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UNIVERSAL ENVELOPING POISSON CONFORMAL ALGEBRAS

P. S. KOLESNIKOV

Abstract. Lie conformal algebras are useful tools for studying vertex operator
algebras and their representations. In this paper, we establish close relations be-
tween Poisson conformal algebras and representations of Lie conformal algebras.
We also calculate explicitly Poisson conformal brackets on the associated graded
conformal algebras of universal associative conformal envelopes of Virasoro con-
formal algebra and Neveu–Schwartz conformal superalgebra.

Keywords: Conformal algebra, Poisson algebra, Gröbner–Shirshov basis.

1. Introduction

This work was inspired by the following observation. Suppose V is a Poisson
algebra with operations x · y and [x, y] over a field k. Denote by g the underlying
Lie algebra structure on V relative to the operation [·, ·]. For a formal variable λ,
consider the following operation (· ◦λ ·):

(x ◦λ u) = [x, u] + λx · u, x, u ∈ V.

It is straightforward to compute that

x ◦λ (y ◦µ u)− y ◦µ (x ◦λ u) = [x, y] ◦λ+µ u

(see Proposition 2 below for more general computation). The relation obtained is
known as the conformal Jacobi identity [8] for a conformal module over the current
Lie conformal algebra Cur g.
In this paper, we study conformal Poisson algebras. They turn to be closely

related to representations of Lie conformal algebras as well as to Gel’fand–Dorfman
structures introduced in [7]. The latter are known to be in one-to-one correspondence
with certain class of Lie conformal algebras [19]. A series of examples of Poisson
conformal algebras is given by associated graded conformal algebras grU of universal
associative conformal envelopes of Lie conformal algebras corresponding to various
locality bounds. We establish explicit expressions for the conformal Poisson brackets
on grU for universal envelopes of the Virasoro conformal algebra Vir for N =
2, 3. An interesting intermediate example appears as the even part of a universal
associative envelope of the Neveu–Schwartz conformal superalgebra K1.
A universal and effective tool for investigations related to universal envelopes is

the Gröbner–Shirshov bases (GSB) theory. In Section 4, we present an approach to
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2 P. S. KOLESNIKOV

the calculation of GSBs for associative conformal algebras based on the GSB theory
for modules over ordinary associative algebras. Section 5 contains two examples: we
compute GSBs for two particular universal envelopes for the Virasoro conformal al-
gebra and Neveu–Schwartz conformal superalgebra. As an application, we calculate
explicitly the structure of three Poisson conformal envelopes PV2, PV3, and PK10

of the Virasoro conformal algebra in Section 6.

2. Conformal algebras: preliminaries

In this section, we state definitions and examples of conformal algebras following
[8]. Throughout the paper, k is a field of characteristic zero, H = k[∂] is the algebra
of polynomials, Z+ is the set of non-negative integers. We will use common notation
x(s) for 1

s!
xs, s ∈ Z+.

A Lie conformal algebra L is an H-module equipped with a family of bilinear
operations [· ◦(n) ·], n ∈ Z+, such that for every x, y ∈ L

[x ◦λ y] :=
∑

s≥0

λ(s)[x ◦(s) y] ∈ L[λ] (1)

where L[λ] stands for the space of polynomials over L in a formal variable λ,

[∂x ◦(n) y] = −n[x ◦(n−1) y],

[x ◦(n) ∂y] = ∂[x ◦(n) y] + n[x ◦(n−1) y],
(2)

[x ◦(n) y] = −
∑

s≥0

(−1)n+s∂(s)[y ◦(n+s) x] (3)

for all x, y ∈ L, n ∈ Z+, and

[x ◦(n) [y ◦(m) z]] − [y ◦(m) [x ◦(n) z]] =
∑

s≥0

(

n

s

)

[[x ◦(s) y] ◦(n+m+s) z] (4)

for all x, y, z ∈ L, n,m ∈ Z+.
Condition (1) states that for every pair x, y ∈ L there exist only a finite number of

n ∈ Z+ such that [x ◦(n) y] 6= 0. In particular, one may determine locality function

NL : L × L → Z+ in the following way: N(x, y) is the minimal n ∈ Z+ such that
[x ◦(m) y] = 0 for all m ≥ n.
An associative conformal algebra C is an H-module equipped with a series of

bilinear operations (· ◦(n) ·), n ∈ Z+, such that the analogues of (1), (2) hold and

(x ◦(n) (y ◦(m) z)) =
∑

s≥0

(

n

s

)

((x ◦(s) y) ◦(n+m+s) z) (5)

for all x, y, z ∈ C, n,m ∈ Z+.
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It is convenient to write the axioms of Lie and associative conformal algebras in
terms of generating functions (λ-products) given by the expression (1). For example,
(2) is equivalent to

[∂x ◦λ y] = −λ[x ◦λ y], [x ◦λ ∂y] = (λ+ ∂)[x ◦λ y], (6)

(4) and (5) are equivalent to

[x ◦λ [y ◦µ z]]− [y ◦µ [x ◦λ z]] = [[x ◦λ y] ◦λ+µ z] (7)

and

(x ◦λ (y ◦µ z)) = ((x ◦λ y) ◦λ+µ z), (8)

respectively, where λ and µ are independent commuting variables.
The expression in the right-hand side of (3) is equal to the coefficient at λ(n) in

the expression [y ◦−∂−λ x]. Therefore, (3) is equivalent to

[x ◦λ y] = −[y ◦−∂−λ x].

