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VANISHING-OFF SUBGROUPS AND SUPERCHARACTER

THEORY PRODUCTS

SHAWN T. BURKETT AND MARK L. LEWIS

Abstract. In this paper, we study the vanishing-off subgroups of superchar-

acters, and use these to determine several new characterizations of superchar-
acter theory products. In particular, we give a character theoretic characteri-
zation that allows us to conclude that one may determine if a supercharacter
theory is a ∆-product or ∗-product from the values of its corresponding super-
characters.

1. Introduction

Let G be a finite group. A supercharacter theory of G, a concept formalized
by Diaconis and Isaacs in [3], essentially consists of two entities: a distinguished
set of mutually orthogonal characters, called supercharacters, and a partition of
G into unions of conjugacy classes, called superclasses. The supercharacters and
superclasses of a supercharacter theory exhibit much of the same duality as the
irreducible characters and conjugacy classes of the group do, and the usual character
theory of G is a trivial example of a supercharacter theory, often denoted by m(G).
Every supercharacter theory S of G gives rise to a subalgebra scf(S) of the algebra
cf(G) of complex-valued class functions of G, and this subalgebra is the C-linear
span of the supercharacters of S. Although supercharacter theory was developed
primarily to simplify the complicated character theory of certain families of groups,
one may not be able to deduce much group theoretic information from a general
supercharacter theory. It is reasonable to expect however that the supercharacters
of a supercharacter theory S of G hold some information about the structure of
scf(S).

As with character theory, one pathway for studying the properties of a super-
character theory is through normal subgroups and quotients. Any normal subgroup
which arises as the intersection of kernels of supercharacters of a supercharacter the-
ory S is called a supernormal subgroup, or S-normal subgroup. Equivalently these
subgroups can be expressed as a union of superclasses, also called S-classes. In his
Ph.D. thesis [4], Hendrickon introduced the concept of supernormality and devel-
oped a way in which one may construct for any S-normal subgroup N a superchar-
acter theory SN of G and a supercharacter theory SG/N of G/N . The SN -classes
are exactly the S-classes that are contained in N , and the S

G/N supercharacters
can be identified naturally with the S-supercharacters containing N in their kernel.
In particular, these supercharacter theories are built from S in a fairly intuitive
way. Hendrickson also showed that the supercharacter theories SN and SG/N may
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be used to construct a related supercharacter theory, denoted SN ∗SG/N and called
the ∗-product of SN and SG/N . The supercharacters of this supercharacter theory
come in two flavors — supercharacters of SG/N naturally considered characters of
G, and supercharacters of SN induced to G. The superclasses of SN ∗SG/N are
either SN -superclasses, or preimages of SG/N -superclasses in G. It turns out that
every SN ∗ SG/N -superclass is a union of S-superclasses, and that S coincides with
SN ∗SG/N if and only if every S-class lying outside of N is a union of full N -cosets
[4, Corollary 3.10].

In the event that S is the usual supercharacter theory m(G), this relates the
∗-product to a group theoretic object called a Camina pair. A pair (G,N) is called
a Camina pair if N is a normal subgroup of G for which every conjugacy class of
G lying outside of N is a union of full N -cosets. It is also known to be equivalent
to the condition that every member of Irr(G | N) vanishes off of N , where as usual
Irr(G | N) dentoes the set of all irreducible characters ofG not containingN in their
kernel, This connection of Camina pairs to ∗-products was explored by Lewis and
Wynn in [8], where the authors proved that every supercharacter theory of a Camina
pair is a ∗-product over some normal subgroup of G. A natural generalization of
both Camina pairs and ∗-products can be found in a similar way. Let M and N
be S-normal subgroups. Then ∆-product SN ∆ SG/M is the supercharacter theory
of G whose superclasses lying outside of N are unions of M -classes. In the event
that S is the supercharacter theory m(G) and coincides with SN ∆ SG/M , the tuple
(G,N,M) is called a Camina triple. That is, (G,N,M) is called a Camina triple if
for every g ∈ G\N and m ∈M , gm is conjugate to g. It is precisely this connection
between ∆-products and Camina triples that we exploit in this paper.

