn+1 = +∞.
The weights in equation (10) add up to 1, so there is no
need for a denominator as in the Nadaraya-Watson estima-
tor. Although it was originally developed for equispaced de-
signs, the Gasser-Müller estimator can also be used for non-
equispaced designs. For the asymptotic properties please re-
fer to Refs. 44 and 8.

2.3. Local Linear Estimator

This estimator assumes that locally the regression function m
can be approximated by

m(z) ≈
p∑

j=0

m( j)(x)
j!

(z − x) j ≡

p∑
j=0

β j(z − x) j, (11)

for z in a neighborhood of x, by using a Taylor’s expansion.
Using a local least squares formulation, the model coefficients
can be estimated by minimizing the following function:

n∑
i=1

Yi −

p∑
j=0

β j(Xi − x) j}2Kh(Xi − x)

 , (12)

where K(·) is a kernel function with bandwidth h. If we let β̂ j

( j = 0, · · · , p) be equal to the estimates obtained from min-
imizing equation (12), then the estimator for the regression
functions are obtained as

m̂v(x) = v!β̂v. (13)

When p = 1 the estimator m̂0(x) is termed a local linear
smoother or local linear estimator with the following explicit
expression:

m̂0(x) =

∑n
1 wiYi∑n

1 wi
,wi = Kh(Xi − x){S n,2 − (Xi − x)S n,1}.

(14)

where S n, j =
∑n

1 Kh(Xi − x)(Xi − x) j. When p = 0, the local
linear estimator is equals to the Nadaraya-Watson estimator.
Also, both Nadaraya-Watson and Gasser-Müller estimators
are of the type of local least squares estimator with weights
wi = Kh(Xi − x) and wi =

∫ si

si−1 Kh(u − x)du, respectively. The
asymptotic results are provided in Table 2.3, which is taken
from Ref. 19.
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Table 2. Comparison of asymptotic properties of local es-
timators.

Method Bias Variance

Nadaraya-Watson (m′′(x) +
2m′(x) f ′(x)

f (x) )bn Vn

Gasser-Müller m′′(x)bn 1.5Vn
Local linear m′′(x)bn Vn

Note: Here, bn = 1
2

∫ ∞
−∞

u2K(u)duh2 and Vn =

σ2(x)
f (x)nh

∫ ∞
−∞

K2(u)du.

To illustrate both Nadaraya-Watson and local linear fit
on data, we considered an example of a dataset on trees2; 60.
This dataset includes measurements of the girth, height, and
volume of timber in 31 felled back cherry trees. The smooth
fit results are described in Figure 3. The fit results are pro-
duced using the KernSmooth79 package in R-Software73. In
the right panel of Figure 3, we see that for a larger band-
width, as expected, Nadaraya-Watson fits a global constant
model while the local linear fits a linear model. Further, from
the left panel, where we used a reasonable bandwidth, the
Nadara-Watson estimator has more bias than the local linear
fit.
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Fig. 3. Comparison of local linear fit versus Nadaraya-Watson fit for a
model of (log) volume as a function of (log) girth, with choice of two
bandwidths: 0.1 (left) and 0.5 (right).

In comparison with the local linear fit, the Nadaraya-
Watson estimator locally uses one parameter less without re-
ducing the asymptotic variance. It suffers from large bias, par-
ticularly in the region where the derivative of the regression
function or design density is large. Also it does not adapt
to non uniform designs. In addition, it was shown that the
Nadaraya-Watson estimator has zero minimax efficiency - for
details see Ref. 19. Based on the definition of minimax effi-
ciency, a 90% efficient estimator uses only 90% of the data.
Which means that the Nadaraya-Watson does not use all the
available data. In contrast, the Gasser-Müller estimator cor-
rects the bias of the Nadaraya-Watson estimator but at the
expense of increasing variability for for random designs. Fur-
ther, both the Nadaraya-Watson and Gasser-Müller estima-
tor have a large order of bias when estimating a curve at the
boundary region. Comparisons between local linear and local

constant (Nadaraya-Watson) fit were discussed in detail by
Refs. 8, 19 and 36.

2.4. Computational Considerations

Recent proposals for fast implementations of nonparametric
curve estimators include the binning methods and the updat-
ing methods. Ref. 22 gave careful speed comparisons of these
two fast implementations and direct naive implementations
under a variety of settings and using various machines and
software. Both fast methods turned out to be much faster with
negligible differences in accuracy.

While the key idea of the binning method is to bin the
data and compute the required quantities based on the binned
data, the key idea of the updating method involves updating
the quantities previously computed. It has been reported that
for practical purposes neither method dominates the other.

3. Smoothing Using Splines

Similar to local linear estimators, another family of methods
that provide flexible data modeling is spline methods. These
methods involve fitting piecewise polynomials or splines to
allow the regression function to have discontinuities at cer-
tain locations which are called “knots” 18; 78; 30.

3.1. Polynomial Spline

Suppose that we want to approximate the unknown regres-
sion function m by a cubic spline function, that is, a piece-
wise polynomial with continuous first two derivatives. Let
t1, · · · , tJ be a fixed knot sequence such that −∞ < t1 < · · · <
tJ < +∞. Then the cubic spline functions are twice continu-
ously differentiable functions s such that restrictions of s to
each of the intervals (−∞, t1], [t1, t2], · · · , [tJ−1, tJ], [tJ ,+∞) is
a cubic polynomial. The collection of all these cubic spline
functions forms a (J + 4)-dimensional linear space. There ex-
ist two popular cubic spline bases for this linear space:

Power basis: 1, x, x2, x3, (x − t j)3
+, ( j = 1, · · · , J)

B-spline basis: The ith B-spline of degree p = 3, written as
Ni,p(u), is defined recursively as:

Ni,0(u) =

1 ifui ≤ u ≤ ui=1

0 otherwise.