Example 1. Let A be a Lie (associative) algebra. Consider the free H-module
C = H ⊗ A. Define

[a ◦λ b] = [a, b]

for a, b ∈ A, and expand the operation [· ◦λ ·] to the entire C by (6). We obtain
Lie (associative) conformal algebra structure called current conformal algebra; it is
denoted by CurA.

Example 2. Consider 1-generated free H-module Vir = Hv. Define

[v ◦λ v] = (∂ + 2λ)v (9)

and expand the operation [· ◦λ ·] to the entire H-module by (6). We obtain Lie
conformal algebra structure called Virasoro conformal algebra.

A general class of examples of Lie conformal algebras (quadratic conformal alge-
bras) involving current and Virasoro conformal algebras is mentioned in Section 3,
see also [19].

Example 3. Let A be an associative algebra. Then the H-module C = k[∂, x]⊗A ≃
H ⊗ A[x] equipped with operations

(f(∂, x) ◦λ g(∂, x)) = f(−λ, x)g(∂ + λ, x+ λ), f, g ∈ C,

is an associative conformal algebra. If A = Mn(k) then the algebra constructed in
this way is denoted Cendn [8].

As in the world of ordinary algebras, an associative conformal algebra C turns
into a Lie one (denoted by C(−)) relative to new operations

[x ◦(n) y] = (x ◦(n) y)− {y ◦(n) x}, n ∈ Z+, (10)



4 P. S. KOLESNIKOV

where
{y ◦(n) x} =

∑

s≥0

(−1)n+s∂(s)(y ◦(n+s) x). (11)

However, there exist Lie conformal algebras that cannot be embedded into associa-
tive ones in this way [17].
Suppose V is an H-module. A conformal linear transformation ϕ is a rule that

turns every v ∈ V into a polynomial ϕ ◦λ v ∈ V [λ] in such a way that ϕ ◦λ ∂v =
(∂ + λ)(ϕ ◦λ v). The set of all conformal linear transformations of V is denoted
CendV . The space Cend V has a natural structure of an H-module, and there is a
λ-product (ϕ ◦λ ψ) ∈ Cend V [[λ]] given by the rule

(ϕ ◦λ ψ) ◦µ v = ϕ ◦λ (ψ ◦µ−λ v).

If V is a finitely generated H-module then (ϕ ◦λ ψ) is a polynomial in λ and thus
CendV is an associative conformal algebra. For a freeH-module V of rank n CendV
is isomorphic to Cendn from Example 3.
Assume C is an associative conformal algebra. An H-module V is said to be

a conformal module over C if equipped with an H-linear map ρ : C → CendV
preserving the λ-product. Alternatively, there should exist a family of bilinear maps
(· ◦(n) ·) : C ×V → V , n ∈ Z+, such that the analogues of (1), (2), and (5) hold. In
a similar way, a conformal representation of a Lie conformal algebra L is defined as
an H-linear map ρ : L→ (Cend V )(−) preserving the operation [· ◦λ ·].
Conformal algebra (or a module over a conformal algebra) is said to be finite if

it is finitely generated as an H-module. There is an open problem whether every
finite Lie conformal algebra may be embedded into an associative one. In [13], it
was shown that if a finite Lie conformal algebra L is a torsion-free H-module and
satisfies Levi condition (i.e., if its solvable radical splits) then L has a finite faithful
representation, thus may be embedded into an associative conformal algebra Cendn

for an appropriate n.

3. Poisson conformal algebras and universal enveloping conformal

algebras

A more conceptual and general approach to the theory of conformal algebras was
proposed in [1]. Consider H as a Hopf algebra generated by primitive element ∂.
Then the class M∗(H) of H-modules is a pseudo-tensor category in the sense of [3]
relative to a natural composition rule. Then Lie (or associative) conformal algebra
may be defined as a morphism from the operad Lie (or As) to M∗(H). Generator
of the corresponding operad maps to an H-bilinear product (pseudo-product)

∗ : C ⊗ C → (H ⊗H)⊗H C, C ∈ M∗(H),

where
x ∗ y =

∑

s≥0

((−∂)(s) ⊗ 1)⊗H (x ◦(s) y), x, y ∈ C.
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Associativity, (anti-)commutativity, and Jacobi identity for conformal algebras turn
into very natural expressions in terms of the pseudo-product (see [1]). For an arbi-
trary variety Var of algebras, this approach leads to the notion of a Var-conformal
algebra [12]. In particular, for the variety of Poisson algebras, we obtain the follow-
ing

Definition 1. A Poisson conformal algebra P is an H-module equipped with two
λ-products