Camina triples were first studied by by Mattarei in his dissertation (see [10]). In
[7], Lewis studies various properties of generalized Camina pairs, Camina triples of
the form (G,N, [G,G]). Many of the results of that paper were later generalized in
[11] to arbitrary Camina triples by Mlaiki. One of the main tools used by both Lewis
and Mlaiki is the so-called vanishing-off subgroup. The vanishing off subgroupV(χ)
of an irreducible character χ of a finite group G is the subgroup generated by all
elements g of G satisfying χ(g) 6= 0. Classically, vanishing-off subgroups have been
tremendously useful in determining links between the structure of G and arithmetic
properties of the degrees of its irreducible characters (see [6] for details). To see the
connection to Camina triples, we note that whenever (G,N,M) is a Camina triple,
every member of Irr(N |M) induces homogeneously to G, which means that every
member of Irr(G | M) vanishes off of N . In particular, if (G,N,M) is a Camina
triple, the subgroup

V(G |M) =
∏

χ∈Irr(G|M)

V(χ)

must contained in N .
Of course, there is nothing about the definition of V(χ) that requiries χ to be

irreducible. We thus define for a supercharacter theory S of G and an S-normal
subgroup N of G the subgroup V(S | N) to be the product of the V(χ) where χ
ranges over all supercharacters of S that do not contain N in their kernel. Our first
main result is a generalization of [11, Theorem 2.1].

Theorem 1. Let S be a supercharacter theory of G, and let M ≤ N be S-normal.

The following are equivalent:
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(1) S is a ∆-product over M and N ;

(2) for each g ∈ G \N and for each supercharacter χ not containing M in its

kernel, χ(g) = 0;

(3) V(S |M) ≤ N .

Notice that that Theorem 1 gives a character-theoretic characterization of ∆-
products. Since all S-normal subgroups of a supercharacter theory can be deter-
mined from the values of the characters, it follows that one may determine if S
is a nontrivial ∆-product with the same information. In particular, this can be
determined from the supercharacter table of S—an analog of the character table
where the rows are indexed by supercharacters and the columns are indexed by su-
perclasses. Just like the character table of G, the supercharacter table of S contains
a lot of information about S in a condensed form. For example, one may find all
of S-normal subgroups of G, all of the S-superclass sizes, as well as analogs Z(S)
of the center of G, and [G, S] of the commutator subgroup of G. Other properties
beyond the scope this paper can also be found (e.g. see [1]). As a consequence
of Theorem 1, we have that one may also determine if S is a nontrivial ∆-product
from the supercharacter table of S. This gives an affirmative answer a question
posed to the first author from his Ph.D. advisor Dr. Nathaniel Thiem.

Specializing the case where M = N , we have a similar result for ∗-products.

Theorem 2. Let S be a supercharacter theory of G, and let N be S-normal. The

following are equivalent:

(1) S is a ∗-product over N ;

(2) for each g ∈ G \ N and for each supercharacter χ not containing N in

its kernel, χ(g) = 0; and, for each g ∈ N , there exists a supercharacter χ

satisfying N * ker(χ) and χ(g) 6= 0;

(3) V(S | N) = N .

Some of this work is part of first authors Ph.D. thesis at the University of Col-
orado Boulder under the supervision of Nathaniel Thiem. The first author expresses
his gratitude to Dr. Thiem for the advice and support accompanying this work.

2. Supercharacter theory

In this section, we review some basics of supercharacter theory and supernor-
mality, as well as set some notation. We then discuss two subgroups that can be
defined for any supercharacter theory of a finite group G.

