A CRITERION FOR KOLCHIN SUBGROUPS OF $Out(F_r)$

EDGAR A. BERING IV

ABSTRACT. This article provides a decidable criterion for when a subgroup of $\operatorname{Out}(F_r)$ generated by two Dehn twists consists entirely of polynomially growing elements, answering an earlier question of the author.

1. INTRODUCTION

Outer automorphims of a free group divide into two categories, polynomially growing and exponentially growing, according to the behaviour of word lengths under iteration. Subgroups of $Out(F_r)$ that consist of only polynomially growing outer automorphisms are known as *Kolchin* subgroups and are the $Out(F_r)$ analog of unipotent subgroups of a linear group.

Clay and Pettet [3] and Gultepe [6] give sufficient conditions for when a subgroup of $Out(F_r)$ generated by two Dehn twists contains an exponentially growing outer automorphism. This article gives an algorithmic criterion that characterizes when a subgroup of $Out(F_r)$ generated by two Dehn twists is Kolchin, in terms of a combinatorial invariant of the gnerators known as the *edge-twist* directed graph (see Definition 2.8).

Theorem 1.1 (Main Theorem). Suppose $\sigma, \tau \in \text{Out}(F_r)$ are Dehn twists. The subgroup $\langle \sigma, \tau \rangle$ is Kolchin if and only if the edge twist digraph of the defining graphs of groups is directed acyclic.

2. Background

2.1. Graphs of groups and Dehn twists. A graph Γ is a collection of vertices $V(\Gamma)$, edges $E(\Gamma)$, initial and terminal vertex maps $o, t : E \to V$ and an involution $\overline{\cdot} : E \to E$ satisfying $\overline{e} \neq e$ and $o(\overline{e}) = t(e)$. A directed graph (digraph) omits the involution.

Definition 2.1. A graph of groups is a pair (G, Γ) where Γ is a connected graph and G is an assignment of groups to the vertices and edges of Γ satisfying $G_e = G_{\bar{e}}$ and injections $\iota_e : G_e \to G_{t(e)}$. The assignment will often be suppressed and Γ_v, Γ_e used instead.

Definition 2.2. The fundamental groupoid $\pi_1(\Gamma)$ of a graph of groups Γ is the groupoid with vertex set $V(\Gamma)$ generated by the path groupoid of Γ and the groups G_v subject to the following relations. We require that for each $v \in V(\Gamma)$ the group G_v is a subgroupoid based at v and that the group and groupoid structures agree. Further, for all $e \in E(\Gamma)$ and $g \in G_e$ we have $\bar{e}\iota_{\bar{e}}(g)e = \iota_e(g)$.

The fundamental group of Γ based at v, $\pi_1(\Gamma, v)$ is the vertex subgroup of $\pi_1(\Gamma)$ based at v. It is standard that changing the basepoint gives an isomorphic group [7, 8].

Let (e_1, \ldots, e_n) be a possibly empty edge path in Γ starting at v and (g_0, \ldots, g_n) be a sequence of elements $g_i \in G_{t(e_i)}$ with $g_0 \in G_v$. These data represent an arrow of $\pi_1(\Gamma)$ by the groupoid product

 $g_0e_1g_1\cdots e_ng_n.$

A non-identity element of $\pi_1(\Gamma)$ expressed this way is *reduced* if either n = 0 and $g_0 \neq id$, or n > 0 and for all i such that $e_i = \bar{e}_{i+1}, g_i \notin \iota_{e_i}(G_{e_i})$. The edges appearing in a reduced arrow are uniquely determined. Further, if $t(e_n) = o(e_1)$ the arrow is cyclically reduced if either $e_n \neq \bar{e}_0$ or $e_n = \bar{e}_0$ and $g_n g_0 \notin \iota_{e_n}(G_{e_n})$. For an element $g \in \pi_1(\Gamma, v)$, the edges appearing in a cyclically reduced arrow conjugate to g in $\pi_1(\Gamma)$ is a conjugacy class invariant.¹

Definition 2.3. Given a graph of groups Γ a subset of edges $E' \subseteq E(\Gamma)$ and edgegroup elements $\{z_e\}_{e \in E'}$ satisfying $z_e \in Z(\Gamma_e)$ and $z_{\bar{e}} = z_e^{-1}$, the Dehn twist of Γ about E' by $\{z_e\}$ is the fundamental groupoid automorphism D_z given on the generators by

$D_z(e) = ez_e$	$e \in E'$
$D_z(e) = e$	$e \not\in E'$
$D_z(g) = g$	$g\in \Gamma_v$

As this groupoid automorphism preserves vertex subgroups it induces a well-defined outer automorphism class $D_z \in \text{Out}(\pi_1(\Gamma, v))$, which we will also refer to as a Dehn twist.

For a group G we say $\sigma \in \text{Out}(G)$ is a *Dehn twist* if it can be realized as a Dehn twist about some graph of groups Γ with $\pi_1(\Gamma, v) \cong G$.

