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Abstract

We revisit the selection problem, namely that of computing the ith order statistic of n given
elements, in particular the classic deterministic algorithm by grouping and partition due to
Blum, Floyd, Pratt, Rivest, and Tarjan (1973). Whereas the original algorithm uses groups
of odd size at least 5 and runs in linear time, it has been perpetuated in the literature that
using smaller group sizes will force the worst-case running time to become superlinear, namely
Ω(n log n). We first point out that the usual arguments found in the literature justifying the
superlinear worst-case running time fall short of proving this claim. We further prove that it
is possible to use group size smaller than 5 while maintaining the worst case linear running
time. To this end we introduce three simple variants of the classic algorithm, the repeated step
algorithm, the shifting target algorithm, and the hyperpair algorithm, all running in linear time.

Keywords: median selection, ith order statistic, comparison algorithm.

1 Introduction

Together with sorting, selection is one of the most widely used procedures in computer algorithms.
Indeed, it is easy to find numerous algorithms (documented in at least as many research articles)
that use selection as a subroutine. Two classic examples from computational geometry are [24, 27].

Given a sequence A of n numbers (usually stored in an array), and an integer (target) parameter
1 ≤ i ≤ n, the selection problem asks to find the ith smallest element in A. Sorting the numbers
trivially solves the selection problem, but if one aims at a linear time algorithm, a higher level of
sophistication is needed. A now classic approach for selection [7, 15, 20, 30, 33] from the 1970s is
to use an element in A as a pivot to partition A into two smaller subsequences and recurse on one
of them with a (possibly different) selection parameter i.

The time complexity of this kind of algorithms is sensitive to the pivots used. For example,
if a good pivot is used, many elements in A can be discarded; whereas if a bad pivot is used, in
the worst case, the size of the problem may be only reduced by a constant, leading to a quadratic
worst-case running time. But choosing a good pivot can be time consuming.

Randomly choosing the pivots yields a well-known randomized algorithm with expected linear
running time (see e.g., [8, Ch. 9.2], [25, Ch. 13.5], or [28, Ch. 3.4]), however its worst case running
time is quadratic in n.

The first deterministic linear time selection algorithm select (called pick by the authors), in
fact a theoretical breakthrough at the time, was introduced by Blum et al. [7]. By using the median
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of medians of small (constant size) disjoint groups of A, good pivots that guarantee reducing the
size of the problem by a constant fraction can be chosen with low costs. The authors [7, page 451,
proof of Theorem 1] required the group size to be at least 5 for the select algorithm to run in
linear time. It has been perpetuated in the literature the idea that select with groups of 3 or 4
does not run in linear time: an exercise of the book by Cormen et al. [8, page 223, exercise 9.3-1]
asks the readers to argue that “select does not run in linear time if groups of 3 are used”.

We first point out that the argument for the Ω(n log n) lower bound in the solution to this
exercise [9, page 23] is incomplete by failing to provide an input sequence with one third of the
elements being discarded in each recursive call in both the current sequence and its sequence of
medians; the difficulty in completing the argument lies in the fact that these two sequences are not
disjoint thus cannot be constructed or controlled independently. The question whether the original
select algorithm runs in linear time with groups of 3 remains open at the time of this writing.

Further, we show that this restriction on the group size is unnecessary, namely that group sizes
smaller than 5 can be used by a linear time deterministic algorithm for the selection problem. Since
selecting the median in smaller groups is easier to implement and requires fewer comparisons (e.g.,
3 comparisons for group size 3 versus 6 comparisons for group size 5), it is attractive to have linear
time selection algorithms that use smaller groups. Our main result concerning selection with small
group size is summarized in the following theorem.

Theorem 1. There exist suitable variants of select with groups of 2, 3, and 4 running in O(n)
time.

Historical background. The interest in selection algorithms has remained high over the years
with many exciting developments (e.g., lower bounds, parallel algorithms, etc) taking place; we only
cite a few here [2, 6, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 29, 32, 33]. We also refer the reader to
the dedicated book chapters on selection in [1, 4, 8, 11, 25, 26] and the more recent articles [3, 23],
including experimental work.