Let cf(G) be the space of class functions of G; i.e.

cf(G) = {α : G→ C | α(x−1gx) = α(g) for all x, g ∈ G}.
Then cf(G) is a unital algebra under the convolution product ∗, defined by

(α ∗ β)(g) = 1

|G|
∑

x∈G

α(xg)β(x−1).

It is easy to see that cf(G) is also a unital algebra under the pointwise product. For
our purposes, a supercharacter theory S of a finite group G a subspace of cf(G)
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that is a unital subalgebra with respect to both the convolution and pointwise prod-
ucts. This subalgebra is semisimple with respect to both product, and by finding
bases of idemptotents one obtains a distinguished set of characters Irr(S), called
S-irreducible characters and a partition Cl(S) of G into S-classes. Moreover,
the sets Irr(χ) of irreducible constituents of χ, where χ ranges over the elements of
Irr(S) gives a partition of Irr(G), and

χ =
∑

ξ∈Irr(χ)

ξ(1)ξ

for each χ ∈ Irr(S).
We remark here that our definition of Irr(S) yields the equation

|G| =
∑

χ∈Irr(S)

χ(1),

which appears strange when compared to familiar equation

|G| =
∑

χ∈Irr(G)

χ(1)2.

Of course, from the definition of the elements of Irr(S), the first statement follows
from the second. Also, in the event that S = m(G), the usual character theory of
G, the elements of Irr(S) have the form χ(1)χ for some χ ∈ Irr(G), which explains
the perceived discrepancy.

Remark 2.1. To see the original definition of supercharacter theory given by Dia-
conis and Isaacs, see [3]. To see that the original definition and the one given here
are equivalent, one may see, for example, [2] or [5].

Given a subset X ⊆ Irr(G), we will write σX =
∑

ξ∈X ξ(1)ξ. In particular,

this means that χ = σIrr(χ) for each χ ∈ Irr(S). For each g ∈ G, we will write
clS(g) for the S-class containing G. We will also let SCT(G) denote the set of all
supercharacter theories of G.

A group G will always be assumed finite. Let S be a supercharacter theory of
G. A subgroup N of G is called S-normal if N is a union of S-classes of G. In this
event, we will write N ⊳S G. Given an S-normal subgroup N of G, Hendrickson
showed in [5, Propostion 6.4] that one may associate a supercharacter theory SN

of N , where
Irr(SN ) =

{

σIrr(χN ) : χ ∈ Irr(S)}
and

Cl(SN ) = {clS(g) : g ∈ N}.
It was also shown that the quotientG/N has an induced supercharacter theory SG/N

as well — the SG/N -irreducible characters are just the S-irreducible characters that
contain N in their kernels, naturally considered characters of G/N , and the SG/N -
classes are the images of the S-classes under the canonical surjection G→ G/N .

As an immediate consequence of the construction of SG/N , we have that

Irr(G/N) =
⋃

χ∈Irr(S)
N⊆ker(χ)

Irr(χ),

where the characters of G/N are being naturally identified with the characters of
G with N in their kernel. In particular, this means that every S-normal subgroup
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arises as the intersection of kernels of some S-irreducible characters, a fact proved
by Marberg (see [9, Proposition 2.1]).

Given these facts, it will be beneficial later to introduce some notation. We will
denote by Irr(S/N) the set of S-irreducible characters with N in their kernels, and
we will let Irr(S | N) denote the set of S-irreducible characters not containing N in
their kernels. In particular, Irr(S) is the disjoint union of Irr(S/N) and Irr(S | N).

The induced theories described above allow for one to take supercharacter the-
ories of normal subgroups and quotients of G, and “glue” them together to form
supercharacter theories of G, as long as some suitable conditions are satisfied. This
construction is known as a ∆-product.