(x ◦λ y), [x ◦λ y] ∈ P [λ], x, y ∈ P,

such that (2) holds for both λ-products, (x ◦λ y) is associative and commutative,
[x ◦λ y] is anti-commutative and satisfies the Jacobi identity (4), and the following
conformal Leibniz rule holds:

[x ◦λ (y ◦µ z)] = ([x ◦λ y] ◦λ+µ z) + (y ◦µ [x ◦λ z]), x, y, z ∈ P. (12)

Remark 1. Relation (12) is equivalent to

[(x ◦λ y) ◦µ z] = (y ◦µ−λ [x ◦λ z]) + (x ◦λ [y ◦µ−λ z]). (13)

Remark 2. Note that (12) holds on every associative conformal algebra C relative
to [x ◦λ y] given by (10):

[x ◦λ y] = (x ◦λ y)− (y ◦−∂−λ x), x, y ∈ C.

An equivalent form of (13) in the absence of commutativity is

[(x ◦λ y) ◦µ z] = (x ◦λ [y ◦µ−λ z]) + {[x ◦λ z] ◦µ−λ y}. (14)

Definition 1 seems close to the notion of a Poisson vertex algebra introduced in
[2]. However, it is not clear what is a formal relation between them.

Example 4. Let V be an ordinary Poisson algebra. Then P = H ⊗ V equipped
with operations (a ◦λ b) = ab, [a ◦λ b] = [a, b] for a, b ∈ V is a Poisson conformal
algebra denoted Cur V .

Example 5. Consider PV2 = k[∂, v] ≃ H ⊗ k[v] as a current associative commuta-
tive conformal algebra over k[v] equipped with

[vm ◦λ v
n] = (m∂ + (n+m)λ)vn+m−1.

It is straightforward to check that P is a Poisson conformal algebra.

Example 5 (as a Lie conformal algebra, it is a sort of Block-type Lie conformal
algebra studied in [18]) is a particular case of a more general structure.

Proposition 1. Given a Poisson algebra V with a derivation D, the free H-module

P = H ⊗ V is a Poisson conformal algebra relative to the following λ-products:

(x ◦λ y) = xy,

[x ◦λ y] = [x, y] + ∂(yD(x)) + λD(xy),

x, y ∈ V .
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Proof. Conformal Lie bracket [· ◦λ ·] turns P into a quadratic Lie conformal algebra
studied in [19]. It remains to check (12) or (13) which is straightforward. �

Relation between differential Poisson algebras and conformal algebras leads to a
curious structure of an ordinary Poisson algebra on the space of Laurent polynomials
over a Poisson algebra.

Corollary 1. Suppose V is a Poisson algebra with a derivation D, V [t, t−1] is the

commutative algebra of Laurent polynomials over V . Then

[atn, btm] = [a, b]tn+m + (naD(b)−mbD(a))tn+m−1, a, b ∈ V, (15)

is a Poisson bracket on V [t, t−1].

Proof. Relation (15) along with the ordinary commutative multiplication on V [t, t−1]
represent the coefficient algebra structure on the Poisson conformal algebra P =
H ⊗ V from Proposition 1. �

Poisson conformal algebras, even the simplest ones from example 4, have a natural
relation to representations of Lie conformal algebras.

Proposition 2. Let P be a Poisson conformal algebra. Suppose L is a conformal

subalgebra of the underlying Lie conformal algebra P relative to [· ◦(λ) ·]. Then P is

a conformal module over L with respect to the following operation:

〈a ◦λ u〉 = [a ◦λ u] + λ(a ◦λ u), a ∈ L, u ∈ P.

Proof. It remains to check the conformal Jacobi identity

〈a ◦λ 〈b ◦µ u〉〉 − 〈b ◦µ 〈a ◦λ u〉〉 = 〈[a ◦λ b] ◦λ+µ u〉. (16)

Indeed,

〈a ◦λ 〈b ◦µ u〉〉 = 〈a ◦λ [b ◦µ u] + µ(b ◦µ u)〉

= [a ◦λ [b ◦µ u]] + µ[a ◦λ (b ◦µ u)] + λ(a ◦λ [b ◦µ u]) + λµ(a ◦λ (b ◦µ u))

= [a ◦λ [b ◦µ u]] + µ([a ◦λ b] ◦λ+µ u) + µ(b ◦µ [a ◦λ u])

+ λ(a ◦λ [b ◦µ u]) + λµ(a ◦λ (b ◦µ u)).

Hence, the left-hand side of (16) is equal to

[[a ◦λ b] ◦λ+µ u] + (λ+ µ)([a ◦λ b] ◦λ+µ u) (17)

since

(a ◦λ (b ◦µ u)) = (b ◦µ (a ◦λ u))

in every associative and commutative conformal algebra [17],

([b ◦µ a] ◦λ+µ u) = −([a ◦−µ−∂ b] ◦λ+µ u) = −([a ◦λ b] ◦λ+µ u)

by (3) and (2). Obviously, (17) coincides with the right-hand side of (16). �
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Corollary 2. If V is an ordinary Poisson algebra then P = Cur V is a conformal

module over Cur g, where g is a Lie subalgebra of P .