Outline. In Section 2, the classic select algorithm is introduced (rephrased) under standard
simplifying assumptions. In Section 3, we introduce a variant of select, the repeated step algo-
rithm, which runs in linear time with either group size 3 and 4. With groups of 3, the algorithm
executes a certain step, “group by 3 and find the medians of the groups”, twice in a row. In
Section 4, we introduce another variant of select, the shifting target algorithm, a linear time
selection algorithm with group size 4. In each iteration, upper or lower medians are used based
on the current rank of the target, and the shift in the target parameter i is controlled over three
consecutive iterations. In Section 5, we introduce yet another variant of select, the hyperpair
algorithm, a linear time selection algorithm with group size 2. The algorithm performs the “group
by pairs” step four times in a row to form hyperpairs. In Section 6, we briefly introduce three other
variants of select with group size 4, including one due to Zwick [34], all running in linear time.

In Section 7, we compare our algorithms (with group size 3 and 4) with the original select
algorithm (with group size 5) by deriving upper bounds on the exact numbers of comparisons used
by each algorithm. We also present experimental results that verify our numeric calculations. In
Section 8, we summarize our results and formulate a conjecture on the running time of the original
select algorithm from [7] with groups of 3 and 4, as suggested by our study.
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2 Preliminaries

Without affecting the results, the following two standard simplifying assumptions are convenient:
(i) the input sequence A contains n distinct numbers; and (ii) the floor and ceiling functions
are omitted in the descriptions of the algorithms and their analyses. We also assume that all the
grouping steps are carried out using the “natural” order, i.e., given a sequence A = {a1, a2, . . . , an},
“arrange A into groups of size m” means that group 1 contains a1, a2, . . . , am, group 2 contains
am+1, am+2, . . . , a2m and so on. Under these assumptions, select with groups of 5 (from [7]) can
be described as follows (using this group size has become increasingly popular, see e.g., [8, Ch. 9.2]):

1. If n ≤ 5, sort A and return the ith smallest number.

2. Arrange A into groups of size 5. Let M be the sequence of medians of these n/5 groups.
Select the median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m} (the order of
elements is preserved). If i = |A1| + 1, return m. If i < |A1| + 1, go to step 1 with A ← A1

and n← |A1|. If i > |A1|+ 1, go to step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

m

3n/10 elements greater than or equal to m

3n/10 elements smaller than or equal to m

Figure 1: One iteration of the select algorithm with group size 5. At least 3n/10 elements can be discarded.

Denote the worst case running time of the recursive selection algorithm on an n-element input
by T (n). As shown in Figure 1, at least 3 ∗ (n/5)/2 = 3n/10 elements are discarded at each
iteration, which yields the recurrence

T (n) ≤ T (n/5) + T (7n/10) +O(n). (1)

This recurrence is one of the following generic form:

T (n) ≤
k∑

i=1

T (ai n) +O(n), where ai > 0 for i = 1, . . . , k and

k∑
i=1

ai ≤ 1. (2)

It is well-known [8, Ch. 4] (and can be verified by direct substitution) that the solution of (2) is

T (n) =

{
O(n) if

∑k
i=1 ai < 1,

O(n log n) if
∑k

i=1 ai = 1.
(3)

As such, since the coefficients in (1) sum to 1/5 + 7/10 = 9/10 < 1, we see that the original
select algorithm with group size 5 runs in T (n) = Θ(n) (as it is well-known).
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3 The Repeated Step Algorithm

Using group size 3 directly in the select algorithm in [7] yields

T (n) ≤ T (n/3) + T (2n/3) +O(n), (4)

which solves to T (n) = O(n log n). Here a large portion (at least one third) of A is discarded in
each iteration but the cost of finding such a good pivot is too high, namely T (n/3). The idea of our
repeated step algorithm, inspired by the algorithm in [5], is to find a weaker pivot in a faster manner
by performing the operation “group by 3 and find the medians” twice in a row (as illustrated in
Figure 2). It is worth noting that this method is akin to using the Tukey’s ninther [31]. More
precisely, M ′ as defined in step 3 below is the sequence formed by the Tukey’s ninthers of groups
of 9 elements in A.