Theorem 2.2 ([5, Theorem 7.2]). Let H and N be normal subgroups of G, with
H ≤ N . Let S be a supercharacter theory of N for which H ⊳S N , and let T be a

supercharacter theory of G/H for which N/H ⊳T G/H. Assume furthermore that

every S-class is a union of G-conjugacy classes and that SN/H = TN/H . Then E is

a supercharacter theory of G, where

Irr(E) =
{

χG : χ ∈ Irr(S | H)
}

∪ Irr(T),

and

Cl(E) = Cl(S) ∪ {π−1(K) : K ∈ T, N/H * K},
and π : G→ G/H is the canonical projection.

The supercharacter theory of Theorem 2.2 is called the ∆-product of S and T,
and is denoted S∆T. In the special case that H = N , the ∆-product is called a
∗-product, and S∆T is denoted by S ∗ T. That is,

Irr(S ∗ T) =
{

χG : χ ∈ Irr(S) \ {1}
}

∪ Irr(T),

and

Cl(S ∗ T) = Cl(S) ∪ {π−1(K) : K ∈ T \ {H}},
and π : G→ G/H is the canonical projection.

3. The subgroups Z(S) and [G, S]

In this section, we discuss S-normal generalizations of the center and commutator
subgroup of G. Let S be a supercharacter theory of G, and let

Z(S) = {g ∈ G : |clS(g)| = 1}.

It is well-known that Z(S) is a subgroup of G, and therefore it is an S-normal
subgroup of G contained in the center of G.

The group Z(S) has a lot in common with its classical counterpart, as is illus-
trated by the following basic results, all appearing in [1], will be needed later.

Lemma 3.1 ([1, Lemma 3.4]). Let S be a supercharacter theory of G, and let

χ ∈ Irr(S). Then χZ(S) = χ(1)ϑχ for some irreducible character ϑχ of Z(S).

Lemma 3.2 ([1, Proposition 3.5 (3)]). Let S be a supercharacter theory of G. Then

Z(S) =
⋂

χ∈Irr(S)

Z(χ).
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Lemma 3.3 ([1, Proposition 3.5 (4)]). Let S be a supercharacter theory of G, let
χ ∈ Irr(S) and write Z = Z(χ). Then

Z/ ker(χ) = Z(SG/ ker(χ)),

and is cyclic.

We now describe an analog of the commutator subgroup, as introduced in [1].
Let H ≤ G. Define the subgroup [H, S] by

[H, S] = 〈g−1k : g ∈ H, k ∈ clS(g)〉.
The following results generalize some basic properties of commutator subgroups,
and will be needed in the remainder of this paper. The first one illustrates why this
generalization of the commutator subgroup is useful from the lens of supercharacter
theory.

Lemma 3.4 ([1, Corollary 3.8]). Let S be a supercharacter theory of G, and let N
be an S-normal. Then [N, S] = 〈g−1k : g ∈ N, k ∈ clS(g)〉 is S-normal.

The next result describes exactly which S-characters are linear.

Lemma 3.5 ([1, Proposition 3.11]). Let S be a supercharacter theory of G, and let

N be S-normal. Then [G, S] ≤ N if and only if Z(SG/N ) = G/N .

4. Vanishing-off subgroup

Let χ be a character of G. The vanishing-off subgroup of χ is the subgroup

V(χ) = 〈g ∈ G : χ(g) 6= 0〉.
Then V(χ) is the smallest subgroup, V ≤ G such that χ vanishes on G \ V . The
vanishing-off subgroup is used extensively in Chapter 12 of [6] to prove theorems
relating the degrees of the irreducible characters G to the structure of G. The
following is a generalization of a well-known observation along these lines. We use
〈 , 〉 to denote the usual inner product of characters (e.g. see [6, Definition 2.16]);
that is for class functions α and β

〈α, β〉 = 1

|G|
∑

g∈G

α(g)β(g).

Lemma 4.1. Let S be a supercharacter theory of G, and let N be S-normal. Let

χ ∈ Irr(S | N), and let ψ ∈ Irr(SN ) satisfy 〈ψ, χN 〉 > 0. Then

χ(1)/ψ(1) ≤ |G : N |,
with equality if and only if V(χ) ≤ N .

