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ON THE SOLVABILITY OF REGULAR SUBGROUPS

IN THE HOLOMORPH OF A FINITE SOLVABLE GROUP

CINDY (SIN YI) TSANG AND CHAO QIN

Abstract. We exhibit infinitely many natural numbers n for which there exists at least

one insolvable group of order n, and yet the holomorph of any solvable group of order n has

no insolvable regular subgroup. We also solve Problem 19.90 (d) in the Kourovka notebook.
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1. Introduction

Let N be a finite group and write Perm(N) for its symmetric group. First

recall that a subgroup G of Perm(N) is said to be regular if the map

ξG : G −→ N ; ξG(σ) = σ(1N)
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is bijective, or equivalently, if the G-action on N is both transitive and free.

For example, the images of the left and right regular representations






λ : N −→ Perm(N); λ(η) = (x 7→ ηx),

ρ : N −→ Perm(N); ρ(η) = (x 7→ xη−1),

respectively, are both regular subgroups of Perm(N). Plainly, a regular sub-

group of Perm(N) has the same order as N , but is not necessarily isomorphic

to N in general. Given a group G of order |N |, define

E ′(G,N) = {regular subgroups of Hol(N) isomorphic to G} ,

where Hol(N) denotes the holomorph of N and is given by

(1.1) Hol(N) = ρ(N)⋊ Aut(N).

This set E ′(G,N) is an important object in the studies of Hopf-Galois struc-

tures and skew braces; see [5, Chapter 2] and [19], respectively. In particular,

there is a connection between elements of E ′(G,N) and

1. Hopf-Galois structures of type N on a Galois extension with group G;

2. skew braces with additive group N and multiplicative group G.

Let us remark that skew braces in turn are closely related to non-degenerate

set-theoretic solutions to the Yang-Baxter equation; see [10].

Observe that E ′(G,N) contains λ(N) and ρ(N) when G ≃ N . However, in

general E ′(G,N) might be empty when G 6≃ N . It is natural to ask:

Question 1.1. For the set E ′(G,N) to be non-empty, what are some restric-

tions on G and N in terms of their group-theoretic properties?

This question was studied by N. P. Byott in [4], where he showed that:

Proposition 1.2. Let G and N be two finite groups of the same order such

that the set E ′(G,N) is non-empty.

(a) If N is nilpotent, then G is solvable.

(b) If G is abelian, then N is solvable.

Proof. See [4, Theorems 1 and 2]. �
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In fact, the proof of Proposition 1.2 (b) from [4, Section 6] may be used to

show the following stronger result. This was observed by the first author in

[24, Theorem 4.2.4], which is unpublished, and we shall reproduce the proof

in Section 2 below. Let us remark that Theorem 1.3 (c) solves Problem 19.90

(d) in the Kourovka notebook [16].

Theorem 1.3. Let G and N be two finite groups of the same order such that

the set E ′(G,N) is non-empty.

(a) If G is cyclic, then N is supersolvable.

(b) If G is abelian, then N is metabelian.

(c) If G is nilpotent, then N is solvable.

In the proof of [4, Corollary 1.1], N. P. Byott gave examples of solvable G

and insolvable N with non-empty E ′(G,N). Also, he noted that by contrast,

so far there is no known example of

(1.2) insolvable G and solvable N with non-empty E ′(G,N).

Results in the literature suggest that in fact no such example exists.

Proposition 1.4. Let G and N be two finite groups of the same order such

that the set E ′(G,N) is non-empty.

(a) If G is non-abelian simple, then N ≃ G.

(b) If G is the double cover of Am with m ≥ 5, then N ≃ G.

(c) If G is Sm with m ≥ 5, then N contains an isomorphic copy of Am.

Here Am and Sm denote, respectively, the alternating and symmetric groups

on m letters.

Proof. See [3, Theorem 1.1], [22, Theorem 1.6], and [23, Theorem 1.3]. �

It leads us to the following conjecture. It was N. P. Byott who told the first

author about this problem in person and Conjecture 1.5 should be attributed

to him.

Conjecture 1.5. For any n ∈ N, there do not exist finite groups G and N

both of order n for which (1.2) holds.
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In Section 3, using techniques developed by the first author in [22, Section

4.1], we shall prove some necessary criteria for E ′(G,N) to be non-empty. In

Sections 4 and 5, by applying our criteria, we shall show that:

Theorem 1.6. Conjecture 1.5 holds when n is cube-free.

