
ar
X

iv
:1

10
9.

03
89

v1
 [

cs
.C

G
]

 2
 S

ep
 2

01
1

A Space-Optimal Hidden Surface Removal

Algorithm for Iso-Oriented Rectangles

A. Tsakalidis

Department of Computer Engineering & Informatics,

University of Patras, Greece.

tsak@cti.gr

K. Tsichlas

Informatics Department,

Aristotle University of Thessaloniki, Greece.

tsichlas@delab.csd.auth.gr

November 20, 2018

Abstract

We investigate the problem of finding the visible pieces of a scene of
objects from a specified viewpoint. In particular, we are interested in
the design of an efficient hidden surface removal algorithm for a scene
comprised of iso-oriented rectangles. We propose an algorithm where
given a set of n iso-oriented rectangles we report all visible surfaces in
O((n+ k) log n) time and linear space, where k is the number of surfaces
reported. The previous best result by Bern, has the same time complexity
but uses O(n log n) space.

Computational Geometry, Computer Graphics, Hidden Sur-

face Removal, Iso-Oriented Rectangles.

1 Introduction

The Hidden Surface Removal (HSR) problem is one of the fundamental problems
in computer graphics. Given a set of objects in a three dimensional scene we
want to compute the visible parts of the scene from a given viewpoint. As a
result, pieces of objects that lay behind other objects with respect to the given
viewpoint are invisible. In general, points are visible when the line between each
point and the viewpoint is not intersected by other objects.

A slightly easier problem than HSR is the Hidden Line Elimination (HLE)
problem. In the HLE problem it is assumed that surfaces do not carry infor-
mation (like color) and only the visible line segments that define the exterior of
each object are interesting. These problems are strongly connected but experi-
ence has shown that the HSR problem is more difficult the the HLE problem.

1

http://arxiv.org/abs/1109.0389v1

In particular, hidden line information does not necessarily allow us to determine
the frontmost faces of the environment [7].

In the general case of the HSR problem the scene may consist of arbitrary
objects in the three dimensional space. A simple but important special case
of the general HSR problem is one in which the scene consists of n rectangles
which are parallel to the x − y plane and their edges are parallel to the x and
y axis. These rectangles are called iso-oriented. An iso-oriented rectangle R
can be fully specified by five coordinates, [R.x1, R.x2] × [R.y1, R.y2] × R.z. It
is assumed that no pair of rectangles intersects in a two dimensional region,
though pairs may intersect along an edge.

In this paper, we consider a static scene (changes are not allowed in the
scene) comprised of n iso-oriented rectangles in the three-dimensional space.
The goal is to to compute and depict all visible parts of these rectangles as they
would be seen from an observer at a specified viewpoint. We assume that this
viewpoint lies at z = +∞.

Most of the algorithms known for scenes of iso-oriented rectangles are output
sensitive. This means that their time complexity depends on the size of the
output, that is the complexity of the visible part of the scene. These algorithms
are generally more efficient than algorithms with time complexity depending
solely on n. For static scenes consisting of polygons, McKenna [7] has designed
a worst case optimal algorithm with O(n2) time and space complexity. Note
that the complexity of the visible scene cannot be larger than O(n2) when the
polygons in the scene have n edges in total. This is because the number of
visible parts can not exceed the number of intersections between the objects.

Gutting et al. [5] proposed an output sensitive HLE algorithm for static
scenes of rectangles with time complexity O((n + k) log2 n), where k is the
number of reported visible segments. Note, that when k is small, then the
time complexity is far less than O(n2). Of course, for complicated scenes where
k = O(n2) this algorithm is less efficient than the algorithm of McKenna. This
algorithm also handles c-oriented rectangles (rectangles aligned with a fixed
number of orientations, not just horizontal and vertical). Atallah and Goodrich
[1] have proposed an algorithm with O(n3/2 + k) time complexity.

For a static scene consisting of iso-oriented rectangles, Bern [3] has designed
an algorithm with O((n + k) logn) time complexity and O(n logn) space com-
plexity. He designed algorithms for the HLE problem and later he extended
them to tackle the HSR problem. Mehlhron et al. [8] proposed an algorithm
with O(n log n+ k log(n2/k)) time complexity and O(n log n) space complexity
for the HLE problem. Kitsios et al. [6] have improved on this result by propos-
ing an algorithm for the HLE problem that uses linear space while retaining the
above time complexity.