Algorithm

1. If n ≤ 3, sort A and return the ith smallest number.

2. Arrange A into groups of size 3. Let M be the sequence of medians of these n/3 groups.

3. Arrange M into groups of size 3. Let M ′ be the sequence of medians of these n/9 groups.

4. Select the median of M ′ recursively, let it be m.

5. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i = |A1| + 1,
return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If i > |A1| + 1, go to
step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

m

M

M ′

Figure 2: One iteration of the repeated step algorithm with groups of 3. Empty disks represent elements
that are guaranteed to be smaller than or equal to m. Filled squares represent elements that are guaranteed
to be greater than or equal to m.

Analysis. Since elements are discarded if and only if they are too large or too small to be the
ith smallest element, the correctness of the algorithm is implied. Regarding the time complexity
of this algorithm, we have the following lemma:

Lemma 1. The repeated step algorithm with groups of 3 runs in Θ(n) time on an n-element input.
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Proof. By finding the median of medians of medians instead of the median of medians, the cost of
selecting the pivot m reduces from T (n/3) + O(n) to T (n/9) + O(n). We need to determine how
well m partitions A in the worst case. In step 4, m is guaranteed to be greater than or equal to
2 ∗ (n/9)/2 = n/9 elements in M . Each element in M is a median of a group of size 3 in A, so it is
greater than or equal to 2 elements in its group. All the groups of A are disjoint, thus m is greater
than or equal to 2n/9 elements in A. Similarly, m is smaller than or equal to 2n/9 elements in A.
Thus, in the last step, at least 2n/9 elements can be discarded. The recursive call in step 4 takes
T (n/9) time. So the resulting recurrence is

T (n) ≤ T (n/9) + T (7n/9) +O(n),

and since the coefficients on the right side sum to 8/9 < 1, by (3), we have T (n) = Θ(n), as
required.

Note that grouping by 3 twice and finding the median of medians of medians is different from
grouping by 9 and finding the median of medians. The number of comparisons required for grouping
by 3 twice is 3n/3 + 3n/9 = 12n/9, while for grouping by 9 the number is 14n/9 (14 comparisons
for selecting the median of 9). The number of elements guaranteed to be discarded is also different:
for grouping by 3 twice, at least 2n/9 elements can be discarded, while for grouping by 9, this
number is 5n/18. So our method trades some of the quality of the pivots for speed (discards fewer
elements than the median of 9 approach) by doing fewer comparisons.

4 The Shifting Target Algorithm

In the select algorithm introduced in [7], the group size is restricted to odd numbers, where the
median of a group has a privileged symmetric position. For group size 4, depending on the choice
of upper, lower, or average median, there are three possible partial orders to be considered (see
Figure 3).

Figure 3: Three partial orders of 4 elements based on the upper (left), lower (middle), and average (right)
medians. The empty square represents the average of the upper and lower median, which is not necessarily
part of the 4-element sequence.

If the upper (or lower) median is always used, only 2 ∗ (n/4)/2 = n/4 elements are guaranteed
to be discarded in each iteration (see Figure 4), which gives the recurrence

T (n) ≤ T (n/4) + T (3n/4) +O(n). (5)

The term T (n/4) is for the recursive call to find the median of all n/4 medians. This recursion solves
to T (n) = O(n log n). Even if we use the average of the two medians, the recursion remains the
same since only 2 elements from each of the (n/4)/2 = n/8 groups are guaranteed to be discarded.