Theorem 1.7. Conjecture 1.5 holds when n = 2r · n0 with

n0 = 22 · 3 · 5, 24 · 32 · 17, or 4ℓ0(4ℓ0 + 1)(2ℓ0 − 1),

where ℓ0 is any odd prime such that (4ℓ0 + 1)(2ℓ0 − 1) is square-free and r is

any non-negative integer.

Remark 1.8. The numbers n0 in Theorem 1.7 are significant because

|A5| = 22 · 3 · 5,

|PSL2(17)| = 24 · 32 · 17,

|Sz(22m+1)| = 42m+1(42m+1 + 1)(22m+1 − 1) for m ∈ N,(1.3)

where Sz(−) denotes the Suzuki groups [20], and there is a unique insolvable

group of order n0 which is non-abelian simple; see Lemmas 5.5 and 5.7. Also,

the key is that they satisfy the special conditions in Theorem 5.1 below.

Remark 1.9. Let ℓ0 be an odd prime and let us discuss how often

(4ℓ0 + 1)(2ℓ0 − 1)

is square-free. Note that 45+1 is divisible by 25, so let us assume that ℓ0 6= 5.

Suppose that p is a prime and p2 divides (4ℓ0 + 1)(2ℓ0 − 1). Clearly p ≥ 5

and p cannot divide both 4ℓ0 + 1 and 2ℓ0 − 1. We shall show that p must be

a Wieferich prime, namely 2p−1 ≡ 1 (mod p2). We thank one of the referees

for pointing out this relation with Wieferich primes. If

2ℓ0 ≡ 1 (mod p2),

then ℓ0 | p− 1 and p is clearly a Wieferich prime. If

4ℓ0 ≡ −1 (mod p2), and in particular 24ℓ0 ≡ 16ℓ0 ≡ 1 (mod p2),



SOLVABILITY OF REGULAR SUBGROUPS IN THE HOLOMORPH 5

then −1 is a square mod p and 4 | p− 1. Since 410 ≡ 1 (mod 25) and ℓ0 6= 5,

it also implies that p 6= 5. Thus, we have p ≥ 7 and so 16 6≡ 1 (mod p). Then,

it follows that ℓ0 | p− 1, whence 4ℓ0 | p− 1 and we see that p is a Wieferich

prime.

Except 1093 and 3511, there is no Wieferich prime less than 4×1012 by [6].

This suggests that (4ℓ0 + 1)(2ℓ0 − 1) is square-free for most ℓ0 ≥ 7, if not all.

In Section 6, we shall also present an algorithm which may be used to show

that Conjecture 1.5 holds for any given n ∈ N, given that all finite groups of

order n have been classified. By implementing our algorithm in Magma [17]

and using the SmallGroups Library [1], we verified that:

Theorem 1.10. Conjecture 1.5 holds when n ≤ 2000.

A natural number n is called solvable if every group of order n is solvable,

and is called non-solvable otherwise. Conjecture 1.5 is of course trivial when

n is a solvable number. Since any multiple of a non-solvable number is again

non-solvable, the numbers n in Theorem 1.7 are non-solvable by Remark 1.8.

See [18, A056866] for a complete list of non-solvable numbers at most 2000.

2. Proof of Theorem 1.3

Let N be a finite group and let G be any regular subgroup of Hol(N). Let

projρ : Hol(N) −→ ρ(N) and projAut : Hol(N) −→ Aut(N),

respectively, denote the projection map and homomorphism afforded by (1.1).

Since G is regular, we easily verify that (projρ)|G is bijective and that

ρ(N)⋊ projAut(G) = G · projAut(G).

Theorem 1.3 then follows directly from Lemmas 2.1 and 2.2 below.

Lemma 2.1. Let Γ be a finite group which is a product of two subgroups ∆1

and ∆2, namely, elements of Γ are of the shape δ1δ2 with δ1 ∈ ∆1, δ2 ∈ ∆2.

(a) If ∆1 and ∆2 are cyclic, then Γ is supersolvable.

(b) If ∆1 and ∆2 are abelian, then Γ is metabelian.

(c) If ∆1 and ∆2 are nilpotent, then Γ is solvable.
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Proof. This is known, by [7], [14], and [15], respectively. �

Lemma 2.2. The properties “cyclic”, “abelian”, “nilpotent”, “supersolvable”,

“metabelian”, “solvable” are all quotient-closed and subgroup-closed.