Ni,p(u) =
u − ui

ui+p − ui
Ni, p − 1(u) +

ui+p+1 − u
ui+p+1 − ui + 1

Ni+1,p−1(u).

The above is usually referred to as the Cox-de Boor recursion
formula.

The B-spline basis is typically numerically more stable be-
cause the multiple correlation among the basis functions is
smaller, but the power spline basis has the advantage that it
provides easier interpretation of the knots so as deleting a par-
ticular basis function is same as deleting that particular knot.
The direct estimation of the regression function m depends on
the choice of knot locations and the number of knots. There
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exist some methods based on the knot-deletion idea. For full
details please see Refs. 41 and 42.

3.2. Smoothing Spline

Consider the following objective function
n∑

i=1

{Yi − m(Xi)}2. (15)

Minimizing this function gives the best possible estimate for
the unknown regression function. The major problem with
the above objective function is that any function m that inter-
polates the data satisfies it, thereby leading to overfitting. To
avoid this, a penalty for the overparametrization is imposed
on the function. A convenient way for introducing such a
penalty is via the roughness penalty approach. The following
function is minimized:

n∑
i=1

{Yi − m(Xi)}2 + λ

∫
{m”(x)}2dx, (16)

where λ > 0 is a smoothing parameter. The first term penal-
izes the lack of fit, which is in some sense modeling bias. The
second term denotes the roughness penalty which is related to
overparameterization. It is evident that λ = 0 yields interpola-
tion and λ = ∞ yields linear regression-typical oversmooth-
ing and undersmoothing types. Hence, the estimate obtained
from the objective function m̂λ, which also depends on the
smoothing parameter, is called the smoothing spline estima-
tor. For local properties of the this estimator, please refer to
Ref. 51.

It is well known that the solution to the minimization
of (16) is a cubic spline on the interval [X(1), X(n)] and it is
unique in this data range. Moreover, the estimator is a linear
smoother with weights that do not depend on the response
{Yi}

33. The connections between kernel regression, which we
discussed in the previous section, and smoothing splines have
been critically studied by Refs. 62 and 64.

The smoothing parameter λ can be chosen by minimiz-
ing the cross-validation (CV) 71; 1 or generalized cross val-
idation (GCV) 77; 11 criteria. Both quantities are consistent
estimates of the MISE of m̂λ. For other methods and details
please see Ref. 78. Further, for computational issues please
refer to Refs. 78 and 18.

4. Additive Models

While the smoothing methods discussed in the previous sec-
tion are mostly univariate, the additive model is a widely used
multivariate smoothing technique. An additive model is de-
fined as

Y = α +

p∑
j=1

f j(X j) + ε, (17)

where the errors ε are independent of the X js and have mean
E(ε) = 0 and variance var(ε) = σ2. The f j are arbitrary uni-
variate functions, one for each predictor. Since each variable

is represented separately, the model retains the interpretative
ease of a linear model.

The most general method for estimating additive models
allows us to estimate each function by an arbitrary smoother.
Some possible candidates are smoothing splines and kernel
smoothers. The backfitting algorithm is a general purpose al-
gorithm that enables one to fit additive models with any kind
of smoothing functions although for specific smoothing func-
tions such as smoothing splines or penalized splines there ex-
ist separate estimation methods based on least squares. The
backfitting algorithm is an iterative algorithm and consists of
the following steps:

(i) Initialize: α = ave(yi), f j = f 0
j , j = 1, . . . , p

(ii) Cycle: for j = 1, . . . , p repeat f j = S j

(
y − α −

∑
k, j fk |x j

)
.

(iii) Continue (ii) until the individual functions do not change

where S j(y|x j) denotes a smooth of the response y against the
predictor x j. The motivation for the backfitting algorithm can
be understood using conditional expectation. If the additive
model is correct then for any k, E

(
Y − α −

∑
j,k f j(X j)|Xk

)
=

fk(Xk). This suggests the appropriateness of the backfitting
algorithm for computing all the f j.

Ref. 70 showed in the context of regression splines -
OLS estimation of spline models- that the additive model has
the desirable property of reducing a full p-dimensional non-
parametric regression problem to one that can be fitted with
the same asymptotic efficiency as a univariate problem. Due
to lack of explicit expressions, the earlier research by Ref. 5
studied only the bivariate additive model in detail and showed
that both the convergence of the algorithm and uniqueness of
its solution depend on the behavior of the product of the two
smoothers matrices. Later, Refs. 52 and 45 extended the con-
vergence theory to p-dimensions. For more details, please see
Refs. 5, 45 and 52.

We can write all the estimating equations in a compact
form: 

I S 1 S 1 · · · S 1
S 2 I S 2 · · · S 2
...

...
...

. . .
...

S p S p S p · · · I




f1
f2
...
fp

 =


S 1y
S 2y
...

S py


P̂ f = Q̂y.

Backfitting is a Gauss-Seidel procedure for solving the above
system. While one could directly use QR decomposition
without any iterations to solve the entire system, the compu-
tational complexity prohibits doing so. The difficulty is that
QR require O{(np)3} operations while the backfitting involves
only O(np) operations, which is much cheaper. For more de-
tails see Ref. 37.