The purpose of this note is to establish more complicated Poisson conformal alge-
bras whose commutative operation may not be reduced to a current-type structure.
As in the case of ordinary algebras, it is natural to seek among universal enveloping
associative algebras.
Given a Lie algebra g, let P (g) be its symmetric algebra equipped with Poisson

bracket [·, ·] induced by the commutator on g. As a linear space, P (g) is isomorphic
to the universal associative envelope U(g) by the Poincaré–Birkhoff–Witt (PBW)
Theorem.
For Lie conformal algebras, we have a hierarchy of universal associative envelopes

[17]. Given a Lie conformal algebra L, an associative envelope of L is an associative
conformal algebra C equipped with a homomorphism (not necessarily injective)
ϕ : L→ C(−) such that C is generated by ϕ(L) as a conformal algebra. Suppose X
is a generating set of L as of H-module. Fix a function N : X×X → Z+. Then the
class of associative envelopes (C, ϕ) of L, such that NC(ϕ(x), ϕ(y)) ≤ N(x, y) for
all x, y ∈ X contains a unique (up to isomorphism) universal associative envelope
(U(L;X,N), ι), ι : L→ U(L;X,N)(−).
Associative conformal algebra U(L;X,N) has a natural ascending filtration, the

corresponding associated graded space carries a structure of a Poisson conformal
algebra (see Section 6 for details). In order to study this structure, we need to
determine a normal form of elements in U(L;X,N). As in the case of ordinary
algebras, U(L;X,N) is determined by defining relations. In the next section, we
present a general approach to the study of conformal algebras given by generators
and relations, a sort of Composition-Diamond Lemma (CD-Lemma) for conformal
algebras. Previous versions of the CD-Lemma for associative conformal algebras
[4, 5, 15] work for bounded functions N . Our approach does not depend on N
and, which is more important, we reduce the problem to modules over ordinary
associative algebras. Therefore, one may apply available computer algebra packages
for computations in conformal algebras within this approach.

4. A version of the Diamond Lemma for associative conformal

algebras

Let X be a well-ordered set, and let N : X×X → Z+ be a fixed function. Denote
by Conf(X,N) the free associative conformal algebra generated by X with respect
to locality function N [16]. One may choose a linear basis of Conf(X,N) in the
form

∂s(a1 ◦(n1) (a2 ◦(n2) · · · ◦(nk−1) (ak ◦(nk) ak+1) . . . )),

k, s ∈ Z+, ai ∈ X, 0 ≤ ni < N(ai, ai+1).
(18)
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Consider linear operators La
n and Ra

n on Conf(X,N) defined as follows:

La
n(f) = a ◦(n) f, Ra

n(f) = {f ◦(n) a},

a ∈ X , n ∈ Z+, f ∈ Conf(X,N), where {x ◦(n) y} is given by (11). The ax-
ioms of an associative conformal algebra imply the following relations to hold in
EndConf(X,N):

La
n∂ = ∂La

n + nLa
n−1, (19)

Ra
n∂ = ∂Ra

n + nRa
n−1, (20)

Rb
mL

a
n = La

nR
b
m. (21)

Hence, Conf(X,N) is a (left) module over the ordinary associative algebra A(X)
generated by formal variables ∂, La

n, R
a
n relative to the relations (19)–(21).

It is not hard to find the defining relations of Conf(X,N) as of A(X)-module.

Theorem 1 ([14]). Let M be a left A(X)-module generated by X relative to the

defining relations

La
nb = 0, a, b ∈ X, n ≥ N(a, b), (22)

Rb
na = (−1)n

N(a,b)−n−1
∑

s=0

∂(s)La
n+sb, a, b ∈ X, n ∈ Z+. (23)

Then M is isomorphic to Conf(X,N) as A(X)-module.

Sketch of the proof. Obviously, (22) and (23) hold in Conf(X,N). The only problem
is to show that the A(X)-module homomorphism M → Conf(X,N) is injective. To
resolve this problem, it is natural to apply the Gröbner–Shirshov bases technique
for modules [10].
Given a well order on X , extend it to La

n and Ra
n by the natural rule La

n < Lb
m

(or Ra
n < Rb

m) if n < m or n = m and a < b; assume ∂ < La
n < Rb

m for all
a, b ∈ X , n,m ∈ Z+. Next, define the following monomial order ≺ on the words
in the alphabet ∂, La

n, R
a
n: compare two words first by their degree in the variables

Ra
n, then by deg-lex order.
Obviously, relations (19)–(21) form a GSB of A(X), which is actually the universal

enveloping algebra of some Lie algebra. Hence, the linear basis B of A(X) consists
of all words of the form

∂sLa1
n1
. . . Lak

nk
Rb1

m1
. . . Rbt

mt
.

Expand the above monomial order ≺ to the monomials in the free A(X)-module
generated by X : for u, v ∈ B and x, y ∈ X , let ux ≺ vy if and only if u ≺ v or u = v
and x < y.
It is easy to see that (21), (22), and (23) imply a series of relations

La
nL

b
mu =

∑

q≥1

(−1)q+1

(

n

q

)

La
n−qL

b
m+qu, (24)
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where a, b ∈ X , n ≥ N(a, b), m ∈ Z+, and u is of the form

Lc1
m1
Lc2
m2
. . . Lck

mk
ck+1, ci ∈ X, k,mi ∈ Z+.