Proof. For “cyclic” and “abelian”, this is obvious. For “nilpotent” and “su-

persolvable”, a proof may be found in [11, Theorems 10.3.1 and 10.5.1]. As for

“metabelian” and “solvable”, see [13, 3.10 and the discussion after 3.11]. �

3. Criteria for non-emptiness

Throughout this section, assume that G and N are two finite groups of the

same order such that the set E ′(G,N) is non-empty. Then, as noticed in [22,

Proposition 2.1], for example, by (1.1) this is equivalent to the existence of

f ∈ Hom(G,Aut(N)) and bijective g ∈ Map(G,N)

satisfying the relation

(3.1) g(στ) = g(σ) · f(σ)(g(τ)) for all σ, τ ∈ G.

Below, we shall use (3.1) to give two necessary relations between G and N ,

both of which are not very hard to prove. Yet, the criterion in Proposition 3.3

seems to be fairly powerful, and it alone allows us to prove Theorems 1.6

and 1.7. Also, let us recall the following useful fact.

Lemma 3.1. Let Γ be a group containing a normal subgroup ∆. Then, the

group Γ is solvable if and only if both ∆ and Γ/∆ are solvable.

Proof. This is a standard result; see [13, 3.10], for example. �

To state the first criterion, let Inn(N) and Out(N), denote the inner and

outer automorphism groups of N , respectively. Let π : Aut(N) −→ Out(N)

denote the natural quotient map with kernel equal to Inn(N). Then, we have:

Proposition 3.2. If G is insolvable and N is solvable, then (π ◦ f)(G) is an

insolvable subgroup of Out(N).

Proof. Observe that f induces an embedding

ker(π ◦ f)/ ker(f) −→ Inn(N)
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and that g restricts to a homomorphism ker(f) −→ N by (3.1). Hence, if N

is solvable, then both ker(f) and Inn(N) are solvable by Lemma 2.2, and so

ker(π ◦ f) is solvable by Lemma 3.1. If G is insolvable in addition, then since

G/ ker(π ◦ f) ≃ (π ◦ f)(G),

we see that (π ◦ f)(G) is insolvable, again by Lemma 3.1. �

To state the second criterion, let us recall that a subgroup M of N is called

characteristic if ϕ(M) = M for all ϕ ∈ Aut(N). In this case, plainly M is

normal in N , and we shall write

θM : Aut(N) −→ Aut(N/M); θM(ϕ) = (ηM 7→ ϕ(η)M)

for the natural homomorphism. The use of characteristic subgroups of N is

motivated by the arguments in [3]; also see [22, Section 4.1]. Our main tool

is the following proposition; also see Proposition 6.1.

Proposition 3.3. Let M be any characteristic subgroup of N and define

H = g−1(M).

Then, this set H is a subgroup of G, and E ′(H,M) is non-empty. Moreover,

if N/M is solvable and ker(θM ◦ f) is insolvable, then H is insolvable.

Proof. The set H is a subgroup of G by (3.1); see [22, Lemma 4.1]. Also, we

have a homomorphism

res(f) : H −→ Aut(M); res(f)(σ) = f(σ)|M

induced by f since M is characteristic, and also a bijective map

res(g) : H −→ M ; res(g)(σ) = g(σ)

induced by g since g is bijective. Clearly, it follows directly from (3.1) that

res(g)(στ) = res(g)(σ) · (res(f)(σ))(res(g)(τ)) for all σ, τ ∈ H.

Then, by [22, Proposition 2.1], which is a consequence of (1.1), this implies

that E ′(H,M) is non-empty. This proves the first statement.



8 CINDY (SIN YI) TSANG AND CHAO QIN

Next, as noted in [22, Lemma 4.1], the relation (3.1) implies that

ker(θM ◦ f) −→ N/M ; σ 7→ g(σ)M

induced by g is a homomorphism, and so we have an embedding

ker(θM ◦ f)

ker(θM ◦ f) ∩H
−→ N/M.

Thus, if N/M is solvable and ker(θM ◦ f) is insolvable, then ker(θM ◦ f) ∩H

must be insolvable by Lemma 3.1, which in turn implies that H is insolvable

by Lemma 2.2. The second statement then follows. �

Although Proposition 3.3 is valid for any characteristic subgroup M of N ,

motivated by [3], we shall consider the case when M is a (proper) maximal

characteristic subgroup of N . In this case, the quotient N/M is a non-trivial

characteristically simple group, and so we know that

N/M ≃ Tm, where T is a simple group and m ∈ N.

Hence, if N is solvable, then

(3.2) N/M ≃ (Z/pZ)m and in particular Aut(N/M) ≃ GLm(p),

where p is a prime. The following is well-known.

Lemma 3.4. For any prime p and m ∈ N, the group GLm(p) is solvable if

and only if m = 1 or m = 2 with p ≤ 3.