We return to the trees dataset that we considered in
the last section, and fit an additive model with both height
and girth as predictors to model volume. The fitted model is
log(Volume) ∼ log(Height) + log(Girth). We used the gam35

package in R-software. The fitted functions are shown in Fig-
ure 4.
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Fig. 4. Estimated functions for girth (left) and height (right) using
smoothing splines.

The backfitting method is very generic in the sense that
it can handle any type of smoothing function. However, there
exists another method specific to penalized splines, which has
become quite popular. This method uses penalized splines by
estimating the model using penalized regression methods. In
equation (16), because m is linear in parameters β, the penalty
can always be written as a quadratic form in β:∫

{m”(x)}2dx = βT S β,

where S is the matrix of known coefficients. Therefore the
penalized regression spline fitting problem is to minimize

||y − Xβ||2 + λβT S β, (18)

w.r.t β. It is straightforward to see that the solution is least
squares type of estimator and depends on the smoothing pa-
rameter λ:

β̂ = (XT X + λS )−1XT y. (19)

Penalized likelihood maximization can only estimate model
coefficients β given the smoothing parameter λ. There exist
two basic useful estimation approaches: when the scale pa-
rameter in the model is known, one can use Mallow’s Cp cri-
terion; when the scale parameter is unknown, one can use
GCV. Furthermore, for models such as generalized linear
models which are estimated iteratively, numerically there ex-
ist two different ways of estimating the smoothing parameter:

Outer iteration: The score can be minimized directly. This
means that the penalized regression must be evaluated for
each trial set of smoothing parameters
Performance iteration: The score can be minimized and the
smoothing parameter selected for each working penalized lin-
ear model. This method is computationally efficient.

Performance iteration was originally proposed by Ref. 31. It
usually converges, and requires only a reliable and efficient
method for score minimization. However, it also has some
issues related to convergence. In contrast, the outer method
suffers from none of the disadvantages that performance it-
eration has but it is more computationally costly. For more
details, please see Ref. 81.

The recent work by Ref. 83 showcases the successful
application of additive models on large datasets and uses per-
formance iteration with block QR updating. This indicates the
feasibility of applying these computationally intensive and
useful models for big data. The routines are available in the
R-package mgcv82.

5. Markov Chain and Monte Carlo

The Markov Chain Monte Carlo (MCMC) methodology pro-
vides enormous scope for realistic and complex statisti-
cal modeling. The idea is to perform Monte Carlo integra-
tion using Markov chains. Bayesian statisticians, and some-
times also frequentists, need to integrate over possibly high-
dimensional probability distributions to draw inference about
model parameters or to generate predictions. For a brief his-
tory and overview please refer to Refs. 28 and 29.

5.1. Markov chains

Consider a sequence of random variables, {X0, X1, X2, . . .},
such that at each time t ≥ 0, the next state Xt+1 is sam-
pled from a conditional distribution P(Xt+1|Xt), which de-
pends only on the current state of the chain Xt. That is, given
the current state Xt, the next state Xt+1 does not depend on
the past states - this is called the memory-less property. This
sequence is called a Markov chain.

The joint distribution of a Markov chain is determined
by two components:

The marginal distribution of X0 , called the initial distribu-
tion
The conditional density p(·|·) , called the transitional kernel
of the chain.

It is assumed that the chain is time-homogeneous, which
means that the probability P(·|·) does not depend on time t.
The set in which Xt takes values is called the state space of
the Markov chain and it can be countably finite or infinite.

Under some regularity conditions, the chain will gradu-
ally forget its initial state and converge to a unique stationary
(invariant) distribution, say π(·), which does not depend on
t and X0. To converge to a stationary distribution, the chain
needs to satisfy three important properties. First, it has to irre-
ducible, which means that from all starting points the Markov
chain can reach any non empty set with positive probability in
some iterations. Second, the chain needs to aperiodic, which
means that it should not oscillate between any two points in a
periodic manner. Third, the chain must be positive recurrent
as defined next.

Definition 1 (Ref. 49).
(i) Markov chain X is called irreducible if for all i, j, there
exists t > 0 such that Pi, j(t) = P[Xt = j|X0 = i] > 0.

(ii) Let τii be the time of the first return to state i, (τii =

min{t > 0 : Xt = i|X0 = i}). An irreducible chain X is recur-
rent if P[τii < ∞] = 1 for some i. Otherwise . X is transient.
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Another equivalent condition for recurrence is∑
t

Pi j(t) = ∞,

for all i, j.

(iii) An irreducible recurrent chain X is called positive re-
current if E[τii] < ∞ for some i. Otherwise, it is called null-
recurrent. Another equivalent condition for positive recur-
rence is the existence of a stationary probability distribution
for X, that is there exists π(·) such that∑

i

π(i)Pi j(t) = π( j) (20)

for all j and t ≥ 0.

(iv) An irreducible chain X is called a periodic if for some i,
greatest common divider {t > 0 : Pii(t) > 0} = 1.

In MCMC, since we already have a target distribution π(·),
then X will be positive recurrent if we can demonstrate irre-
ducibility.

After a sufficiently long burn-in of, say, m iterations,
points {Xt; t = m + 1, . . . , n} will be the dependent sample
approximately from π(·). We can now use the output from
the Markov chain to estimate the required quantities. For ex-
ample, we estimate E[ f (X)], where X has distribution π(·) as
follows:

f̄ =
1

n − m

n∑
t=m+1

f (Xt)

This quantity is called an ergodic average and its conver-
gence to the required expectation is ensured by the ergodic
theorem56; 49.