Specializing to $\operatorname{Out}(F_r)$, when $\sigma \in \operatorname{Out}(F_r)$ is a Dehn twist there are many graphs of groups Γ with $\pi_1(\Gamma, v) \cong F_r$ that can be used to realize σ . However, Cohen and Lustig [4] define the notion of an *efficient graph of groups* representative of a Dehn twist and show that each Dehn twist in $\operatorname{Out}(F_r)$ has a unique efficient representative. For a fixed σ let $\mathcal{G}(\sigma)$ denote the graph of groups of its efficient representative; edge groups of $\mathcal{G}(\sigma)$ are infinite cyclic [4].

Remark 2.4. If $\sigma, \tau \in \text{Out}(F_r)$ are Dehn twists with a common power, then $\mathcal{G}(\sigma) = \mathcal{G}(\tau)$.

2.2. Topological representatives and the Kolchin theorem. Given a graph Γ the topological realization of Γ is a simplicial complex with zero-skeleton $V(\Gamma)$ and one-cells joining o(e) and t(e) for each edge in a set of $\bar{\cdot}$ orbit representatives. It will not cause confusion to use Γ for both a graph and its topological representative. If $\gamma \subset \Gamma$ is a based loop, denote the associated element of $\pi_1(\Gamma)$ by γ^* . Given $\sigma \in \text{Out}(F_r)$, a topological realization is a homotopy equivalence $\hat{\sigma} : \Gamma \to \Gamma$ so that $\hat{\sigma}_* : \pi_1(\Gamma, v) \to \pi_1(\Gamma, \hat{\sigma}(v))$ is a representative of σ . A homotopy equivalence $\hat{\sigma} : \Gamma \to \Gamma$ is filtered if there is a filtration $\emptyset = \Gamma_0 \subsetneq \Gamma_1 \subsetneq \cdots \subsetneq \Gamma_k = \Gamma$ preserved by $\hat{\sigma}$.

Definition 2.5. A filtered homotopy equivalence $\hat{\sigma} : \Gamma \to \Gamma$ is upper triangular if (1) $\hat{\sigma}$ fixes the vertices of Γ ,

¹These edges are covered by the axis of g in the Bass-Serre tree of Γ .

- (2) Each stratum of the filtration $\Gamma_i \setminus \Gamma_{i-1} = e_i$ is a single topological edge,
- (3) Each edge e_i has a preferred orientation and with this orientation there is a closed path $u_i \subseteq \Gamma_{i-1}$ based at $t(e_i)$ so that $\hat{\sigma}(e_i) = e_i u_i$.

The path u_i is called the suffix associated to u_i . A filtration assigns each edge a height, the *i* such that $e \in \Gamma_i \setminus \Gamma_{i-1}$, and taking a maximum this definition extends to edge paths.

Every Dehn twist in $\operatorname{Out}(F_r)$ has an upper-triangular representative [2, 4]. In a previous paper [1] I describe how to construct $\mathcal{G}(\sigma)$ from an upper-triangular representative, following a similar construction of Bestvina, Feighn, and Handel [2]. The following is an immediate consequence of my construction.

Lemma 2.6. Suppose Γ is a filtered graph and $\sigma \in \text{Out}(F_r)$ is a Dehn twist that is upper triangular with respect to Γ . Then

- (1) there is a height function $ht : E(\mathcal{G}(\sigma)) \to \mathbb{N}$ so that for any loop $\gamma \subseteq \Gamma_i$ the height of the edges in a cyclically reduced representative of the conjugacy class of γ^* in $\pi_1(\mathcal{G}(\sigma))$ is at most *i*,
- (2) For each edge $e \in E(\mathcal{G}(\sigma))$, $ht(e) = ht(\bar{e})$, and the edge group $\mathcal{G}(\sigma)_e$ is a conjugate of a maximal cyclic subgroup of F_r that contains u_i^* for some suffix u_i , and $ht(e) > \min_{\gamma \sim u_i} \{ht_{\Gamma}(\gamma)\}$, where γ ranges over loops freely homotopic to u_i .

Bestvina, Feighn, and Handel proved an $Out(F_r)$ analog of the classical Kolchin theorem for $Out(F_r)$, which provides simultaneous upper-triangular representatives for Kolchin-type subgroups of $Out(F_r)$.

Theorem 2.7 ([2]). Suppose $H \leq \text{Out}(F_r)$ is a Kolchin subgroup. Then there is a finite index subgroup $H' \leq H$ and a filtered graph Γ so that each $\sigma \in H'$ is upper triangular with respect to Γ .

2.3. Twists and polynomial growth. In a previous paper [1] I introduced the edge-twist digraph of two Dehn twists and used it to provide a sufficient condition for a subgroup of $Out(F_r)$ generated by two Dehn twists to be Kolchin.