Observe that if the target parameter satisfies i ≤ n/2 (resp., i ≥ n/2), using the lower (resp.,
upper) median gives a better chance to discard more elements and thus obtain a better recurrence;
detailed calculations are given in the proof of Lemma 2. Inspired by this idea, we propose the
shifting target algorithm as follows:

5



Algorithm

1. If n ≤ 4, sort A and return the ith smallest number.

2. Arrange A into groups of size 4. Let M be the sequence of medians of these n/4 groups.
If i ≤ n/2, the lower medians are used; otherwise the upper medians are used. Select the
median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i = |A1| + 1,
return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If i > |A1| + 1, go to
step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

Analysis. Regarding the time complexity, we have the following lemma.

Lemma 2. The shifting target algorithm with group size 4 runs in Θ(n) time on an n-element
input.

Proof. We shall prove that in at most three consecutive iterations, the size of the problem is reduced
by a large enough fraction so that the resulting recurrence is of the form in (2) with

∑k
i=1 ai < 1.

m

n/4 elements smaller than or equal to m

3n/8 elements greater than or equal to m

Figure 4: Group size 4 with lower medians used.

If in some iteration, we have i ≤ n/4, then the lower medians are used. Recall that m is
guaranteed to be greater than or equal to 2 ∗ (n/4)/2 = n/4 elements of A. So either m is the ith
smallest element in A or at least 3 ∗ (n/4)/2 = 3n/8 largest elements are discarded (see Figure 4),
hence the worst-case running time recurrence is

T (n) ≤ T (n/4) + T (5n/8) +O(n). (6)

Observe that in this case the coefficients on the right side sum to 7/8 < 1, yielding a linear solution,
as required.

Now consider the case n/4 < i ≤ n/2, again the lower medians are used. If |A1| ≥ i, i.e., the
rank of m is higher than i, again at least 3 ∗ (n/4)/2 = 3n/8 largest elements are discarded and (6)
applies. Otherwise, suppose that only t = |A1| ≥ 2∗(n/4)/2 = n/4 smallest elements are discarded.
Then in the next iteration, i′ = i− t, n′ = n− t.

If i′ ≤ n′/4, at least 3n′/8 elements are discarded. The first iteration satisfies recurrence (5)
and we can use recurrence (6) to bound the term T (3n/4) from above. We deduce that in two
iterations the worst case running time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) +O(n)

≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 5/8) +O(n)

= T (n/4) + T (3n/16) + T (15n/32) +O(n). (7)
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Observe that the coefficients on the right side sum to 29/32 < 1, yielding a linear solution, as
required. Subsequently, we can therefore assume that i′ ≥ n′/4. We have

i′/n′ = (i− t)/(n− t) ≤ (i− n/4)/(n− n/4)

≤ (n/2− n/4)/(n− n/4) = 1/3.

Since 1/4 < i′/n′ ≤ 1/3 ≤ 1/2, the lower medians will be used. As described above, if at least
3n′/8 largest elements are discarded, in two iterations, the worst case running time satisfies the
same recurrence (7).

So suppose that only t′ ≥ 2 ∗ (n′/4)/2 = n′/4 smallest elements are discarded. Let i′′ = i′ − t′,
n′′ = n′ − t′. We have

i′′/n′′ = (i′ − t′)/(n′ − t′) ≤ (i′ − n′/4)/(n′ − n′/4)

≤ (n′/3− n′/4)/(n′ − n′/4) = 1/9.

Since i′′/n′′ ≤ 1/9 < 1/4, in the next iteration, at least 3n′′/8 elements will be discarded. The first
two iterations satisfy recurrence (5) and we can use recurrence (6) to bound the term T (9n/16)
from above. We deduce that in three iterations the worst case running time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) +O(n)

≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 3/4) +O(n)

= T (n/4) + T (3n/16) + T (9n/16) +O(n)

≤ T (n/4) + T (3n/16) + T ((9n/16)/4) + T ((9n/16) ∗ 5/8) +O(n)

= T (n/4) + T (3n/16) + T (9n/64) + T (45n/128) +O(n).

The sum of the coefficients on the right side is 119/128 < 1, so again by (3), the solution is
T (n) = Θ(n).