Theorem 2. If X is positive recurrent and aperiodic then its
stationary distribution π(·) is the unique probability distribu-
tion satisfying equation (20). We then say that X is ergodic
and the following consequences hold:

(i) Pi j(t)→ π( j) as t → ∞ for all i, j.
(ii) (Ergodic theorem) If E[| f (X)|] < ∞, then

P
(

f̄ → E[ f (X)]
)

= 1,

where E[ f (X)] =
∑

i f (i)π(i), the expectation of f (X) with
respect to π(·).

Most of the Markov chains procedures in MCMC are re-
versible which means that they are positive recurrent with
stationary distribution π(·), and π(i)Pi j = π( j)P ji.

Further, we say that X is geometrically ergodic, if it is
ergodic (positive recurrent and aperiodic) and there exists
0 ≤ λ < 1 and a function V(·) > 1 such that∑

j

|Pi j(t) − π( j)| ≤ V(i)λt, (21)

for all i. The smallest λ for which there exists a function sat-
isfying the above equation is called the rate of convergence.

As a consequence to the geometric convergence, the central
limit theorem can be used for ergodic averages, that is

N1/2( f̄ − E[ f (X)])→ N(0, σ2),

for some positive constant σ, as N → ∞, with the conver-
gence in distribution. For an extensive treatment of geometric
convergence and central limit theorems for Markov chains,
please refer to Ref. 48.

5.2. The Gibbs sampler and Metropolis-Hastings
algorithm

Many MCMC algorithms are hybrids or generalizations of the
two simplest methods: the Gibbs sampler and the Metropolis-
Hastings algorithm. We therefore describe each of these two
methods next.

5.2.1. Gibbs Sampler

The Gibbs sampler enjoyed an initial surge of popularity
starting with the paper of Ref. 27 (in a study of image pro-
cessing models), while the roots of this method can be traced
back to Ref. 47. The Gibbs sampler is a technique for indi-
rectly generating random variables from a (marginal) distri-
bution, without calculating the joint density. With the help of
techniques like these we are able to avoid difficult calcula-
tions, replacing them with a sequence of easier calculations.

Let π(x) = π(x1, . . . , xk), x ∈ Rn denote a joint den-
sity, and let π(xi|x−i) denote the induced full conditional den-
sities for each of the components xi, given values of other
components x−i = (x j; j , i), i = 1, . . . , k, 1 < k ≤ n.
Now the Gibbs sampler proceeds as follows. First, choose
arbitrary starting values x0 = (x0

1, . . . , x
0
k). Then successively

make random drawings from the full conditional distributions
π(xi|x−i), i = 1, . . . , k as follows 66:

x1
1 from π(x1|x0

−1),
x1

2 from π(x2|x1
1, x

0
3, . . . , x

0
k),

x1
3 from π(x3|x1

1, x
1
2, x

0
4, . . . , x

0
k),

...
x1

k from π(xk |x1
−k).

This completes a transition from x0 = (x0
1, . . . , x

0
k) to x1 =

(x1
1, . . . , x

1
k). Each complete cycle through the conditional dis-

tributions produces a sequence x0, x1, . . . , xt, . . . which is a
realization of the Markov chain, with transition probability
from xt to xt+1 given by

T P(xt, xt+1) = Πk
l=1π(xt+1

l |x
t
j, j > l, xt+1

j , j < l). (22)

Thus the key feature of this algorithm is to only sample from
the full conditional distributions which are often easier to
evaluate rather than the joint density. For more details see
Ref. 6.
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5.2.2. Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm was developed by
Ref. 47. This algorithm is extremely versatile and produces
the Gibbs sampler as a special case25.

To construct a Markov chain X1, X2, . . . , Xt, . . .with state
space χ and equilibrium distribution π(x), the Metropolis-
Hastings algorithm constructs the transition probability from
Xt = x to the next realized state Xt+1 as follows. Let q(x, x′)
denote a candidate generating density such that Xt = x, x′

drawn from q(x, x′) is considered as a proposed possible value
for Xt+1. With some probability α(x, x′), we accept Xt+1 = x′;
otherwise, we reject the value generated from q(x, x′) and set
Xt+1 = x. This construction defines a Markov chain with tran-
sition probabilities given as

p(x, x′) =

q(x, x′)α(x, x′) ifx′ , x
1 −

∑
x′′ q(x, x′′)α(x, x′′) ifx′ = x.

Next, we choose

α(x, x′) =

min{ π(x′)q(x′,x)
π(x)q(x,x′) , 1} ifπ(x)q(x, x′) > 0,

1 ifπ(x)q(x, x′) = 0.

The choice of the arbitrary q(x, x′) to be irreducible and ape-
riodic is a sufficient condition for π(x) to be the equilibrium
distribution of the constructed chain.

It can be observed that different choices of q(x, x′) will
lead to different specific algorithms. For q(x, x′) = q(x′, x),
we have α(x, x′) = min{π(x′)/π(x), 1}, which is the well-
known Metropolis algorithm47. For q(x, x′) = q(x′ − x), the
chain is driven by a random walk process. For more choices
and their consequences please refer to Ref. 74. Similarly for
applications of the M-H algorithm and for more details see
Ref. 7.

5.3. MCMC Issues

There is a great deal of theory about the convergence proper-
ties of MCMC. However, it has not been found to be very use-
ful in practice for determining the convergence information.
A critical issue for users of MCMC is how to determine when
to stop the algorithm. Sometimes a Markov chain can appear
to have converged to the equilibrium distribution when it has
not. This can happen due to the prolonged transition times
between state space or due to the multimodality nature of
the equilibrium distribution. This phenomenon is often called
pseudo convergence or multimodality.