This paper extends the last result of Kitsios and Tsakalidis to tackle the
HSR problem in a scene consisting of iso-oriented rectangles. We propose an
HSR algorithm with O((n + k) logn) time complexity using linear space. Our
result improves the algorithm proposed by Bern [3] by a logarithmic factor in
its space complexity. Our algorithm modifies the algorithm of [6] and extends
it by adding appropriate data structures to store the necessary surface infor-

2

mation. In addition, our algorithm needs only one pass of the scene, while the
algorithm of Kitsios et al. needs two, one pass for the vertical edges and one for
the horizontal edges (our algorithm can also be used for the HLE problem with
minor modifications). The only drawback is that in the HLE problem the mul-
tiplicative factor of k in the time complexity is O(log (n2/k)), which in general
is less than O(log n). This is due to the maintenance of the visible regions and
is another indication that the HSR problem is generally more difficult than the
HLE problem.

This special case of hidden surface removal has application to overlapping
windows in computer displays. It allows us to solve window management prob-
lems efficiently. In addition, the algorithms for this restricted case of the hidden
surface removal problem could find use in cartographic applications as well as
used in VLSI design tools for many-layer technologies.

The remainder of the paper is organized as follows. In Section 2 a description
of the algorithm is given as well as some basic definitions and techniques, which
are essential for the comprehension of the algorithm. The algorithm for the HSR
problem is described in Section 3. The description is divided into two parts, the
first part describes the preprocessing stage while the second part describes the
reporting stage. Finally, in Section 4 we conclude with some final remarks.

2 Preliminaries

The HSR problem is considered in a static scene consisting of n iso-oriented
rectangles. Our algorithm uses the plane sweep technique and cuts the scene
into slabs in order to guarantee linear space.

Initially, the scene is divided into slabs. A plane parallel to the y − z plane
sweeps each slab along the x axis from x = −∞ to x = +∞. All edges of
rectangles parallel to the x axis are called horizontal while all parallel to the y
axis are called vertical. In this way, the intersection of the sweep plane and the
scene in a random position is a set of vertical segments. Assuming, without loss
of generality, that all the x, y and z coordinates are distinct then the intersection
of the sweep plane and the scene in each sweep station consists of one and only
one vertical edge. The sweep stations of the algorithm consist of the ordered
set of the x coordinates of the rectangles.

The set of the vertical edges of each slab is stored in a segment tree. A
segment tree [2] is constructed from scratch at the beginning of each slab. This
tree has 2n− 1 leaves and it is implemented as a binary balanced tree. Its i-th
leaf represents the elementary interval [yi, yi+1] (if we sort the y coordinates
then yi will be just before yi+1), which is termed a y-range. Each internal node
u has a y-range equal to the union of the y-ranges of the leaves of the subtree
rooted at u. Henceforth, the ends of a vertical segment s will be represented
as s.y1 and s.y2, where s.y1 < s.y2. In this way, the y-range of u is between
u.y1 and u.y2. Let father(u), lson(u) and rson(u) denote the father and the
two children of u respectively. A vertical segment is associated with O(log n)
nodes u such that u.range ⊆ [s.y1, s.y2] and father(u).yrange 6⊂ [s.y1, s.y2].

3

Each node u of the segment tree has a set S(u) of associated segments. By
precomputing the lists of rectangles in each node of the segment tree we are
able to reduce the time complexity by a logarithmic factor [3].

The horizontal segments are stored in a binary search tree, called the region
tree. The region tree is maintained during the transition between slabs. In
this way, information concerning the visible regions is transferred among slabs.
The leaves of the region tree are linked by means of a double linked list. We
implement the region tree as a red-black tree [4], so that the amortized cost of
updates is constant.

Finally, the coordinates of a rectangle R = [x1, x2]× [y1, y2]× z are denoted
by Rx1

, Rx2
, Ry1

, Ry2
and Rz respectively. The line segment defined by the

endpoints (Rx1
, Ry1

, Rz) and (Rx2
, Ry2

, Rz) is referred as the left edge of the
rectangle R. The right, bottom and top edges are defined similarly. We say
that a rectangle R is higher than a rectangle R′, or that R′ is lower than R,
when R.z > R′.z. The same goes for the edges. Finally, we assume that there
is a fictitious rectangle background that lies behind the whole scene with height
z = −∞.