By symmetry, the analysis also holds for the case i ≥ n/2, and the proof of Lemma 2 is
complete.

5 The Hyperpair Algorithm

For completeness, we consider the ultimate group size 2, i.e., each group contains a pair of elements.
The upper (resp. lower) median of a pair is the larger (resp. smaller) element in that pair. In
the original select algorithm, if pairs were used, only 1 ∗ (n/4) elements are guaranteed to be
discarded in each iteration, which gives the recurrence

T (n) ≤ T (n/2) + T (3n/4) +O(n). (8)

The term T (n/2) is for the recursive call to find the median of the n/2 upper (or lower)
medians. However, the above recursion does not yield a solution linear in n. Now, one can
make the following adjustment: instead of taking the median of half the input recursively, let
the algorithm recursively compute the jth smallest element among the n/2 upper medians, where
j = n/6. Then 2j = n/2 − j = n/3 elements can be discarded in each iteration, thus the size of
the largest remaining recursive call is n − n/3 = 2n/3. However, even with this adjustment, the
resulting recurrence (9) does not yield a solution linear in n.

T (n) ≤ T (n/2) + T (2n/3) +O(n). (9)

The key for obtaining a linear running time in this setting seems to be to use groups of 2 in a
repeated manner. The following algorithm has the same flavor as the repeated step algorithm in
section 3 but uses group size 2. Its name, the hyperpair algorithm, will be justified in the analysis.
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Algorithm

1. If n ≤ 2, sort A and return the ith smallest number.

2. Arrange A into groups of size 2. Let M1 be the sequence of upper medians of these n/2 pairs.

3. Arrange M1 into pairs. Let M2 be the sequence of lower medians of these n/4 pairs.

4. Arrange M2 into pairs. Let M3 be the sequence of upper medians of these n/8 pairs.

5. Arrange M3 into pairs. Let M4 be the sequence of lower medians of these n/16 pairs.

6. Select the median of M4 recursively, let it be m.

7. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i = |A1| + 1,
return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If i > |A1| + 1, go to
step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

Analysis. In order to calculate the time complexity of this algorithm, we need to estimate how
well m partitions the sequence A. Observe that steps 2–5 can be viewed as constructing hyperpairs,
as in the non-recursive selection algorithm of Schönhage et al. [30]. In their definition, a single
element is a hyperpair with itself as the center ; given two disjoint copies of a hyperpair, we can
combine them to form a larger hyperpair by comparing their centers and taking the upper or
lower of these as the new center. The hyperpairs P constructed in our algorithm are illustrated
in Figure 5. Observe that in P , three elements are guaranteed to be greater than its center c and

c

Figure 5: Construction of a hyperpair P with 16 elements; the center of each hyperpair is marked by an
empty circle.

three are guaranteed to be smaller than c. We are now ready to establish the time complexity of
this algorithm:

Lemma 3. The hyperpair algorithm runs in Θ(n) time on an n-element input.

Proof. Steps 2–5 take n/2 + n/4 + n/8 + n/16 = 15n/16 comparisons to form the hyperpairs P .
The pivot m is the median of the centers of these n/16 hyperpairs. So the cost of selecting the
pivot is T (n/16) + 15n/16. By the above observation about the center c of P , m is guaranteed to
be greater than or equal to 4 ∗ (n/16)/2 = n/8 elements in A. Similarly, m is guaranteed to be
smaller than or equal to n/8 elements in A. Thus, in the last step, at least n/8 elements can be
discarded. The resulting recurrence is

T (n) ≤ T (n/16) + T (7n/8) +O(n),

and since the coefficients on the right side sum to 15/16 < 1, by (3), we have T (n) = Θ(n), as
required.
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Note that larger hyperpairs can also be used to obtain linear-time algorithms. If the “group
into pairs” step is repeated 2k times, k ≥ 2, where upper and lower medians are used alternatively,
then n/22k hyperpairs of size 22k are built. Each center is guaranteed to be greater than or equal
to 2k elements in its hyperpair and is also guaranteed to be smaller than or equal to 2k elements
in its hyperpair. So using the median of these centers as pivot, at least 2k ∗