The phenomenon of pseudo convergence has led many
MCMC users to embrace the idea of comparing multiple runs
of the sampler started at multiple points instead of the usual
single run. It is believed that if the multiple runs converge
to the same equilibrium distribution then everything is fine
with the chain. However, this approach does not alleviate all
the problems. Many times running multiple chains leads to
avoiding running the sampler long enough to detect if there
are any problems, such as bugs in the code, etc. Those who

have used MCMC in complicated problems are probably fa-
miliar with stories about last minute problems after running
the chain for several weeks. In the following we describe the
two popular MCMC diagnostic methods.

Ref. 26 proposed a convergence diagnostic method
which commonly known as ”Gelman-Rubin” diagnostic
method. It consists of the following two steps. First, obtain an
an overdispersed estimate of the target distribution and from
it generate the starting points for the desired number of in-
dependent chains (say 10). Second, run the Gibbs sampler
and re-estimate the target distribution of the required scalar
quantity as a conservative Student t distribution, the scale pa-
rameter of which involves both the between-chain variance
and within-chain variance. Now the convergence is monitored
by estimating the factor by which the scale parameter might
shrink if sampling were continued indefinitely, namely√

R̂ =

√(n − 1
n

+
m + 1

mn
B
W

) d f
d f − 2

,

where B is the variance between the means from the m paral-
lel chains, W is the within-chain variances, d f is the degrees
of freedom of the approximating density, and n is number
of observations that are used to reestimate the target density.
The authors recommend an iterative process of running addi-
tional iterations of the parallel chains and redoing step 2 until
the shrink factors for all the quantities of interest are near 1.
Though created for the Gibbs sampler, the method by Ref. 26
may be applied to the output of any MCMC algorithm. It em-
phasizes the reduction of bias in estimation. There also exist
a number of criticisms for the Ref. 26 method. It relies heav-
ily on the user’s ability to find a starting distribution which is
highly overdispersed with the target distribution. This means
that the user should have some prior knowledge on the target
distribution. Although the approach is essentially univariate
the authors suggested using -2 times log posterior density as
a way of summarizing the convergence of a joint density.

Similarly, Ref. 55 proposed a diagnostic method which
is intended both to detect convergence to the stationary dis-
tribution and to provide a way of bounding the variance es-
timates of the quantiles of functions of parameters. The user
must first run a single chain Gibbs sampler with the mini-
mum number of iterations that would be needed to obtain the
desired precision of estimation if the samples were indepen-
dent. The approach is based on the two-state Markov chain
theory, as well as the standard sample size formulas that in-
volves formulas of binomial variance. For more details please
refer to Ref. 55. Critics point out that the method can produce
variable estimates of the required number of iterations needed
given different initial chains for the same problem and that it
is univariate rather than giving information about the full joint
posterior distribution.

There are more methods available to provide the con-
vergence diagnostics for MCMC although not as popular as
these. For a discussion about other methods refer to Ref. 10.

Continuing our illustrations using the trees data, we fit
the same model that we used in section 4 using MCMC meth-
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ods. We used the MCMCpack46 package in R. For the sake
of illustration, we considered 3 chains and 600 observations
per chain. Among 600 only 100 observations are considered
for the burnin. The summary results are described as follows.

Iterations = 101:600

Thinning interval = 1

Number of chains = 3

Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) -6.640053 0.837601 2.163e-02 2.147e-02

log(Girth) 1.983349 0.078237 2.020e-03 2.017e-03

log(Height) 1.118669 0.213692 5.518e-03 5.512e-03

sigma2 0.007139 0.002037 5.259e-05 6.265e-05

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) -8.307100 -7.185067 -6.643978 -6.084797 -4.96591

log(Girth) 1.832276 1.929704 1.986649 2.036207 2.13400

log(Height) 0.681964 0.981868 1.116321 1.256287 1.53511

sigma2 0.004133 0.005643 0.006824 0.008352 0.01161

Further, the trace plots for the each parameter are dis-
played in Figure 5. From the plots it can be observed that the
chains are very mixed which gives an indication of conver-
gence of MCMC.

100 200 300 400 500 600

−
9

−
6

Iterations

Trace of (Intercept)

−10 −9 −8 −7 −6 −5 −4 −3

0
.0

0
.3

Density of (Intercept)

N = 500   Bandwidth = 0.2016

100 200 300 400 500 600

1
.8

2
.1

Iterations

Trace of log(Girth)

1.7 1.8 1.9 2.0 2.1 2.2 2.3

0
2

4

Density of log(Girth)

N = 500   Bandwidth = 0.01921

100 200 300 400 500 600

0
.4

1
.2

Iterations

Trace of log(Height)

0.5 1.0 1.5

0
.0

1
.0

2
.0

Density of log(Height)

N = 500   Bandwidth = 0.05028

100 200 300 400 500 600

0
.0

0
5

0
.0

2
0

Iterations

Trace of sigma2

0.005 0.010 0.015 0.020

0
1

0
0

Density of sigma2

N = 500   Bandwidth = 0.0004963

Fig. 5. MCMC trace plots with 3 chains for each parameter in the esti-
mated model.