3 The Algorithm

The algorithm consists of two stages, the preprocessing stage and the reporting
stage. In the former stage the necessary data structures are constructed and
initialized appropriately. In the latter stage, we use the available data structures
to find all visible surfaces by using the plane sweep technique. In the following,
we will first refer to the preprocessing stage and then move to the reporting
stage.

3.1 The Preprocessing Stage

First of all, the vertices of the rectangles are sorted with respect to their x, y and
z coordinates. The y-order will be used for the construction of the segment tree.
The x-order will be used for the plane sweep while the z-order will be used in
depth computations. Then, we cut the scene into slabs. Each slab is defined by
two planes normal to the x axis, so that each plane contains n

logn vertical edges.
Since there are exactly 2n vertical edges, the number of slabs will be logn. The
set of vertical edges in one slab is called Sv while the set of horizontal segments
that span the slab is denoted by Sh. Note that |Sv| = O(n

logn) by definition,

while |Sh| = O(n) (an example is depicted in Figure 1).
In the beginning of each slab we build an enriched segment tree. In partic-

ular, let Tv(u) denote the highest segment of Sv associated with node u of the
segment tree. If there is no such segment then Tv(u) = background. Every node
of the segment tree is augmented with the field u.Hh, which contains the highest
segment of Sh that spans u.yrange. Note that u.Hh remains invariable during
the sweep in each slab. Each node u of the segment tree is also augmented with
the following fields:

4

F

BD

E

C

A

x

y

xL xR

C

D B

E

A

Sv Sh

G

Figure 1: The rectangles as seen from z = +∞ and the clipped rectangles that
form sets Sv and Sh.

• u.H = u.L = maxz{u.Hh, Tv(u)}, if u is a leaf

• u.H = maxz{lson(u).H, rson(u).H, Tv(u)} and
u.L = maxz{minz{lson(u).H, rson(u).H}, Tv(u)}, if u is an internal node.

Let S(u) be the set consisting of segments in the subtree rooted at u and
segments of Sh associated with the ancestors of u.

Lemma 1 Field u.L is the lowest visible segment in the subscene restricted to
u.yrange consisting of segments of S(u). Field u.H is analogously the highest
segment among the segments of S(u).

Proof. Assume a segment s′ in the subtree of u such that s′ is visible in the
subscene restricted to u.yrange and it is lower than u.L. Assume that s′ is
associated with node w. Then, the minimum between lson(father(w)).H and
rson(father(w)).H will be s′ (by assumption). If Tv(father(w)) 6= background
then s′ is not visible since it is completely obscured by Tv(father(w)) which
contradicts our assumption. As a result, father(w).L will be s′. Applying the
same procedure to all ancestors of w, we will reach u and u.L will be s′, which
is a contradiction. As a result, u.L is the lowest visible segment in S(u). In the
same way we can prove that u.H is the highest segment among the segments of
S(u).

The sweep plane traverses the slab from left to right. When a vertical edge
s of a rectangle R ∈ Sv is encountered, then the data structures must be ap-
propriately updated and queried to report the visible regions located at the
yrange defined by this vertical edge. As a result, fields u.H and u.L are sub-
ject to changes. These changes are reflected to the nodes of the segment tree
by removing or adding segments to their subtrees. Let m be the number of
insertions/deletions in the subtree rooted at a node u and let s1, s2, . . . , sm be
the sequence of values of field u.H after each such update operation. We pre-
compute this sequence and store it in an array u.High of m + 1 entries. In

5

a similar manner, we precompute the sequence u.Low for field u.L. For both
arrays we use a pointer u.p that points to the current value of u.H and u.L in
arrays u.High and u.Low respectively. An insertion or deletion of a segment in
the subtree rooted at u is simulated by incrementing the pointer u.p.

The construction of u.High and u.Low for each node u is based on the
auxiliary sequences u.T opv, u.xTopv and u.xHL. Assume that x1, x2, . . . , xm

is the ordered sequence of x coordinates of segments of Sv that are inserted
or deleted to u. Assume that when x = xi a segment is inserted or deleted
to S(u) possibly changing Tv(u) (the highest segment of Sv associated to node
u). The sequence u.T opv has m + 1 entries that record all changes of Tv(u).
Specifically, u.T opv[i] = s if Tv(u) = s for xi ≤ x < xi+1 (x0 corresponds
to the x coordinate of the left vertical plane which defines the current slab,
xm+1 is defined analogously for the right plane). The sequence x1, x2, . . . , xm

is stored in the array u.xTopv. Similarly, let x1, x2, . . . , xp be the sequence of
the x coordinates of segments of Sv that are inserted into or deleted from nodes
in the subtree rooted at u. After each insertion or deletion of such a segment
the H and L fields of u may change. This sequence is stored in u.xHL. The
construction of all these sequences is feasible in linear time. This is proved by
using the following lemma:

Lemma 2 We are given a set of q horizontal line segments in the t − z plane
with integer t coordinates in the range [0, 2q − 1]. The segments are given in
decreasing z order. In O(q) time it is possible to construct an array A of 2q
entries that stores in its i-th entry the segment with highest z coordinate among
segments that span the t-interval [i, i+ 1].

Proof. The proof is given in [3, 8].

Lemma 3 Sequences u.T opv and u.xTopv for each node u of the segment tree
can be constructed in linear time. Sequences u.Hh for each leaf u of the segment
tree can be constructed in linear time.

Proof. The proof is given in [3].

Lemma 4 The sequences High, Low and u.xHL for all nodes can be computed
in O(n) time.

Proof. The proof for this lemma is given in [3]. We must add that during the
construction of the segment tree the filling of the u.Hh fields for all inner nodes
u can be accomplished by setting: u.Hh = max{lson(u).Hh, rson(u).Hh}

Apart from the segment tree we use an auxiliary leaf-oriented balanced bi-
nary search tree, which we call the region tree. The region tree T is used to store
the horizontal segments of the scene, ordered according to the y coordinate, as
well as the necessary information to report visible regions. A horizontal segment
is stored in a leaf of T only when it is intersected by the sweep plane and it
is visible. The leaves of this tree form a double linked list. The region tree is

6

Procedure LeftEdge(Rectangle R, boolean visible, segment tree node u)
1. if (R.z < u.L) then visible = FALSE
2. if (R.y1 < u.y1) AND (u.y2 < R.y2) then

3. if visible then LeftReportRegions(R,u)
4. else

5. if (R.y1 < u.ymid) then LeftEdge(R,visible,lson(u))
6. if (R.y2 > u.ymid) then LeftEdge(R,visible,rson(u))
7. u.p = u.p + 1

Figure 2: This procedure is invoked when the left edge of a rectangle R is
encountered.

dynamic red-black tree [4] and remains the same during the transition between
slabs.

In the region tree, the visible horizontal segments (edges of rectangles) are
inserted or deleted during the transition of the sweep plane between the sweep
stations. Apart from the edges, the leaves of the tree store the rectangle in
which the area between two consecutive visible horizontal segments belongs to.
Assume that f is a leaf of T , right(f) is the leaf immediately right to f and
f.region is the rectangle which owns the region between the horizontal segment
stored in f and right(f). If the area between two consecutive segments is not
part of a rectangle, then f.region = background. The traversal of the double
linked list enables us to report visible regions. These regions are defined by
the y coordinates of two consecutive horizontal edges and the x coordinates
of the start of the region and the current position of the sweep plane. The x
coordinate of the start of the region is a field attached to f.region and contains
the x coordinate of the sweep station where the field f.region was updated for
the last time. In the following, we will analyze the reporting procedure and
specify how the region tree is updated.

3.2 The Reporting Stage

At this point we will focus on a single slab. The necessary initialization for each
slab is described in 3.1. The description of the reporting stage is split into two
parts. In the first part we explore the case where the sweep plane intersects
the left edge of a rectangle while in the second part we explore the case where
the sweep plane intersects the right edge of a rectangle. First, we are going to
explore what happens when a new edge in virtually (due to the preprocessing)
inserted in the segment tree - that is the sweep plane intersects a left edge.

3.2.1 Insertion of a New Edge

The procedure LeftEdge(R, true, root) is invoked when the left edge of a rect-
angle R is encountered. This procedure updates the fields u.H and u.L for all
nodes u visited in the segment tree. Assume that the position of the sweep
plane is at x = xs. In Figures 2 and 3 a description of the algorithm for the
insertion of the left edge of an arbitrary rectangle R is given.