(
n/22k

)
/2 = n/2k+1

elements can be discarded. The resulting recurrence is

T (n) ≤ T
(
n/22k

)
+ T

((
1− 1/2k+1

)
n
)

+O(n),

where the O(n) term involves
∑2k

j=1 n/2
j = n − n/22k comparisons to build the hyperpairs and

at most n comparisons to partition the sequence. Since the coefficients on the right side sum to
1−

(
2k−1 − 1

)
/22k < 1, by (3), we have T (n) = Θ(n).

6 Other Variants

A similar idea of repeating the group step (from Section 3) also applies to the case of groups of 4
and yields

T (n) ≤ T (n/16) + T (7n/8) +O(n),

and thereby another linear time selection algorithm with group size 4.

A hybrid algorithm. Yet another variant of select with group size 4 (we refer to it as the
hybrid algorithm), can be obtained by using the ideas of both algorithms together, i.e., repeat the
grouping by 4 step twice in a row while M contains the lower medians and M ′ contains the upper
medians (or vice versa). Recursively selecting the median m of M ′ takes time T (n/16). Notice
that m is greater than or equal to 3 ∗ (n/16)/2 = 3n/32 elements in M of which each is greater
than or equal to 2 elements in its group in A. So m is greater than or equal to 3n/16 elements of
A. Also, m is smaller than or equal to 2 ∗ (n/16)/2 = n/16 elements in M of which each is smaller
than or equal to 3 elements in its group of A. So m is smaller than or equal to 3n/16 elements of
A, thus the resulting recurrence is

T (n) ≤ T (n/16) + T (13n/16) +O(n),

again with a linear solution, as desired.

Zwick’s variant. The fact that the select algorithm can be modified so that it works with
groups of 4 in linear time was observed prior to this writing. The following variant, from 2010, is
due to Zwick [34]. Split the elements of A into quartets. Find the 2nd smallest element of each
quartet (i.e., the lower median), and let M be this subset of n/4 elements. Recursively find the
(3/5)(n/4)th smallest element m of M . Now (3/5)(n/4) groups of A have 2 elements smaller than
or equal to m, so m is greater than or equal to 2(3/5)(n/4) = 3n/10 elements in A. Similarly,
(2/5)(n/4) groups of A have 3 elements greater than or equal to m, so m is smaller than or equal
to 3(2/5)(n/4) = 3n/10 elements in A. Thus, the remaining recursive call involves at most 7n/10
elements, and the resulting recurrence is

T (n) ≤ T (n/4) + T (7n/10) +O(n).

Since 1/4 + 7/10 < 1, the solution is linear.
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7 Comparison of the Algorithms and Experimental Results

To compare our algorithms with the original select algorithm, we first derive upper bounds on the
exact numbers of comparisons for each variant in the same manner as in Section 2 of [7]. It should
be noted that all recurrent formulas and all proofs do not provide (nor aim to provide) tight bounds
or expected number of comparisons. Tighter analytical bounds might exist than those shown. Let
now T (n) denote the total number of comparisons performed. For the original select algorithm
with group size 5, we have

T (n) ≤ T (n/5) + T (7n/10) + 6n/5 + n,

in which the term 6n/5 is for computing the n/5 medians (each takes at most 6 comparisons) and
the term n is for partitioning the sequence around the selected pivot. Solving the recurrence yields
T (n) ≤ 22n. Similarly, for the repeated step algorithm, we have

T (n) ≤ T (n/9) + T (7n/9) + 3n/3 + 3n/9 + n,

and consequently, T (n) ≤ 21n. For the hybrid algorithm, we have

T (n) ≤ T (n/16) + T (13n/16) + 4n/4 + 4n/16 + n,

and consequently, T (n) ≤ 18n. For Zwick’s algorithm, we have

T (n) ≤ T (n/4) + T (7n/10) + 4n/4 + n,

and consequently, T (n) ≤ 40n. For the hyperpair algorithm, we have

T (n) ≤ T (n/16) + T (7n/8) + 15n/16 + n,

and consequently, T (n) ≤ 31n. For the shifting target algorithm, the analysis is more involved; it
yields T (n) ≤ 66n.