Consider the reduced words, i.e., those monomials in the free A(X)-module gen-
erated by X that do not contain a subword equal to a principal part of (22)–(24),
The latter principal parts are equal to La

nb for n ≥ N(a, b), Ra
nb, and La

nL
b
mu for

n ≥ N(a, b). Therefore, M is spanned by the reduced words that are of the form

∂sLa1
n1
La2
n2
. . . Lak

nk
ak+1,

and their images in (18) are linearly independent. Hence, (22)–(24) is a GSB of
Conf(X,N) in the sense of [10]. �

By the definition of an A(X)-module structure on Conf(X,N), a subspace I ⊂
Conf(X,N) is an ideal of the conformal algebra Conf(X,N) if and only if I is
an A(X)-submodule. If S ⊂ Conf(X,N) is a set of conformal polynomials then
the ideal generated by S in the conformal algebra Conf(X,N) coincides with the
A(X)-submodule generated by S. Therefore, in order to solve the word problem in
an associative conformal algebra defined by generators and relations it is enough to
solve that problem in the corresponding module over an ordinary associative algebra.
In general, if an associative algebra A and (left) A-module M are defined via

generators and relations (say, A and M are generated by X and Y , respectively)
then the problem of finding normal forms in M was considered in [10]. However,
one may apply the ordinary Composition-Diamond Lemma for associative algebras
to the split null extension A ⊕ M assuming obvious additional relations yx = 0,
yz = 0 for x ∈ X , y, z ∈ Y .

Corollary 3 (CD-Lemma). Let S be a set of conformal polynomials in Conf(X,N)
considered as elements of the free A(X)-module generated by X. Then the following

conditions are equivalent:

(1) S together with (22), (23), and (24) is a GSB of an A(X)-module;

(2) S-reduced words of the form

∂sLa1
n1
La2
n2
. . . Lak

nk
ak+1, k, s ∈ Z+, ai ∈ X, 0 ≤ ni < N(ai, ai+1),

form a linear basis of Conf(X,N | S).

To study the structure of a universal associative enveloping conformal algebra of
a Lie conformal (super)algebra, it is convenient to add more defining relations to
the algebra A(X). Namely, suppose L is a Lie conformal superalgebra which is a
free H-module, and let X be a homogeneous basis of L over H . Recall that the
following identity holds in every associative conformal algebra [17]:

x ◦(n) (y ◦(m) z)− (−1)|x||y|y ◦(m) (x ◦(n) z) =
∑

s≥0

(

n

s

)

[x ◦(s) y] ◦(n+m−s) z.
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Therefore, U(L;X,N) is a module over the associative algebra A(X,L) generated
by ∂, La

n, R
a
n (a ∈ X , n ∈ Z+) relative to the defining relations (19)–(21) and

La
nL

b
m − (−1)|a||b|Lb

mL
a
n =

∑

s≥0

(

n

s

)

L
[a◦(s)b]
n+m−s,

a, b ∈ X, n,m ∈ Z+, L
a
n > Lb

m.

(25)

Here we assume L∂x
n = −nLx

n−1 to express the right-hand side of (25).
Defining relations of U(L;X,N) as of A(X,L)-module include (22), (23), and

Ra
nb− (−1)|a||b|La

nb = −[a ◦(n) b], a, b ∈ X, n ∈ Z+. (26)

It is not hard to see that (19)–(21), (25) form a GSB of the associative algebra
A(X,L). In order to determine the structure of U(L;X,N) it is enough to find a
GSB of the A(X,L)-module generated by X relative to (22), (23), and (26).

5. Example: Universal envelope of the Neveu–Schwartz conformal

superalgebra

Consider L = K1, the Neveu–Schwartz conformal superalgebra (see [9]). Then
X = {v, g}, |v| = 0, |g| = 1, and the multiplication table is given by

[v ◦λ v] = ∂v + 2λv, [g ◦λ v] =
1

2
∂g +

3

2
λg, [g ◦λ g] = −

1

2
v.

Assume v < g. For convenience of computation, let us slightly change the order ≺
assuming Lx

0 < Lx
1 < ∂ < Lx

2 < . . . , x ∈ X (other rules remain the same). The set
of defining relations of A(X,K1) consists of

∂Lx
0 = Lx

0∂, ∂Lx
1 = Lx

1∂ − Lx
0 , x ∈ X ;

Lx
n∂ = ∂Lx

n + nLx
n−1, n ≥ 2, x ∈ X ;

Rx
n∂ = ∂Rx

n + nRx
n−1, n ≥ 0, x ∈ X ;

Rx
nL

y
m = Ly

mR
x
n, n,m ≥ 0, x, y ∈ X ;

Lv
nL

v
m = Lv

mL
v
n + (n−m)Lv

n+m−1, n > m ≥ 0;