4. Proof of Theorem 1.6

Suppose for contradiction that the claim is false and let n be the smallest

cube-free number for which Conjecture 1.5 fails. Let G and N be two groups

of order n satisfying (1.2). Let M be any proper and maximal characteristic

subgroup of N . Clearly M is solvable because N is solvable. As in (3.2), we

then know that

N/M ≃ (Z/pZ)m, where p is a prime and m ∈ N.

Notice that |M | = n/pm and that m = 1, 2 because n is cube-free. Hence, by

Lemma 4.1 (b) below, the kernel of any homomorphism G −→ Aut(N/M) is
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insolvable. From Proposition 3.3, it follows that E ′(H,M) is non-empty for

some insolvable subgroup H of G of the same order as M . This contradicts

the minimality of n and so Theorem 1.6 must be true.

Lemma 4.1. Let p be any prime and let m = 1, 2.

(a) The group GLm(p) has no non-abelian simple subgroup.

(b) The kernel of a homomorphism from a finite insolvable group of cube-free

order to GLm(p) is insolvable.

Proof. For m = 1 or p = 2, the group GLm(p) is solvable by Lemma 3.4, and

the claims hold by Lemmas 2.2 and 3.1. For m = 2 and p odd, first suppose

for contradiction that GL2(p) has a subgroup A which is non-abelian simple.

Observe that the homomorphism

A GL2(p) (Z/pZ)×inclusion determinant

must be trivial, and so A is in fact a subgroup of SL2(p). Also, note that A

has an element of order two by the Feit-Thompson theorem. Since p is odd,

the matrix
(

−1 0
0 −1

)

, which lies in the center, is the only element in SL2(p) of

order two. It follows that A has non-trivial center, which is a contradiction.

Alternatively, the subgroups of SL2(p) have been classified; see [21, Theorem

6.17]. None of the groups listed there are non-abelian simple, and we obtain

a contradiction. We thank one of the referees for bringing Dickson’s result on

the subgroups of PSL2(p) to our attention, which led us to this simpler proof

which does not use the Feit-Thompson theorem. This proves part (a). Since

any insolvable group of cube-free order has a non-abelian simple subgroup by

[8], we see that part (b) follows from part (a) and Lemma 3.1. �

5. Almost square-free orders

In this section, we shall prove Theorem 1.7. First, let us prove the following

more general statement.

Theorem 5.1. Suppose that n0 = 2r0 · 3ǫ0 · p1 · · · pk0, where

r0, k0 ∈ N≥0, ǫ0 ∈ {0, 1, 2}, and p1, . . . , pk0 ≥ 5 are distinct primes,

and that Conjecture 1.5 holds when n = n0. Assume that the following hold.
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1. the subgroups of index a power of two of an insolvable group of order n0

are all insolvable;

2. there is no non-abelian simple group of order 2r · n0 for r ∈ N;

3. the number n0/2 is solvable in the case that n0 is even;

4. the numbers (2r · n0)/p, where p ranges over the odd primes dividing n0,

are all solvable for r ∈ N≥0.

Then Conjecture 1.5 also holds when n = 2r · n0 for any r ∈ N.

Proof. Suppose for contradiction that the four conditions are satisfied but the

conclusion is false. Let r ∈ N be the smallest number such that Conjecture 1.5

does not hold when n = 2r · n0. Also, let G and N be two groups of order n

satisfying (1.2). Let M be any proper and maximal characteristic subgroup

of N . Clearly M is solvable because N is solvable. As in (3.2), we have

N/M ≃ (Z/pZ)m, where p is a prime and m ∈ N.

Notice that |M | = n/pm. Also, we know from Proposition 3.3 that E ′(H,M)

is non-empty for some subgroup H of G of the same order as M .

For p odd, we have m ≤ 2 if p = 3 and m = 1 if p ≥ 5 by the hypothesis on

n0, so GLm(p) is solvable by Lemma 3.4. Then, the kernel of any homomor-

phism G −→ Aut(N/M) must be insolvable by Lemma 3.1, and we may take

H to be insolvable by Proposition 3.3, which contradicts condition 4. In the

case that ǫ0 = 2, it is possible that m = 2 when p = 3, but note that 2r ·n0/9

is also solvable by condition 4 since a factor of a solvable number is solvable.

For p = 2, we have |H| = 2r−m ·n0, and thus H is insolvable by Lemma 5.2

below. Observe that r −m ≥ 0 by condition 3. Since Conjecture 1.5 holds

when n = n0 by assumption, we in fact have r − m ≥ 1, which contradicts

the minimality of r. �

Lemma 5.2. Let n0 ∈ N be any integer such that the conditions 1, 2, 3, 4 in

Theorem 5.1 are satisfied. Then, for any r ∈ N≥0, we have:

(i) the subgroups of index a power of two of any insolvable group of order

2r · n0 are insolvable;



SOLVABILITY OF REGULAR SUBGROUPS IN THE HOLOMORPH 11

(ii) any insolvable group of order 2r ·n0 has a non-abelian composition factor

of order n0.