We note that sharper upper bounds are possible by taking extra care in avoiding comparisons
with known outcomes against the pivot; however, for simplicity of implementation we opted to
forego this saving. In order to avoid the overhead of repeated array copying, all the algorithms
were implemented in-place, in the sense that, with the exception of the recursion, only O(1) extra
space is used in addition to the input array. This requires minor modifications of the algorithms;
however, their running time analyses remain unchanged. We carried out 1000 experiments1 on
selecting medians in arrays of 10 million randomly permuted distinct integers. The results are
summarized in Table 1.

We observed that the experimental results agree with the worst-case estimates in the number
of comparisons, in the sense that they show roughly the same speed ranking. One reason why the
experimental speed ranking does not fully match the analytical bounds derived is the existence of
other operations performed during the selection process that are unaccounted for by the recurrences,
such as data copying (shown in the last two columns of the table as swaps). It is worth noting that
optimizations introduced in Section 3 of [7], or others discussed in [3], may be used to reduce the
multiplicative constant factors.

1The experiments were performed on a desktop with 64bits operating system, 7.8GB memory and
Intel R© CoreTM i7-2600 3.4GHz processor. The C code used can be downloaded at https://drive.google.com/

file/d/0B7USj6ZPkysnMjNwV014RDJGMWc/view?usp=sharing.

10

https://drive.google.com/file/d/0B7USj6ZPkysnMjNwV014RDJGMWc/view?usp=sharing
https://drive.google.com/file/d/0B7USj6ZPkysnMjNwV014RDJGMWc/view?usp=sharing


Algorithm Group Upper Bound Average Time
Comparisons Swaps

Average Max Average Max

Hybrid 4 18n 364.3ms 4.1 4.2 1.2 1.2

Repeated step 3 21n 446.9ms 4.3 4.4 1.8 1.8

Original 5 22n 468.9ms 5.7 5.8 1.5 1.5

Hyperpair(4) 2 31n 480.6ms 2.9 2.9 3.0 3.0

Zwick’s 4 40n 541.1ms 6.3 6.3 2.0 2.0

Shifting target 4 66n 558.0ms 6.6 6.7 2.0 2.1

Original 4 O(n log n) 560.2ms 6.7 6.7 2.0 2.0

Original 3 O(n log n) 813.4ms 8.2 8.5 3.4 3.5

Hyperpair(6) 2 127n/3 452.4ms 2.8 2.8 2.8 2.8

Hyperpair(8) 2 73n 456.0ms 2.8 2.8 2.8 2.9

Hyperpair(10) 2 2047n/15 458.8ms 2.9 2.9 2.9 2.9

Table 1: Experimental results. The last four columns are values per element. The numbers in parentheses for
the hyperpair algorithms indicate the numbers of times the “group into pairs” step is repeated. The “Upper
Bound” column shows the leading term in the solution of the corresponding recurrence for the worst-case
number of comparisons.

8 Conclusion

The question whether the original selection algorithm introduced in [7] (outlined in Section 2) runs
in linear time with group size 3 and 4 remains unsettled. Although the recurrences

T (n) ≤ T (n/3) + T (2n/3) +O(n), and

T (n) ≤ T (n/4) + T (3n/4) +O(n)

(see (4) and (5)) for its worst-case running time with these group sizes both solve to T (n) =
O(n log n), we believe that they only give non-tight upper bounds on the worst case scenarios. In
any case and against popular belief we think that Θ(n log n) is not the answer in regard to the time
complexity of selection with these group sizes:

Conjecture 1. The select algorithm introduced by Blum et al. [7] runs in o(n log n) time with
groups of 3 or 4.
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