Lv
nL

g
m = Lg

mL
v
n +

(

1

2
n−m

)

Lg
n+m−1, n > m ≥ 0;

Lg
nL

v
m = Lv

mL
g
n +

(

n−
1

2
m

)

Lg
n+m−1, n ≥ m ≥ 0;

Lg
nL

g
m = −Lg

mL
g
n −

1

2
Lv
n+m, n > m ≥ 0;

Lg
nL

g
n = −

1

4
Lv
2n, n ≥ 0.

(27)

In [11], a GSB of U(K1;X,N) in the sense of [6] was found for

N(v, v) = 3, N(v, g) = N(g, v) = N(g, g) = 2. (28)
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Let us show how the technique exposed in the previous section works for the same
locality function N .
According to the general scheme described above, the following relations deter-

mine U(K1;X,N) as an A(X,K1)-module:

Lx
ny = 0, x, y ∈ X, n ≥ N(x, y);

Rx
ny = 0, x, y ∈ X, n ≥ N(y, x);

Rv
0v = Lv

0v − ∂Lv
1v + ∂(2)Lv

2v;

Rv
1v = −Lv

1v + ∂Lv
2v, Rv

2v = Lv
2v;

Rx
ny = (−1)n(Ly

nx− ∂Ly
n+1x), {x, y} = X, n = 0, 1;

Rg
0g = Lg

0g − ∂Lg
1g; Rg

1g = −Lg
1g;

Rv
0v = Lv

0v − ∂v; Rv
1v = Lv

1v − 2v;

Rv
0g = Lv

0g − ∂g; Rv
1g = Lv

1g −
3

2
g;

Rg
0v = Lg

0v −
1

2
∂g; Rg

1v = Lg
1v −

3

2
g;

Rg
0g = −Lg

0g −
1

2
v; Rg

1g = −Lg
1g.

(29)

Calculation of a GSB of the A(X,K1)-module generated by X with defining rela-
tions (29) is a standard computational task: one has to add all non-trivial compo-
sitions to the set of defining relations.

Theorem 2. In order to obtain a GSB of U(K1;X,N) for N given by (28) it is

enough to enrich the system (29) with the following relations:

Lv
2v = −2Lg

1g; Lv
1v = −2Lg

0g +
1

2
v;

Lg
1v = −Lv

1g +
3

2
g; Lv

1L
v
1g =

3

2
Lv
1g −

1

2
g;

Lv
1L

g
1g =

1

2
Lg
1g; Lg

0L
v
1g =

1

2
Lv
0L

g
1g +

1

2
Lg
0g;

Lg
0L

g
1g = −

1

2
Lv
1g +

1

4
g;

Lv
1∂

sv = −2Lg
0∂

sg +
1

2
∂sv + sLv

0∂
s−1v, s ≥ 1;

Lg
1∂

sv = −Lv
0∂

s−1g + ∂sg + (s+ 1)Lg
0∂

s−1v, s ≥ 1;

Lv
1∂

sg = −Lg
0∂

s−1v +
1

2
∂sg + (s + 1)Lv

0∂
s−1g, s ≥ 1;

Lg
1∂

sg = (s+ 2)Lg
0∂

s−1g +
1

2
∂s−1v, s ≥ 1.

(30)
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This result is agreed with the computations in [11], so we do not present the
details here. However, Theorem 2 may be easily checked by means of computer
algebra systems providing an opportunity of (step-by-step) computation of GSBs in
non-commutative associative algebras.

Corollary 4. The following words form a linear basis of U(K1;X,N):
(

Lv
0

)n
∂sx,

(

Lv
0

)n
Lg
0∂

sx,
(

Lv
0

)n
Lx
1g, n ≥ 0, x ∈ X. (31)

Proof. Let S be the set of defining relations (27), (29), (30). Then (31) is exactly
the set of S-reduced words in the free A(X,K1)-module generated by X . �

To make sure that the results of Theorem 2 and Corollary 4 are correct, one may
recall the following presentation of K1. Consider the associative conformal algebra
Cend2 with the natural Z2-grading as k[x, ∂] ⊗M1|1(k). Then

v =

(

x 0
0 x− 1

2
∂

)

, g =
1

2

(

0 x
−1 0

)

span a Lie conformal superalgebra L in Cend
(−)
2 isomorphic to K1. Associative

envelope C of L in Cend2 coincides with the set of all matrices
(

xf11(x, ∂) xf12(x, ∂)
f21(x, ∂) f22(x, ∂)

)

, fij ∈ k[x, ∂]. (32)

Straightforward computation shows that the images of (31) in Cend2 exactly form
a linear basis of C.

Corollary 5. For the Virasoro conformal algebra Vir, a linear basis of U(Vir; v, 3)
consists of the words

Ln
0∂

sLm
1 v, Ln

0L
m
1 L2v, n,m, s ≥ 0, (33)

where Ln
k stands for (Lv

k)
n. In particular, U(L; v, 3) is a free H-module generated by

xn+1 = Ln
0v, yn+1,m+1 = Ln

0L
m
1 L2v, n,m ≥ 0.