Proof. Notice that since a non-solvable number is a multiple of the order of a

non-abelian simple group, conditions 3 and 4 imply that an insolvable group

of order n0 must be non-abelian simple.

We shall use induction on r. For r = 0, claim (i) is simply condition 1, and

claim (ii) holds by the above observation. Suppose now that r ≥ 1, and let G

be an insolvable group of order 2r · n0. By condition 2, we know that G has

a non-trivial and proper normal subgroup A. Either A or G/A is insolvable

by Lemma 3.1. Since a factor of a solvable number is solvable, we have

2a · n0 =







|A| if A is insolvable,

|G/A| if G/A is insolvable,

where 0 ≤ a ≤ r − 1, conditions 3 and 4. By the induction hypothesis,

either A or G/A has a non-abelian composition factor of order n0. It follows

that G has a non-abelian composition factor of order n0 also, which proves

(ii). Next, let H be a subgroup of G of index a power of two. Observe that

AH/A ≃ H/A ∩H, and also that

[A : A ∩H] = [G : H]/[G : AH],

[G/A : AH/A] = [G : H]/[A : A ∩H],

both of which are powers of two. Hence, by the induction hypothesis, we see

that either A∩H or H/A∩H is insolvable. It then follows from Lemma 2.2

that H is insolvable, which proves (i). �

We shall apply Theorem 5.1 to prove Theorem 1.7. To that end, we shall

first show that the numbers n0 in the statement of Theorem 1.7 satisfy con-

ditions 1, 2, 3, 4 in Theorem 5.1.

Lemma 5.3. The following statements are true.

(a) A non-solvable number is divisible by at least three distinct primes.

(b) A finite non-abelian simple group whose order is not divisible by three is

a Suzuki group.
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Proof. Part (a) is Burnside’s theorem. Part (b) follows from the classification

of finite simple groups. �

Lemma 5.4. Let n0 = 2r0 · 3ǫ0 · p, where r0 ∈ N, ǫ0 ∈ {1, 2}, and p ≥ 5 is a

prime. If there exists a non-abelian simple group Γ of order n0, then

(5.1) n0 ∈ {22 · 3 · 5, 23 · 3 · 7, 23 · 32 · 7, 24 · 32 · 17, 23 · 32 · 5}

and

Γ ≃











































A5 for n0 = 22 · 3 · 5,

PSL2(7) for n0 = 23 · 3 · 7,

PSL2(8) for n0 = 23 · 32 · 7,

PSL2(17) for n0 = 24 · 32 · 17,

A6 for n0 = 23 · 32 · 5.

In particular, condition 2 in Theorem 5.1 is satisfied for n0 in (5.1).

Proof. Since p exactly divides n0, a Sylow p-subgroup of any group of order n0

is cyclic. If p > 3ǫ0, then the claim follows from [12, Theorem 1]. If not, then

ǫ0 = 2 with p = 5, 7, and the claim follows from [2] and [25], respectively. �

Lemma 5.5. Let n0 = 22 · 3 · 5 or 24 · 32 · 17. Then, up to isomorphism A5

or PSL2(17), respectively, is the only insolvable group of order n0. Moreover,

conditions 1, 3, 4 in Theorem 5.1 are satisfied.

Proof. Since a non-solvable number is a multiple of the order of a non-abelian

simple group, from Lemmas 5.3 (a) and 5.4, it is easy to deduce the first claim

and that conditions 3 and 4 hold. Condition 1 holds trivially because A5 and

PSL2(17) have no proper subgroup of index a power of two. �

Note that n0 = 23 · 3 · 7 fails condition 1 while n0 = 23 · 32 · 7 and 23 · 32 · 5

fail condition 4 in Theorem 5.1.

Lemma 5.6. Let n0 = 2r0(42m0+1+1)(22m0+1−1), where r0, m0 ∈ N. If there

exists a non-abelian simple group Γ of order n0, then

r0 = 2(2m0 + 1) with Γ ≃ Sz(22m0+1).

In particular, condition 2 in Theorem 5.1 is satisfied for r0 = 2(2m0 + 1).
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Proof. This is clear from Lemma 5.3 (b) and (1.3). �

Lemma 5.7. Let n0 = 4ℓ0(4ℓ0 + 1)(2ℓ0 − 1), where ℓ0 is an odd prime. Then,

up to isomorphism Sz(2ℓ0) is the only insolvable group of order n0. Moreover,

conditions 1, 3, 4 in Theorem 5.1 are satisfied.