7

Procedure LeftReportRegions(Rectangle R, segment tree node u)
1. if (R.z < u.L) then return

2. if (u.H < R.z) then

3. Find leaves p and q in T so that p.y < u.y1 and there is no other leaf v such that p.y < v.y < u.y1

and act analogously for u.y2

4. Output regions formed by the horizontal segments found between p.y1 and q.y2

5. Remove all horizontal segments found between p.y1 and q.y2

6. if (u.y1 = R.y1) then insert in T the segment s with s.x1 = R.x1 and s.y = u.y1

7. if (u.y2 = R.y2) then insert in T the segment s with s.x1 = R.x1 and s.y = u.y2

8. Update properly the fields region of p, q and the newly inserted leaves and then change the x
field of each such field to be current x

9. else

10. LeftReportRegions(R,lson(u))
11. LeftReportRegions(R,rson(u))

Figure 3: This procedure is invoked by procedure LeftEdge to report the visible
regions.

Assume that the left edge of R is divided into consecutive invisible and
visible segments. Let the visible segments be s(u1), s(u2), . . . , s(ul) and the
invisible segments s(w1), s(w2), . . . , s(wm), where ui and wi are nodes of the
segment tree. The procedure given in Figure 2 stops the recursive search when
one of these nodes is reached. When a node ui is reached, the region tree T is
queried with the range ui.yrange. The result of this query are two leaves f1
and f2. Note that it may be the case that f1 and f2 are the same leaves. By
using the double linked list, all leaves between f1 and f2 are traversed to report
the visible regions. After reporting all visible regions that are obscured by the
new rectangle, we remove all leaves between f1 and f2. Finally, we make the
necessary adjustments to reflect the fact that this region belongs to the new
rectangle.

In particular, if f1 and f2 are different leaves then we remove all leaves be-
tween them since the new rectangle R will obscure the rectangles they represent.
Then, if the y-coordinates of the upper and lower edges of R do not belong in
ui.yrange, we just update the field region between f1 and f2 so that it belongs
to R. In any other case we must create a new leaf for either the upper or the
lower edge or both updating appropriately the region fields. If f1 and f2 are
the same leaf, then either we have to insert the upper or the lower edge of R or
there is a node ui+1 such that ui.yrange and ui+1.yrange are adjacent and the
same cases apply. The following lemma is essential in the construction of the
region tree.

Lemma 5 A visible region in the region tree is defined by the x coordinate of
its insertion, the x coordinate of the sweep plane and the y coordinates of two
edges of rectangles.

Proof. This is trivially true for the x coordinates. We have to show that each
visible region is defined between two horizontal edges. This is true since each
rectangle is characterized by only one z coordinate. As a result, rectangles will
always intersect among their edges.

8

A Gd G Dd D (a)

A Gd G Dd D (b)Fd A

A F Dd D (c)Fd

Ad Du

Ad Du

Ad Du

Figure 4: Consecutive parts of the list of leaves of the region tree T before and
after the insertion of a horizontal segment Fd. The circles designate the owner
of the region between the edges (field region).

We give an example of how the region tree is handled. We assume that
uppercase letters designate rectangles. Indexes u and d in uppercase letters
designate the upper and lower edge of the specified rectangle respectively. In
Figure 4, a part of the double linked list of the leaves of the region tree T
is depicted. Initially, the sweep plane is at position x = xs−1 and the list of
the leaves of T is shown in Figure 4(a). The next sweep station of the sweep
plane is at x = xs. In this position, the sweep plane intersects the left edge
of the rectangle F . Assume that the range [F.y1, F.y2] is between the leaves
of T with labels Ad and Du as depicted in Figure 4(a). Finally, assume that
A.z < G.z < F.z < D.z and that A.y1 < F.y1 < G.y1 and D.y1 < F.y2 < D.y2.
Therefore, only the lower edge of F will be inserted in T yielding the list depicted
in Figure 4(b).

The visible regions reported are:

1. The region of A defined by F.y1−G.y1 andA.x−xs (A.x is the x coordinate
of the start of the region).

2. The region of G defined by G.y1 −D.y1 and G.x− xs.

Finally, the regions reported are removed from the region tree T resulting in
the list of Figure 4(c). Note that the algorithm given in Figures 2 and 3 would
identify all nodes of the segment tree such that the union of their y-ranges would
be equal to [F.y1, D.y1]. Then, the region tree would be updated for each such
node.