Proof. To find a GSB of U(Vir; v, 3) it is enough to add the following to the initial
set of defining relations:

L2L2v = 0, ∂L2v − 2L1v = 0,

see [14] for details. The set of reduced words coincides with (33). �

6. Conformal Poisson brackets on associative envelopes of the

Virasoro conformal algebra

Let L be a Lie conformal algebra generated by a set X as an H-module. For
a fixed function N : X × X → Z+, consider the universal associative conformal
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envelope U = U(L;X,N). The latter is a homomorphic image of Conf(X,N), so
there is an ascending filtration

U =
⋃

n≥1

FnU, (FnU ◦λ FmU) ⊆ Fn+mU [λ],

where FnU consists of images of all words (18) of degree k + 1 ≤ n in X . Assume
F0U = {0}.
Consider the associated graded linear space

grU(L;X,N) =
⊕

n≥1

FnU/Fn−1U

equipped with well-defined operations

∂ū = ∂u, u ∈ FnU,

and

(ū •λ v̄) = (u ◦λ v) ∈ Fn+mU/Fn+m−1U, u ∈ FnU, v ∈ FmU.

The associative and commutative conformal algebra obtained is a Poisson conformal
algebra relative to

[ū •λ v̄] = (u ◦λ v)− {v ◦λ u} ∈ Fn+m−1U/Fn+m−2U (34)

for u ∈ FnU , v ∈ FmU . The operation (34) is well-defined since (12) and (13) imply

[u ◦λ v] = (u ◦λ v)− {v ◦λ u} ∈ Fn+m−1U.

It follows from the same relations that (3), (4), and (12) hold for the operations
[· •λ ·] and (· •λ ·) on grU(L;X,N). Therefore, grU(L;X,N) carries a natural
structure of a Poisson conformal algebra, let us denote it by P (L;X,N).
Obviously, Z2-graded version of this construction leads to a Poisson conformal

superalgebra structure on the associated graded universal associative conformal en-
velope of a Lie conformal superalgebra.

Example 6. For the Virasoro Lie conformal algebra, P (Vir; {v}, 2) is isomorphic
to the Poisson conformal algebra PV2 from Example 5.

It is easy to find a GSB of U = U(Vir; {v}, 2) (see [6]), the corresponding set of
reduced words is ∂s(Lv

0)
nv ∈ Fn+1U , n, s ≥ 0. Since Lv

1v = v, we have the isomor-
phism of conformal algebras grU ≃ Cur k[v], (Lv

0)
nv 7→ vn+1. It is straightforward

to evaluate conformal Poisson bracket using (12) and (13) to get the formula from
Example 5.

Example 7. On the 1-generated free commutative conformal algebra one may define
a Poisson conformal bracket induced by the Virasoro λ-bracket (9). Let us denote
this Poisson algebra PV3.
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Corollary 5 and [6, Section 9.3] show that grU(Vir; {v}, 3) is isomorphic to the
1-generated commutative conformal algebra ComConf({v}, 3). Let us evaluate, for
example, (xn •λ xm). By definition,

(xn •λ xm) = Ln−1
0 v •λ L

m−1
0 v

= Ln+m−2
0 (v •λ v) = Ln+m−2

0 (L0v + λL1v + λ(2)L2v)

= Ln+m−1
0 v +

1

2
λ∂Ln+m−2

0 L1v + λ(2)Ln+m−2
0 L2v

= xn+m +
1

2
(λ∂ + λ2)yn+m−1,1.

Similarly,
(xn •λ ym,k) = yn+m,k + λyn+m−1,k+1,

(yn,m •λ yk,l) = 0,

Explicit formulas for the Poisson conformal bracket on PV3 may be deduced from
(12) and (13). For example,

[x1 •λ xm] = [x1 •λ L0xm−1] = ([v •λ v] •λ xm−1) + L0[x1 •λ xm−1]

= λ(xm +
1

2
(λ∂ + λ2)ym−1,1) + L0[x1 •λ xm−1]

= (m− 1)λxm +
m− 1

2
λ2(λ+ ∂)ym−1,1 + Lm−1

0 (∂ + 2λ)v

= (∂ + (m+ 1)λ)xm +
m− 1

2
λ2(λ+ ∂)ym−1,1.

In a similar way,

[xn •λ xm] = (n∂+(n+m)λ)xn+m−1+
1

2
λ(∂+λ)((n− 1)∂+(n+m− 2)λ)yn+m−2,1.

To compute [xn •λ ym,k], let us start with [x1 •λ y1,1] = [v •λ L2v] which is equal to
the coefficient of [v •λ (v •µ v)] at µ

(2):

[v •λ (v •µ v)] = ((∂ + 2λ)v •λ+µ v) + (v •µ (∂ + 2λ)v)

= (λ− µ)(L0v + (λ+ µ)L1v + (λ+ µ)(2)L2v) + (2λ+ ∂ + µ)(L0v + µL1v + µ(2)L2v)

= (λ+ ∂)µ(2)L2v + . . . .

Hence,
[x1 •λ y1,1] = (λ+ ∂)y1,1.