Proof. Write α = χ(1)/ψ(1). Then, we have

α2ψ(1) = 〈χN , χN 〉 = 1

|N |
∑

g∈N

|χ(g)|2

≤ 1

|N |
∑

g∈G

|χ(g)|2 = |G : N |χ(1),

with equality if and only if χ vanishes on G \N . The result follows. �
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Note that if χ is linear, then V(χ) = G. For this reason, Lewis [7] defines the
vanishing-off subgroup of G to be the subgroup

V(G) = 〈g ∈ G : there exists χ ∈ Irr(G | [G,G]) such that χ(g) 6= 0〉.
In [7], Lewis uses V(G) to prove several results about Camina pairs —(G,N) is a
called a Camina pair if every class lying outside of N is a union of N -cosets— and
generalized Camina pairs (Camina triples of the form (G,N, [G,G])). Extending
these results, Mlaiki proves analogous results about Camina triples in [11], where
he introduces the notation

V(G | N) = 〈g ∈ G : there exists χ ∈ Irr(G | N) such that χ(g) 6= 0〉.
With our analogs [G, S] and Irr(S | N), we define supercharacter theoretic versions
of these subgroups as follows. Let S be a supercharacter theory of G, and let N be
an S-normal subgroup of G. Define

V(S | N) = 〈g ∈ G : there exists χ ∈ Irr(S | N) such that χ(g) 6= 0〉
and the S-vanishing-off subgroup, V(S), by

V(S) = V(S | [G, S]).
Note that when S = m(G), V(S) = V(G), the vanishing-off subgroup as defined in
[7]. Lemma 3.2(7) of that paper shows that V(G) is the product of the vanishing-
off subgroups of all nonlinear characters. Essentially the same proof verifies the
definition of V(G | N) given in the introduction. In fact, the same idea generalizes
the result for the supercharacter theoretic versions.

Proposition 4.2. Let S be a supercharacter theory of G, and let N be S-normal.

Then V(S | N)⊳S G and

V(S | N) =
∏

χ∈Irr(S|N)

V(χ),

where V(χ) = 〈g ∈ G : χ(g) 6= 0〉.
Proof. If g ∈ G such that ψ(g) 6= 0 for some ψ ∈ Irr(S | N), then g ∈ V(ψ) ⊆
∏

χV(χ). It follows that

V(S | N) ⊆
∏

χ∈Irr(S|N)

V(χ).

As the reverse containment is clear, the second statement is proved.
Since V(χ) is generated by a union of S-classes, it follows that V(χ)⊳SG for each

χ ∈ Irr(S | N). Since V(S | N) is the product of S-normal subgroups, V(S | N) is
also S-normal. �

The following results show that the function taking an S-normal subgroup N to
V(S | N) satisfies some desirable properties. In particular, it is order-preserving
and respects products.

Lemma 4.3. Let S be a supercharacter theory of G, and let H and N be S-normal

subgroups. If H ≤ N , then V(S | H) ≤ V(S | N).

Proof. This follows from Proposition 4.2 and the observation that Irr(S | H) ⊆
Irr(S | N) whenever H ≤ N . �
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Lemma 4.4. Let S be a supercharacter theory of G, and let N1 and N2 be S-normal.

Then V(S | N1N2) = V(S | N1)V(S | N2).

Proof. First note that Irr(S | Ni) ⊂ Irr(S | N1N2) for i = 1, 2. If χ /∈ Irr(S |
N1) ∪ Irr(S | N2), then N1, N2 ≤ ker(χ), which means that χ /∈ Irr(S | N1N2).
Hence

Irr(S | N1N2) = Irr(S | N1) ∪ Irr(S | N2).