Since, we used 3 chains, we can use the Gelman-
Rubin convergence diagnostic method and check whether the
shrinkage factor is close to 1 or not, which indicates the con-
vergence of 3 chains to the same equilibrium distribution. The
results are shown in Figure 6. From the plots we see that for
all the parameters the shrink factor and its 97.5% value are
very close to 1, which confirms that the 3 chains converged to
the same equilibrium distribution.
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Fig. 6. Gelman-Rubin diagnostics for each model parameter, using the
results from 3 chains.

6. Resampling Methods

Resampling methods are statistical procedures that involves
repeated sampling of the data. They replace theoretical
derivations required for applying traditional methods in statis-
tical analysis by repeatedly resampling the original data and
making inference from the resamples. Due to the advances
in computing power these methods have become prominent
and particularly well appreciated by applied statisticians. The
jacknife and bootstrap are the most popular data-resampling
methods used in statistical analysis. For a comprehensive
treatment of these methods see Refs. 14 and 61. In the fol-
lowing, we describe the Jackknife and bootstrap methods.

6.1. The Jackknife

Quenouille54 introduced a method, later named the jack-
knife, to estimate the bias of an estimator by deleting one
data point each time from the original dataset and recalcu-
lating the estimator based on the rest of the data. Let Tn =

Tn(X1, . . . , Xn) be an estimator of an unknown parameter θ.
The bias of Tn is defined as

bias(Tn) = E(Tn) − θ.

Let Tn−1,i = Tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn) be the
given statistic but based on n − 1 observations
X1, . . . , Xi−1, Xi+1, . . . , Xn, i = 1, . . . , n. Quenouille’s jack-
knife bias estimator is

bJACK = (n − 1)(T̃n − Tn), (23)

where T̃n = n−1 ∑n
i=1 Tn−1,i. This leads to a bias reduced jack-

knife estimator of θ,

TJACK = Tn − bJACK = nTn − (n − 1)T̃n. (24)

The jackknife estimators bJACK and TJACK can be heuristi-
cally justified as follows. Suppose that

bias(Tn) =
a
n

+
b
n2 + O

(
1
n3

)
, (25)

where a and b are unknown but do not depend on n. Since
Tn−1,i, i = 1, . . . , n, are identically distributed,

bias(Tn−1,i) =
a

n − 1
+

b
(n − 1)2 + O

(
1

(n − 1)3

)
, (26)

and bias(T̃n) has the same expression. Therefore,

E(bJACK) = (n − 1)[bias(T̃n) − bias(Tn)]

= (n − 1)
[
(

1
n − 1

−
1
n

)a + (
1

(n − 1)2 −
1
n2 )b + O

(
1
n3

) ]
=

a
n

+
(2n − 1)b
n2(n − 1)

+ O
(

1
n2

)
,

which means that as an estimator of the bias of Tn, bJACK is
correct up to the order of n−2. It follows that

bias(TJACK) = bias(Tn) − E(bJACK) = −
b

n(n − 1)
+ O

(
1
n2

)
,

that is, the bias of TJACK is of order n−2. The jackknife pro-
duces a bias reduced estimator by removing the first order
term in bias(Tn).

The jackknife has become a more valuable tool since
Ref. 75 found that the jackknife can also be used to construct
variance estimators. It is less dependent on model assump-
tions and does not need any theoretical formula as required
by the traditional approach. Although it was prohibitive in the
old days due to its computational costs, today it is certainly a
popular tool in data analysis.

6.2. The Bootstrap

The bootstrap13 is conceptually the simplest of all resam-
pling methods. Let X1, . . . , Xn denote the dataset of n inde-
pendent and identically distributed (iid) observations from
an unknown distribution F which is estimated by F̂, and let
Tn = Tn(X1, . . . , Xn) be a given statistic. Then the variance of
Tn is

var(Tn) =

∫ [
Tn(x) −

∫
Tn(y)dΠn

i=1F(yi)
]2

dΠn
i=1F(xi),

(27)

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Substituting F̂
for F, we obtain the bootstrap variance estimator

νBOOT =

∫ [
Tn(x) −

∫
Tn(y)dΠn

i=1F̂(yi)
]2

dΠn
i=1F̂(xi)

= var∗[Tn(X∗1, . . . , X
∗
n)|X1, . . . , Xn],

where {X∗1, . . . , X
∗
n} is an iid sample from F̂ and is called a

bootstrap sample. var∗[X1, . . . , Xn] denotes the conditional
variance for the given X1, . . . , Xn. The variance cannot be
used directly for practical applications when νBOOT is not an
explicit function of X1, . . . , Xn. Monte Carlo methods can be
used to evaluate this expression when F is known. That is, we
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repeatedly draw new datasets from F and then use the sample
variance of the values Tn computed from new datasets as a
numeric approximation to var(Tn). Since F̂ is a known dis-
tribution, this idea can be further extended. That is, we can
draw {X∗1b, . . . , X

∗
nb}, b = 1 . . . , B, independently from F̂, con-

ditioned on X1, . . . , Xn. Let T ∗n,b = Tn(X1b∗, . . . , X∗nb) then we
approximate νBOOT using the following approximation:

ν(B)
BOOT =

1
B

B∑
b=1

T ∗n,b − 1
B

B∑
l=1

T ∗n,l

2

. (28)

From the law of large numbers, νBOOT = limB→∞ν
(B)
BOOT al-

most surely. Both νBOOT and its Monte Carlo approximations
ν(B)

BOOT are called bootstrap estimators. While ν(B)
BOOT is more

useful for practical applications, νBOOT is convenient for the-
oretical derivations. The distribution F̂ used to generate the
bootstrap datasets can be any estimator (parametric or non-
parametric) of F based on X1, . . . , Xn. A simple nonparamet-
ric estimator of F is the empirical distribution. While we have
considered the bootstrap variance estimator here, the boot-
strap method can be used for more general problems such as
inference for regression parameters, hypothesis testing etc,.
For further discussion of the bootstrap see Ref. 16.