Definition 2.8 ([1]). The edge-twist digraph $\mathcal{ET}(A, B)$ of two graphs of groups A, B with isomorphic fundamental groups and infinite cyclic edge stabilizers is the digraph with vertex set

$$V(\mathcal{ET}(A, B)) = \{(e, \bar{e}) | e \in E(A)\} \cup \{(f, \bar{f}) | f \in E(B)\}$$

directed edges $((e,\bar{e}), (f,\bar{f})) e \in E(A), f \in E(B)$ when a generator of A_e uses f or \bar{f} in its cyclically reduced representation in $\pi_1(B)$, and directed edges $((f,\bar{f}), (e,\bar{e})),$ $f \in E(B), e \in E(A)$ when a generator of B_f uses e or \bar{e} in a cyclically reduced representation in $\pi_1(A)$.

Remark 2.9. This is well-defined, using an edge is a conjugacy invariant, and using an edge or its reverse is preserved under taking inverses.

Lemma 2.10 ([1]). If $\sigma, \tau \in \text{Out}(F_r)$ are Dehn twists and $\mathcal{ET}(\mathcal{G}(\sigma), \mathcal{G}(\tau))$ is directed acyclic, then $\langle \sigma, \tau \rangle$ is Kolchin.

3. Proof of the main theorem

Proof. It suffices to prove the converse to Lemma 2.10. Suppose $\langle \sigma, \tau \rangle$ is Kolchin. By Theorem 2.7, there is a finite index subgroup $H \leq \langle \sigma, \tau \rangle$ where every element of H is upper triangular with respect respect to a fixed filtered graph Γ . Since H is finite index, there are powers m, n so that $\sigma^m, \tau^n \in H$, so that σ^m and τ^n are upper triangular with respect to Γ .

By Lemma 2.6, the filtration of Γ induces height functions on $E(\mathcal{G}(\sigma^m))$ and $E(\mathcal{G}(\tau^n))$, combining these gives a height function on the vertices of $\mathcal{ET}(\mathcal{G}(\sigma^m), \mathcal{G}(\tau^n))$. Every directed edge $((e, \bar{e}), (f, \bar{f}))$ satisfies ht(e) > ht(f). Indeed, suppose $(e, \bar{e}) \in E(\mathcal{G}(\sigma^m))$. Let $[g] \subset F_r$ be the conjugacy class of a generator of $\mathcal{G}(\sigma^m)_e$. By Lemma 2.6 (ii), there is a representative $g \in [g]$ such that $g^k = u_i^*$ for some σ -suffix u_i . Take a minimum height loop γ representing [g], so that $\gamma \subseteq \Gamma_{ht(\gamma)}$. Again by Lemma 2.6 (ii), $ht(e) > ht(\gamma)$. Finally, by Lemma 2.6 (i), each edge f in a cyclically reduced $\pi_1(\mathcal{G}(\tau^n))$ representative of [g] satisfies $ht(f) \leq ht(\gamma)$. Thus ht(e) > ht(f) for each directed edge with origin (e, \bar{e}) , as required. The argument for generators of the edge groups of $\mathcal{G}(\tau^n)$ is symmetric. Therefore any directed path in $\mathcal{ET}(\mathcal{G}(\sigma^m), \mathcal{G}(\tau^n))$ has monotone decreasing vertex height, which implies that \mathcal{ET} is directed acyclic. To conclude, observe that by Remark 2.4 $\mathcal{ET}(\mathcal{G}(\sigma^m), \mathcal{G}(\tau^n)) = \mathcal{ET}(\mathcal{G}(\sigma), \mathcal{G}(\tau))$.

Cohen and Lustig [5] give an algorithm to find efficient representatives. Computing the edge-twist digraph and testing if it is acyclic are straightforward computations, so the criterion in the main theorem is algorithmic.

Acknowledgements

I thank Mladen Bestvina for a helpful conversation that led to this note.

References

- Edgar A. Bering IV, Uniform independence for Dehn twist automorphisms of a free group, Proceedings of the London Mathematical Society, to appear, DOI 10.1112/plms.12208, available at https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms.12208.
- [2] M. Bestvina, M. Feighn, and M. Handel, The Tits alternative for Out(F_n). II. A Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1–59, DOI 10.4007/annals.2005.161.1. MR2150382
- [3] Matt Clay and Alexandra Pettet, Twisting out fully irreducible automorphisms, Geom. Funct. Anal. 20 (2010), no. 3, 657–689, DOI 10.1007/s00039-010-0072-9. MR2720227
- Marshall M. Cohen and Martin Lustig, Very small group actions on R-trees and Dehn twist automorphisms, Topology 34 (1995), no. 3, 575–617, DOI 10.1016/0040-9383(94)00038-M. MR1341810
- [5] _____, The conjugacy problem for Dehn twist automorphisms of free groups, Comment. Math. Helv. 74 (1999), no. 2, 179–200, DOI 10.1007/s000140050085. MR1691946
- [6] Funda Gültepe, Fully irreducible automorphisms of the free group via Dehn twisting in $\sharp_k(S^2 \times S^1)$, Algebr. Geom. Topol. **17** (2017), no. 3, 1375–1405, DOI 10.2140/agt.2017.17.1375. MR3677931
- [7] P. J. Higgins, The fundamental groupoid of a graph of groups, J. London Math. Soc. (2) 13 (1976), no. 1, 145–149, DOI 10.1112/jlms/s2-13.1.145. MR0401927
- [8] Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR1954121