The crucial observation in the analysis of procedure LeftEdge is that pro-
cedure LeftReportRegions stops its recursive search whenever it reaches one
of the ui or wi nodes (Figure 5(a)). As a result, even a visible segment of the
left edge hidden behind a complicated part of the scene costs only O(log n) to
discover. Procedure LeftReportRegions explores a forest of subtrees of the
segment tree. The roots of these subtrees are nodes that list R (R is associated
with these nodes), the nodes u1, u2, . . . , ul are leaves of these subtrees and the
remaining leaves are nodes w1, w2, . . . , wm (the proof of this argument can be

9

y

w1 w2 u1 u2 w3 u3

R

(a)

w1 w2 u1 u2 w3 u3

(b)

u'1 u'2

u'3

u'4

z

Figure 5: (a) R’s left edge divided into visible (ui) and invisible (wi) pieces, (b)
R’s right edge and revealed rectangles beneath R(u′

i).

found in [3]). For each of the ui nodes we search the tree T in O(log n) time
locating leaves p and q (the search keys are the y coordinates of the endpoints
of the ui.yrange). When we find the leaves we may insert at most two new
horizontal segments (O(1) amortized time), then report all the regions which
are defined between p and q in the double linked list and finally remove all the
reported regions while updating the new region. The deletion of these regions
(leaves) also incurs an O(1) amortized time cost per leaf. As a result, the cost
for each node ui is O(ki + logn), where ki is the number of reported regions.

Lemma 6 The procedure LeftEdge requires O(k logn) time to report k visible
regions for a scene of n rectangles taking only into account the left edges.

Proof. Assume that the visible segments of the left edge of a rectangle Rj are
s(u1), s(u2), . . . , s(ulj) and the invisible segments are s(w1), s(w2), . . . , s(wm),
where ui and wi are nodes of the segment tree. The discovery of the ui nodes
is achieved in O(log n) time. For every node ui, O(log n) time is required to

search the region tree. The cost of a single edge will be O(
∑lj

i=1 O(log n) + kj),
where kj is the number of reported regions. This means that the cost for each
visible segment in the segment tree is O(log n) while the cost for each reported
region is amortized O(1). Since the number of reported regions is at least equal
to the number of reported segments we assume that the cost for each region is
O(log n).

Thus, for all rectangles the time complexity will be:

n∑

j=1

O(l′j logn) = O(k logn)

where k =
∑n

j=1 l
′
j is the number of visible regions.

3.2.2 Deletion of an Edge

The procedure RightEdge(R, true, background, root) is invoked when the right
edge of a rectangle R is encountered. This procedure is depicted in Figures 6

10

Procedure RightEdge(Rectangle R, boolean visible, Rectangle R′, segment tree node u)
1. if (R.z < u.L) then visible = FALSE
2. if ((R.y1 ≤ u.y1) AND (u.y2 ≤ R.y2)) then

3. if (R′.z < u.Topv [u.p].z) then R′ = u.Topv [u.p]
4. if (R′.z < u.Hh.z) then R′ = u.Hh

5. if visible then RightReportRegions(R,visible,R′ ,u)
6. else

7. if (R′.z < u.Topv [u.p].z) then R′ = u.Topv [u.p]
8. if (R′.z < u.Hh.z) then R′ = u.Hh

9. if (R.y1 < u.ymid) then RightEdge(R,visible,R′ ,lson(u))
10. if (R.y2 > u.ymid) then RightEdge(R,visible,R′ ,rson(u))
11. u.p = u.p + 1

Figure 6: This procedure is invoked when the right edge of a rectangle R is
encountered.

Procedure RightReportRegions(Rectangle R, boolean atR, Rectagle R′, segment tree node u)
1. if (R.z < u.L) then return

2. if ((u.H < R.z) AND atR) then

3. Find leaves p and q in T so that p.y < u.y1 and there is no other leaf v such that p.y < v.y < u.y1

and act analogously for u.y2

4. Output region defined by p.y1, q.y2, x coordinate of the sweep plane and x coordinate of the field
showing the start of the region

5. Output regions defined by p and q and the leaves next to them in the list
6. if (p.y1 = R.y1) then delete p
7. if (q.y2 = R.y2) then delete q
8. Update properly the fields region of the adjacent leaves and the respective x fields
9. if (R′.z < u.Topv [u.p].z) then R′ = u.Topv [u.p]
10. if (R′.z < u.Hh.z) then R′ = u.Hh

11. if (u.H < R′.z) then

12. if (u.y1 = R′.y1) then insert in T the segment s with s.x1 = current x and s.y = R′.y1