Next, we consider the bias and variance of the bootstrap
estimator. Efron Ref. 13 applied the delta method to approx-
imate the bootstrap bias and variance. Let {X∗1, . . . , X

∗
n} be a

bootstrap sample from the empirical distribution Fn. Define

P∗i = (the number ofX∗j = Xi, j = 1, . . . , n)/n,

and
P∗ = (P∗1, . . . , P

∗
n)′.

Given X1, . . . , Xn, the variable nP∗ is distributed as a multi-
nomial variable with parameters n and P0 = (1, . . . , 1)′/n.
Then

E∗P∗ = P0 and var∗(P∗) = n−2(I −
1
n

11′)

where I is the identity matrix, 1 is a column vector of 1’s,
and E∗ and var∗ are the bootstrap expectation and variance,
respectively.

Now, define a bootstrap estimator of the moment of a
random variable Rn(X1, . . . , Xn, F). The properties of boot-
strap estimators enables us to substitute the population quan-
tities with the empirical quantities Rn(X∗1, . . . , X

∗
n, Fn) =

Rn(P∗). If we expand this around P0 using a multivariate Tay-
lor expansion, we get the desired approximations for the boot-
strap bias and variance:

bBOOT = E∗Rn(P∗) ≈ Rn(P0) +
1

2n2 tr(V)

νBOOT = var∗Rn(P∗) ≈
1
n2 U′U

where U = ∆Rn(P0) and V = ∆2Rn(P0).

6.3. Comparing the Jackknife and the Bootstrap

In general, the jackknife will be easier to compute if n is less
than, say, the 100 or 200 replicates used by the bootstrap for
standard error estimation. However, by looking only at the n
jackknife samples, the jackknife uses only limited informa-
tion about the statistic, which means it might be less efficient
than the bootstrap. In fact, it turns out that the jackknife can be
viewed as a linear approximation to the bootstrap14. Hence if
the statistics are linear then both estimators agree. However,
for nonlinear statistics there is a loss of information. Practi-
cally speaking, the accuracy of the jackknife estimate of stan-
dard error depends on how close the estimate is to linearity.
Also, while it is not obvious how to estimate the entire sam-
pling distribution of Tn by jackknifing, the bootstrap can be
readily used to obtain a distribution estimator for Tn.

In considering the merits or demerits of the bootstrap, it
is to be noted that the general formulas for estimating stan-
dard errors that involve the observed Fisher information ma-
trix are essentially bootstrap estimates carried out in a para-
metric framework. While the use of the Fisher information
matrix involves parametric assumptions, the bootstrap is free
of those. The data analyst is free to obtain standard errors for
enormously complicated estimators subject only to the con-
straints of computer time. In addition, if needed, one could
obtain more smoothed bootstrap estimates by convoluting
the nonparametric bootstrap with the parametric bootstrap-
a parametric bootstrap involves generating samples based on
the estimated parameters while nonparametric bootstrap in-
volves generating samples based on available data alone.

To provide a simple illustration, we again considered the
trees data and fit an ordinary regression model with the for-
mula mentioned in Section 4. To conduct a bootstrap analysis
on the regression parameters we resampled the data with re-
placement 100 times (bootstrap replications) and fit the same
model to each sample. We calculated the mean and standard
deviation for each regression coefficient, which are analogous
to OLS coefficient and standard error. We performed the same
for the jackknife estimators. The results are produced in Ta-
ble 6.3. From the results it can be seen that the jackknife is off

due to the small sample size. However, the bootstrap results
are much closer to the values from OLS.

Table 3. Comparison of the bootstrap, jackknife, and
parametric method (OLS) in a regression setting.

OLS Bootstrap Jackknife
(Intercept) −6.63 −6.65 −6.63

(0.80) (0.73) (0.15)
log(Height) 1.12 1.12 1.11

(0.20) (0.19) (0.04)
log(Girth) 1.98 1.99 1.98

(0.08) (0.07) (0.01)
Observations 31
Samples 100 31
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7. Conclusion

The area and methods of computational statistics have been
evolving rapidly. Existing statistical software such as R al-
ready have efficient routines to implement and evaluate these
methods. In addition, there exists literature on parallelizing
these methods to make them even more efficient, for e.g.,
please see Ref. 83.

While some of the existing methods are still prohibitive
even with moderately large data - such as the local linear
estimator - implementations using more resourceful environ-
ments such as servers or clouds make such methods feasible
even with big data. For an example see Ref. 84 where they
used server (32GB RAM) to estimate their proposed model
on the real data which did not take more than 34 seconds. Oth-
erwise, it would have taken more time. This will indicate the
helpfulness of the computing power while estimating these
computationally intensive methods.

To the best of our knowledge, there exist multiple algo-
rithms or R-packages to implement all the methods discussed
here. However, it should be noted that not every method is
computationally efficient. For example, Ref. 12 reported that
within R software there are 20 packages that implement den-
sity estimation. Further, they found that two packages (KernS-
mooth, ASH) are very fast, accurate and also well-maintained.
Hence the user should be wise enough to choose efficient im-
plementations when dealing with larger datasets.