Proof. Suppose for contradiction that there is an insolvable group of order n0

which is not isomorphic to Sz(2ℓ0), and thus cannot be non-abelian simple

by Lemma 5.6. Since a non-solvable number is the multiple of the order of a

non-abelian simple group, from Lemma 5.3 (b) and (1.3), we deduce that

4ℓ0(4ℓ0 + 1)(2ℓ0 − 1) = n0 = d · 4k(4k + 1)(2k − 1),

where d, k ∈ N with k ≥ 3 odd and d ≥ 2. Plainly ℓ0 6= k, and because ℓ0 is

prime, we deduce that

gcd(2k − 1, 2ℓ0 − 1) = 2gcd(k,ℓ0) − 1 = 2− 1 = 1.

This means that 2k − 1 divides 4ℓ0 + 1. Note that then k ≤ 2ℓ0. But

(2k − 1) + (22ℓ0−tk + 1) = 2k(22ℓ0−(t+1)k + 1) for all t ∈ N≥0.

By induction, this implies that 2k − 1 divides 2s + 1 for some 0 ≤ s ≤ k − 1,

which is impossible because k ≥ 3. This proves the first claim.

Now, the maximal subgroups of Sz(2ℓ0) are known; see [26, Theorem 4.1],

for example. None has index a non-trivial power of two and so condition 1 is

satisfied. To prove conditions 3 and 4, note that if n0/2 were non-solvable,

then it would be a multiple of the order of a non-abelian simple group, so by

Lemma 5.3 (b) and (1.3), we have

4ℓ0(4ℓ0 + 1)(2ℓ0 − 1) = 2 · d · 4k(4k + 1)(2k − 1),

where d, k ∈ N with k ≥ 3 odd. Similarly, if (2r · n0)/p were non-solvable for

some odd prime p divisor of n0 and r ∈ N≥0, then we have

2r · 4ℓ0(4ℓ0 + 1)(2ℓ0 − 1) = p · d · 4k(4k + 1)(2k − 1),

where d, k ∈ N with k ≥ 3 odd. In both cases, using the same argument as

above, we obtain a contradiction. This completes the proof. �
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5.1. Proof of Theorem 1.7. Let n0 be as in the statement of the theorem.

By Lemmas 5.4, 5.5, 5.6, and 5.7, conditions 1, 2, 3, 4 in Theorem 5.1 are

satisfied. Also, up to isomorphism there is only one insolvable group of order

n0 and it is non-abelian simple. It then follows from Proposition 1.4 (a) that

Conjecture 1.5 holds when n = n0. We now deduce directly from Theorem 5.1

that Conjecture 1.5 also holds when n = 2r · n0 for any r ∈ N.

6. Algorithm to test the conjecture

In this section, we shall describe an algorithm which may be used to prove

Conjecture 1.5 for a given n, as long as all finite groups of order n are known.

Then, we shall apply our algorithm to prove Theorem 1.10.

Recall that given any finite group Γ, the Fitting subgroup of Γ, denoted by

Fit(Γ), is the unique largest normal nilpotent subgroup of Γ. Plainly Fit(Γ)

is a characteristic subgroup of Γ.

Proposition 6.1. Let G and N be two finite groups of the same order such

that the set E ′(G,N) is non-empty. Define

M(N) = {|M | : M is a characteristic subgroup of N},

H(G) = {|H| : H is a subgroup of G}.

Then, we have M(N) ⊂ H(G). Also, there is a solvable subgroup of G whose

order is that of Fit(N).

Proof. This follows directly from Propositions 1.2 (a) and 3.3. �

While Proposition 6.1 gives us a way to test whether a pair (G,N) satisfies

condition (1.2), applying it directly to prove Conjecture 1.5 has two issues:

• Often there are many groups of a given order n, and it is inefficient to

test whether (1.2) holds for each pair (G,N) of groups of order n.

• It is time-consuming to compute characteristic subgroups.

To overcome these difficulties, our idea is to let G vary, and check that

(6.1) E ′(G,N) 6= ∅ for some insolvable group G of order |N |
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cannot hold for each fixed N separately. Also, we shall apply the test involv-

ing the Fitting subgroup first because it is the least time-consuming.

For n ∈ N, define the following sets:

L1(n) =
⋃

|G|=n

G is insolvable

{|H| : H is a solvable subgroup of G},

L2(n) =
⋃

|G|=n

G is insolvable

{|H| : H is a subgroup of G}.