13. if (u.y2 = R′.y2) then insert in T the segment s with s.x1 = current x and s.y = R′.y2

14. Find leaves p and q of T such that p.y ≤ R′.y1 < R′.y2 ≤ q.y and update field p.region and the x field
15. else

16. RightReportRegions(R,atR,R′,lson(u))
17. RightReportRegions(R,atR,R′,rson(u))

Figure 7: This procedure is invoked by procedure RightEdge to report the
visible regions.

and 7.
It is not hard to verify that the procedure RightEdge updates appropri-

ately the pointer u.p while maintaining the visible segments (by using the flag
visible). In Figure 5(b) the case handled by procedure RightReportRegions is
depicted. As before, we assume that the right edge of R is divided into con-
secutive invisible and visible segments. Assume that the visible segments are
s(u1), s(u2), . . . , s(ul) and the invisible segments are s(w1), s(w2), . . . , s(wm),
where ui and wi are nodes of the segment tree. In addition, the visible pieces
of rectangles along and below the right edge of R are divided into basic seg-
ments s(u′

1), s(u
′
2), . . . , s(u

′
r). The procedure RightReportRegions is analogous

to LeftReportRegions except that it continues exploring below nodes ui to
discover the new visible pieces.

This procedure maintains rectangle R′ to be the second highest rectangle
after R listed on the path from the root to the current node u. Each node u′

j

11

AAd F Dd D (a)Fd Du

AAd Dd D (b)Du

AAd G Dd D (c)Gd DuCd C

Figure 8: (a) a part of the list initially, (b) the same part after the deletion
of segment Fd, (c) the list after the insertion of the segments of the revealed
rectangles.

is a descendant of a visible node ui, such that u′
j.H is lower than the highest

rectangle along the path from the root to u′
j. Therefore, we are in position to

appropriately update T with information we have obtained concerning the re-
vealed rectangle R′ (note that R′ may as well be background). Thus, procedure
RightReportRegions explores a forest of trees of the segment tree. The roots
of these subtrees are nodes that list R, each ui is contained in a subtree, the
nodes u′

1, u
′
2, . . . , u

′
r are leaves of these subtrees and the remaining leaves are

w1, w2, . . . , wm (the proof can be found in [3]).
The deletion of an edge affects the region tree in a similar way as the insertion

of a vertical edge. First of all, the horizontal segments of the rectangle R are
removed from T (if they were stored) and all the region fields that belong to
R obtain the value −∞ (reporting at the same time the respective regions).
Then, the subtree rooted at a node ui with leaves u′

j is traversed in an inorder
fashion. Many basic segments s(u′

j) may belong to the same revealed rectangle
R′. Instead of accessing the tree T for each of the nodes u′

j we save and combine
the queries into one query. Because of the inorder tree walk, all the basic
segments belonging to a single region of a revealed rectangle will be accessed
sequentially. Thus, we have to access T only once for each region of a revealed
rectangle R′. This happens when we access a basic segment s(u′

j) which belongs
to a region of a different revealed rectangle.

In Figure 8 an example of manipulation of T is given when a right edge is
encountered. Assume that the sweep plane is at position xs and has reached
the right edge of the rectangle F . In a nutshell, the horizontal segment Fd is
removed from T resulting in the list depicted in Figure 8(b). Note that Fu is
not visible and thus not present in the tree. When this segment is removed, the
following regions are reported:

1. The region of F defined by F.y1 −D.y1 and F.x − xs.

2. The region of A defined by A.y1 − F.y1 and A.x− xm.

After the deletion, the x coordinate of the start of the region A obtains the
value xs. Assume that C and G are the revealed rectangles and that only their

12

lower horizontal edges are visible. We insert first G and then C and finally the
resulting list is depicted in Figure 8(c).

Lemma 7 Procedure RightEdge requires O(k logn) time to report k visible
regions for a scene of n rectangles taking only into account the right edges.