Lastly, as we mentioned before, we are able to cover
only very few of the modern statistical computing methods.
For an expanded exposition of computational methods espe-
cially for inference, see Ref. 15.
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The Indian Journal of Statistics, Series A (1989), 59–72.

45Enno Mammen, Oliver Linton, J Nielsen, et al., The existence and
asymptotic properties of a backfitting projection algorithm under
weak conditions, The Annals of Statistics 27 (1999), no. 5, 1443–
1490.

46Andrew D Martin, Kevin M Quinn, Jong Hee Park, et al., Mcmc-
pack: Markov chain monte carlo in r, Journal of Statistical Soft-
ware 42 (2011), no. 9, 1–21.

47Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosen-
bluth, Augusta H Teller, and Edward Teller, Equation of state cal-
culations by fast computing machines, The journal of chemical
physics 21 (1953), no. 6, 1087–1092.

48Sean P Meyn and Richard L Tweedie, Stability of markovian pro-
cesses ii: Continuous-time processes and sampled chains, Ad-
vances in Applied Probability (1993), 487–517.

49Per Mykland, Luke Tierney, and Bin Yu, Regeneration in markov
chain samplers, Journal of the American Statistical Association
90 (1995), no. 429, 233–241.

50Elizbar A Nadaraya, On estimating regression, Theory of Proba-
bility & Its Applications 9 (1964), no. 1, 141–142.

51Douglas Nychka, Splines as local smoothers, The Annals of
Statistics (1995), 1175–1197.

52Jean D Opsomer, Asymptotic properties of backfitting estimators,
Journal of Multivariate Analysis 73 (2000), no. 2, 166–179.

53E Purzen, On estimation of a probability density and mode, Ann.
Math. Statist 39 (1962), 1065–1076.

54Maurice H Quenouille, Approximate tests of correlation in time-
series 3, Mathematical Proceedings of the Cambridge Philosophi-
cal Society, vol. 45, Cambridge Univ Press, 1949, pp. 483–484.

55Adrian E Raftery, Steven Lewis, et al., How many iterations in the
gibbs sampler, Bayesian statistics 4 (1992), no. 2, 763–773.

56Gareth O Roberts, Markov chain concepts related to sampling al-
gorithms, Markov chain Monte Carlo in practice 57 (1996).

57Murray Rosenblatt et al., Remarks on some nonparametric esti-
mates of a density function, The Annals of Mathematical Statistics
27 (1956), no. 3, 832–837.

58Mats Rudemo, Empirical choice of histograms and kernel density
estimators, Scandinavian Journal of Statistics (1982), 65–78.

59David Ruppert and Matthew P Wand, Multivariate locally
weighted least squares regression, The annals of statistics (1994),
1346–1370.

60Thomas A Thomas A Ryan, Brian L Joiner, and Barbara F Ryan,
Minitab student handbook, no. 04; LB1028. 5, R8., 1976.

61Jun Shao and Dongsheng Tu, The jackknife and bootstrap,
Springer Science & Business Media, 2012.

62Bernard W Silverman, Spline smoothing: the equivalent variable
kernel method, The Annals of Statistics (1984), 898–916.

63 , Density estimation for statistics and data analysis,
vol. 26, CRC press, 1986.

64Bernhard W Silverman, Some aspects of the spline smoothing ap-
proach to non-parametric regression curve fitting, Journal of the
Royal Statistical Society. Series B (Methodological) (1985), 1–52.

65Jeffrey S Simonoff, Smoothing methods in statistics, Springer Sci-
ence & Business Media, 2012.

66Adrian FM Smith and Gareth O Roberts, Bayesian computation
via the gibbs sampler and related markov chain monte carlo meth-
ods, Journal of the Royal Statistical Society. Series B (Method-
ological) (1993), 3–23.

67Charles J Stone, Consistent nonparametric regression, The annals
of statistics (1977), 595–620.

68 , Optimal rates of convergence for nonparametric estima-
tors, The annals of Statistics (1980), 1348–1360.

69 , An asymptotically optimal window selection rule for ker-
nel density estimates, The Annals of Statistics (1984), 1285–1297.

70 , Additive regression and other nonparametric models,
The annals of Statistics (1985), 689–705.

71Mervyn Stone, Cross-validatory choice and assessment of statis-
tical predictions, Journal of the Royal Statistical Society. Series B
(Methodological) (1974), 111–147.

72Alan Stuart, Maurice G Kendall, et al., The advanced theory of
statistics, vol. 2, Charles Griffin, 1973.

73R Core Team et al., R: A language and environment for statistical
computing, (2013).

74Luke Tierney, Markov chains for exploring posterior distributions,
the Annals of Statistics (1994), 1701–1728.

75John W Tukey, Bias and confidence in not-quite large samples,
Annals of Mathematical Statistics, vol. 29, INST MATHEMATI-
CAL STATISTICS IMS BUSINESS OFFICE-SUITE 7, 3401 IN-
VESTMENT BLVD, HAYWARD, CA 94545, 1958, pp. 614–614.

76 , The future of data analysis, The Annals of Mathematical
Statistics 33 (1962), no. 1, 1–67.

77Grace Wahba, Practical approximate solutions to linear operator
equations when the data are noisy, SIAM Journal on Numerical
Analysis 14 (1977), no. 4, 651–667.

78 , Spline models for observational data, vol. 59, Siam,
1990.

79MP Wand and BD Ripley, Kernsmooth: Functions for kernel
smoothing for wand and jones (1995). r package version 2.23-15,
2015.

80Geoffrey S Watson, Smooth regression analysis, Sankhyā: The In-
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