Write N0(n) for the set of all solvable groups of order n. For all N ∈ N0(n):

• If |Fit(N)| /∈ L1(n), then (6.1) does not hold by Proposition 6.1.

• If Aut(N) is solvable, then Hol(N) is solvable by Lemma 3.1 and so it

has no insolvable subgroup by Lemma 2.2, whence (6.1) does not hold.

• If n/2 ∈ M(N) and Conjecture 1.5 holds for n/2, then (6.1) does not

hold by Proposition 3.3, because any subgroup of index two (when it

exists) of an insolvable group must be insolvable by Lemma 3.1.

• If M(N) 6⊂ L2(n), then (6.1) does not hold by Proposition 6.1.

• If the greatest common divisor of n and |Out(N)| is solvable, then (6.1)

does not hold by Proposition 3.2.

Our algorithm uses thee above criteria, and removes the groups N ∈ N0(n)

for which (6.1) fails to hold; if the set becomes empty, then Conjecture 1.5

holds for n. More specifically, define the following sets:

N1(n) = {N ∈ N0(n) : |Fit(N)| ∈ L1(n)},

N2(n) = {N ∈ N1(n) : Aut(N) is insolvable},

N31(n) = {N ∈ N2(n) : n/2 6∈ M(N)},

N32(n) = {N ∈ N2(n) : M(N) ⊂ L2(n)},

N33(n) = {N ∈ N2(n) : gcd(n, |Out(N)|) is non-solvable}.

If N32(n)∩N33(n) = ∅, then Conjecture 1.5 holds for n. Similarly, if Conjec-

ture 1.5 holds for n/2 and N31(n)∩N32(n)∩N33(n) = ∅, then Conjecture 1.5

holds for n/2.
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We have implemented the computations of the above sets, except N33(n),

in Magma [17] and GAP [9]. The code may be found in the appendix.

6.1. Proof of Theorem 1.10. The groups of order n ≤ 2000 are available

in the SmallGroups Library [1]. Using this library, we ran our algorithm

in Magma to the non-solvable numbers n ≤ 2000.

First, we computed that N2(n) is empty except for

n = 480, 600, 960, 1008, 1200, 1320, 1344, 1440, 1512, 1680, 1800, 1920.

Among these numbers, we further computed that N31(n) ∩ N32(n) is empty

except for n = 1008, 1512. In fact, we have

N2(1008) = N31(1008) ∩N32(1008) = {SmallGroup(1008, 910)},

N2(1512) = N31(1512) ∩N32(1512) = {SmallGroup(1512, 841)}.

Then, using the Magma command OuterOrder, we checked that N33(1008)

and N33(1512) are empty. Thus, we now conclude that Conjecture 1.5 indeed

holds when n ≤ 2000.

The calculations ofN2(n),N31(n)∩N32(n) took a total of 22 min for all non-

solvable numbers n ≤ 2000. By contrast, it took a total of 231 min to confirm

Conjecture 1.5 directly by using the Magma command RegularSubgroups

for all non-solvable numbers n ≤ 1000 with n 6= 480, 672, 960. The calcula-

tions were done on an Intel Xeon CPU E5-1620 vs3 @ 3.5GHz machine with

16GB of RAM under Ubuntu 16.04LTS.

The cases n = 60, 120, 240, 480, 960, 1920 also follow from Theorem 1.7.
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Appendix: Computational codes

Magma code to compute N1(n),N2(n),N31(n),N32(n):

TestOrders:=[*any list of non-solvable numbers n which we wish to test*];

for n in TestOrders do

//Compute LL1 and LL2.

GG:=SmallGroups(n,func<x|not IsSolvable(x)>);

L1:=[];

L2:=[];

for G in GG do

Sub:=Subgroups(G);

for H in Sub do

order:=H‘order;

if IsSolvable(H‘subgroup) then

Append(~L1,order);

end if;

Append(~L2,order);

end for;

end for;

LL1:=Set(L1);

LL2:=Set(L2);

//Compute NN1, NN2, NN31, NN32.
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NN0:=[i:i in [1..#SmallGroups(n:Warning:=false)]|IsSolvable(SmallGroup(n,i))];

NN1:=[];

NN2:=[];

NN31:=[];

NN32:=[];

for i in NN0 do

N:=SmallGroup(n,i);

Fit:=FittingSubgroup(N);

//Determine whether N is in NN1.

if Order(Fit) in LL1 then

Append(~NN1,i);

end if;

if i in NN1 then

Aut:=AutomorphismGroup(N);

//Determine whether N is in NN2.