Proof. Assume that the visible segments of the right edge of a rectangle Rj

are s(u1), s(u2), . . . , s(ulj) and the invisible segments s(w1), s(w2), . . . , s(wm),
where ui and wi are nodes of the segment tree. The discovery of each ui node
requires O(log n) time. In addition, for each such node we update the region
tree in O(log n) time in order to report the respective visible region. In this way,
the total time to report the visible regions for the right edge is O(lj logn). As
a result, the time complexity for all rectangles will be

∑n
j=1 O(lj logn), which

is bounded by O(k logn).
We must also consider the cost for computing and inserting in the region tree

all revealed rectangles. Assume that a visible segment s(ui) is divided into basic
segments s(u′

1), s(u
′
2), . . . , s(u

′
r). Each of these basic segments costO(log n) time

to be inserted in T . However, this cost does not change the time complexity
of the algorithm since each basic segment and the region it represents, will be
reported later (in another sweep station) by either LeftEdge or RightEdge. In
the case of LeftEdge the visible region which is represented by a basic segment
will be reported by accessing T . Thus, the O(log n) time overhead for each basic
segment is assigned to the cost of reporting it. The same goes for the right edge.

The following theorem summarizes the result.

Theorem 1 The hidden surface removal problem for a set of n iso-oriented
rectangles can be solved in O((n+k) log n) time and linear space, where k is the
number of reported regions.

Proof. The time complexity of the algorithm is:

Total Time = Prepr. + (Precomp. of segm. tree)×(#slabs) + (Reporting
Time)

To sort the x, y and z coordinates, O(n log n) time is required (Preprocess-
ing). In each slab O(n) time is necessary (Lemma 4) to construct the segment
tree and the arrays for each node. As a result, O(n log n) time is needed in total
because the scene is divided into O(log n) slabs. From Lemma 6 and Lemma 7
we deduce that the reporting time is O(k log n), where k is the number of visi-
ble regions reported. From this discussion it is clear that the total time of the
algorithm is O((n+ k) logn).

The space complexity of the algorithm is:

Total Space = (Space for segment tree) + (Space for region tree)

13

The sequences u.xTopv , u.T opv and u.xHL can be constructed (Lemma 4)
in linear time and so the space cannot be more. The skeleton of the segment
tree requires linear space (since we store O(n/ logn) segments, each of which
is associated with O(log n) nodes). As a result, the total space needed by the
segment tree is linear. For the region tree, the crucial observation is that at any
position the sweep plane will intersect at most 2n horizontal segments. As a
result, at most 2n− 1 regions can be visible in any sweep station of the sweep
plane. Consequently, the region tree T has at most 2n − 1 leaves and so it
requires linear space. Therefore, the total space is O(n).

4 Conclusions

In this paper we designed an algorithm for hidden surface removal of iso-oriented
rectangles in a static scene. Our algorithm uses linear space and reports all
visible regions in O((n + k) logn) time, where n is the number of rectangles
present in the scene and k is the number of reported regions.

The open problem is to design an O(n log n + k) algorithm that uses lin-
ear space for this problem. It would be also nice if these techniques could be
transferred to more general scenes consisting of arbitrary rectangles or even
polygons.

References

[1] M.J. Atallah and M.T. Goodrich. Output-Sensitive Hidden Surface Elimi-
nation for Rectangles. Computer Science Dept., John Hopkins University,
Technical Report 88-13, 1988.

[2] J.L. Bentley. Solution to Klee’s Rectangle Problem. Carnegie-Mellon Uni-
versity, Dept. of Computer Science, unpublished notes, 1977.

[3] M. Bern. Hidden Surface Removal for Rectangles. Journal of Computer and
System Sciences. 40:49-69, 1990.

[4] L.J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced
Trees. In Proc. of the IEEE Conference on Foundations of Computer Science
(FOCS), pp. 8-21, 1978.

[5] R.H. Güting and T. Ottmann. New Algorithms for Special Cases of the Hid-
den Line Elimination Problem. In Proc. of the 2nd Symposium of Theoretical
Aspects of Computer Science (STACS), 1985.

[6] N. Kitsios and A. Tsakalidis. Space-Optimal Hidden Line Elimination for
Rectangles. Information Processing Letters. 60:195-200, 1996.

[7] M. McKenna. Worst-Case Optimal Hidden Surface Removal. ACM Trans-
actions n Graphics, 6:19-28, 1987.

14

[8] K. Mehlhorn, S. Naeher and C. Uhrig. Hidden Line Elimination for Iso-
Oriented Rectangles. Information Processing Letters. 35:137-143, 1990.

15

	1 Introduction
	2 Preliminaries
	3 The Algorithm
	3.1 The Preprocessing Stage
	3.2 The Reporting Stage
	3.2.1 Insertion of a New Edge
	3.2.2 Deletion of an Edge

	4 Conclusions