In a similar way,

[x1 •λ ym,1] = (mλ+ ∂)ym,1 + (m− 1)λ2ym−1,2, m ≥ 2.

For k ≥ 2, we may represent ym,k = L1ym,k−1 and compute

[x1 •λ ym,k] = −ym+1,k−1 + L1[v •λ ym,k−1].
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Therefore,

[x1 •λ ym,k] = (1− k)ym+1,k−1 + Lk−1
1 [x1 •λ ym,1]

= (∂ + λ)ym,k + (m− 1)λ2ym−1,k+1 − (k − 1)ym+1,k−1.

Finally,

[xn •λ ym,k] = n(1− k)yn+m,k−1 + (n(∂ + λ)− (n− 1)(k − 1)λ)yn+m−1,k

+ λ((n+m− 2)λ+ (n− 1)∂)yn+m−2,k+1

by induction in n ≥ 1. It remains to note that

[yn,m •λ yk,l] = 0.

Therefore, PV3 is a central extension of PV2 by means of the conformal module
spanned by yn,m, n,m ≥ 1.
An interesting example of a Poisson conformal envelope of the Virasoro conformal

algebra appears from the associative envelope of the Neveu–Schwartz conformal
superalgebra K1.

Example 8. Suppose L = K1 is the Neveu–Schwartz conformal superalgebra gener-
ated by X = {v, g}. Then U = U(K1;X,N) for N given by (28) is isomorphic to the
conformal subalgebra of Cend2 that consists of matrices (32). Although P = grU
is not isomorphic to the supercommutative conformal algebra generated by X rel-
ative to the locality function N , the conformal Lie bracket on K1 induces Poisson
conformal superalgebra structure on P denoted PK1.

According to Corollary 4, every FnU/Fn−1U ⊂ PK1, n > 1, is a 4-dimensional
free H-module with a basis

ān = an + Fn−1U, b̄n = bn + Fn−1U, ēn = en + Fn−1U, f̄n = fn + Fn−1U,

where

an =

(

xn 0
0 xn − 1

2
∂xn−1

)

, bn =

(

0 0
0 xn−2

)

,

en =

(

0 xn

−xn−1 0

)

, fn =

(

0 0
xn−2 0

)

.

Here an and bn are even elements of the Z2-graded associative conformal algebra U ,
en and fn are odd elements. Let us evaluate explicitly the structure of the even part
PK10 of the Poisson conformal superalgebra PK1.
By the definition of Cend2,

[an ◦λ am] = an(−λ, x)am(∂ + λ, x+ λ)− am(λ+ ∂, x)an(−λ, x− ∂ − λ)

=

(

xf(∂, λ, x) 0
0 g(∂, λ, x)

)

.
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To find the component from Fn+m−1U/Fn+m−2U , find the principal (relative to x)
term of

xf(∂, λ, x) = (mλ+ n(∂ + λ))xn+m−1 + . . .

and of

g(∂, λ, x)−

(

x−
1

2
∂

)

f(∂, λ, x) =
λ2 + ∂λ

4
((m+ n− 2)λ+ (n− 1)∂)xn+m−3 + . . . .

Therefore,

[ān •λ ām] = (n∂+(m+n)λ)ān+m−1+
λ2 + ∂λ

4
((m+n−2)λ+(n−1)∂)b̄n+m−1. (35)

In a similar way, we may evaluate

[ān •λ b̄m] = ((n+m− 2)λ+ n∂)b̄n+m−1, (36)

[b̄n •λ b̄m] = 0, (37)

(ān •λ ām) = ān+m +
λ2 + ∂λ

4
b̄n+m, (38)

(ān •λ b̄m) = b̄n+m, (39)

(b̄n •λ b̄m) = 0. (40)

Therefore, PK10 as an H-module is generated by ān, b̄m, n ≥ 1, m ≥ 2, and the
multiplication table is given by (35)–(40). It is easy to see that PK10 is a central
extension of PV2 via the submodule generated by bm, m ≥ 2. The extension is not
split since the 1st component of the grading does not intersect with theH-submodule
spanned by b̄n, n ≥ 2. To simplify the multiplication table, let us introduce

â1 = ā1, ân = ān −
1

8
∂2b̄n, n ≥ 2.

Then

(â1 •λ âm) = âm+1 +
1

8
λ2b̄m+1, m > 1,

(ân •λ âm) = ân+m, n,m > 1,

[â1 •λ âm] = (∂ + (m+ 1)λ)âm +
1

8
((m− 1)λ3 − ∂λ2 − ∂2λ− ∂3)b̄m, m > 1,

[ân •λ âm] = (n∂ + (n+m)λ)ân+m−1 −
n

8
(4λ∂2 + λ2∂)b̄n+m−1, n,m > 1.

Remark 3. For N > 3, the associated graded Poisson conformal algebra PVN =
grU(Vir; {v}, N) would not be a null extension of PV2. However, it is easy to
see that PVN+1 is a null extension of PVN . It is interesting problem to find the
corresponding conformal modules and cocycles. This problem is closely related with
finding a linear basis of the free commutative conformal algebra.
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