if not IsSolvable(Aut) then

Append(~NN2,i);

end if;

if i in NN2 then

Out:=[a:a in Generators(Aut)|not IsInner(a)];

NorSub:=NormalSubgroups(N);



S
O
L
V
A
B
IL

IT
Y

O
F

R
E
G
U
L
A
R

S
U
B
G
R
O
U
P
S

IN
T
H
E

H
O
L
O
M
O
R
P
H

2
1

CharSub:=[x:x in NorSub|forall{a:a in Out|a(x‘subgroup) eq x‘subgroup}];

MM:={M‘order:M in CharSub};

//Determine whether N is in NN31.

if n/2 notin MM then

Append(~NN31,i);

end if;

//Determine whether N is in NN32.

if MM subset LL2 then

Append(~NN32,i);

end if;

end if;

end if;

end for;

//If NN2 is empty, then Conjecture 1.5 holds for n.

//If NN31 ∩ NN32 is empty, then Conjecture 1.5 holds for n as long as it holds for n/2.

//If NN31 ∩ NN32 is non-empty, then further test is required.

if IsEmpty(NN2) then

printf "Conjecture 1.5 holds for %o\n",n;

else

if IsEmpty(NN32) then

printf "Conjecture 1.5 holds for %o\n",n;
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else

Inter:=Set(NN31) meet Set(NN32);

if IsEmpty(Inter) then

printf "Conjecture 1.5 holds for %o if it holds for %o\n",n,n/2;

else

print n,Inter;

end if;

end if;

end if;

end for;

GAP code to compute N1(n),N2(n),N31(n),N32(n):

TestOrders:=[*any list of non-solvable numbers n which we wish to test*];;

for n in TestOrders do

GG:=Filtered(AllSmallGroups(n),G->not IsSolvable(G));

#Compute LL1 and LL2.

L1:=[];

L2:=[];

for G in GG do

Sub:=List(ConjugacyClassesSubgroups(G),Representative);

for H in Sub do
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order:=Order(H);

if IsSolvable(H) then

Add(L1,order);

fi;

Add(L2,order);

od;

od;

LL1:=Set(L1);

LL2:=Set(L2);

#Compute NN1, NN2, NN31, NN32.

NN0:=Filtered([1..Size(AllSmallGroups(n))],i->IsSolvable(SmallGroup(n,i)));

NN1:=[];

NN2:=[];

NN31:=[];

NN32:=[];

for i in NN0 do

N:=SmallGroup(n,i);

Fit:=FittingSubgroup(N);

#Determine whether N is in NN1.

if Order(Fit) in LL1 then

Add(NN1,i);
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fi;

if i in NN1 then

Aut:=AutomorphismGroup(N);

#Determine whether N is in NN2.

if not IsSolvable(Aut) then

Add(NN2,i);

fi;

if i in NN2 then

CharSub:=CharacteristicSubgroups(N);

MM:=Set(CharSub,Order);

#Determine whether N is in NN31.

if not n/2 in MM then

Add(NN31,i);

fi;

#Determine whether N is in NN32.

if IsSubset(LL2,MM) then

Add(NN32,i);

fi;

fi;

fi;

od;
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#If NN2 is empty, then Conjecture 1.5 holds for n.

#If NN31 ∩ NN32 is empty, then Conjecture 1.5 holds for n as long as it holds for n/2.

#If NN31 ∩ NN32 is non-empty, then further test is required.

if IsEmpty(NN2) then

Print("Conjecture 1.5 holds for ",n,"\n");

else

if IsEmpty(NN32) then

Print ("Conjecture 1.5 holds for ",n,"\n");

else

Inter:= Intersection(NN31,NN32);

if IsEmpty(Inter) then

Print("Conjecture 1.5 holds for ",n," if it holds for ",n/2,"\n");

else

Print(n,Inter,"\n");

fi;

fi;

fi;

od;

Magma code to test Conjecture 1.5 directly:

TestOrders:=[*any list of non-solvable numbers n which we wish to test*];

for n in TestOrders do
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NN0:=[i:i in [1..#SmallGroups(n:Warning:=false)]|IsSolvable(SmallGroup(n,i))];

NN00:=[];

for i in NN0 do

N:=SmallGroup(n,i);

Hol:=Holomorph(N);

RegSub:=RegularSubgroups(Hol);

InsolRegSub:=[R:R in RegSub| not IsSolvable(R‘subgroup)];

if not IsEmpty(InsolRegSub) then

Append(~NN0,i);

end if;

end for;

//NN00 is empty if and only if Conjecture 1.5 holds for n.

print n,NN00;

end for;
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