By Proposition 4.2, we have

V(S | N1N2) =
∏

χ∈Irr(S|N1N2)

V(χ) =
∏

χ∈Irr(S|N1)∪Irr(S|N2)

V(χ)

=





∏

χ∈Irr(S|N1)

V(χ)









∏

χ∈Irr(S|N2)

V(χ)



 = V(S | N1)V(S | N2).

�

The vanishing off subgroup also behaves predictably with quotients.

Lemma 4.5. Let S be a supercharacter theory of G, let N and H be S-normal, and

assume that N ≤ H. Then

V(SG/N | H/N)V(S | N)/N = V(S | H)/N.

Proof. Since N ≤ H , we have Irr(S | N) ⊆ Irr(S | H). In fact,

Irr(S | H) = Irr(S | N) ∪
(

Irr(S | H) ∩ Irr(S/N)
)

.

Therefore

V(S | H) = V(S | N) ·
∏

χ∈Irr(S/N)

H*ker(χ)

V(χ).

Note that N ≤ V(S | H) since N ≤ H . Also note that if N ≤ ker(χ), and χ̃
denotes the deflated character of G/N , then V(χ)/N = V(χ̃). Therefore the result
follows by reducing modulo N . �

5. ∆-products

Let S be a supercharacter theory of G, and assume that M and N are S-normal
subgroups of G satisfying M ≤ N . Then S is a nontrivial ∆-product over M and
N if and only if every S-class lying outside of N is a union of M -cosets [5, Propo-
sition 7.3]. In this section, we determine several other equivalent characterizations
of ∆-products. In particular, we prove Theorem 1 with some other characteriza-
tions. Before doing so, however, we will need the following generalization of column
orthogonality, as well as a useful consequence.

Lemma 5.1 ([1, Theorem 3.3]). Let S be a supercharacter theory of G. For each

g, h ∈ G, we have
∑

χ∈Irr(S)

χ(g)χ(h)

χ(1)
=

|G|
|clS(g)|

if h ∈ clS(g), and is 0 otherwise.
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Lemma 5.2. Let S be a supercharacter theory of G, and let N be S-normal. Then

N is contained in V(S | N).

Proof. Suppose that N is not contained in V(S | N), and let g ∈ N \ V(S | N).
Then χ(g) = 0 for all χ ∈ Irr(S | N) and is in the kernel of every other S-irreducible
character. Therefore, Lemma 5.1 gives

|G|
|clS(g)|

=
∑

χ∈Irr(S)

|χ(g)|2
χ(1)

=
∑

χ∈Irr(S/N)

|χ(g)|2
χ(1)

+
∑

χ∈Irr(S|N)

|χ(g)|2
χ(1)

=
∑

χ∈Irr(S/N)

χ(1)2

χ(1)
=

∑

χ∈Irr(S/N)

χ(1) =
∑

ξ∈Irr(G/N)

ξ(1)2 =
|G|
|N | .

This implies that clS(g) = N , which is a contradiction since g ∈ N . The result
follows. �

We now prove Theorem 1.

Theorem 5.3. Let S be a supercharacter theory of G, and let M ≤ N be S-normal

subgroups. The following are equivalent:

(1) S is a ∆-product over M and N ;

(2) for each g ∈ G \N , |clS(g)| = |clSG/M
(gM)||M |;

(3) for each g ∈ G \N , χ(g) = 0 for each χ ∈ Irr(S |M);

(4) V(S |M) ≤ N ;

(5) for each g ∈ G\N , and m ∈M , there exists k ∈ clS(g) such that g−1k = m.

Proof. First, we show that (1) implies (2). If S is a ∆-product over M and N ,
then every class lying outside of N is a union of M -cosets by [4, Proposition 4.3],
which implies (2).

Next, we show (2) implies (3). By Lemma 5.1, we have

|G|
|clS(g)|

=
∑

χ∈Irr(S)

|χ(g)|2
χ(1)

=
∑

χ∈Irr(S/M)

|χ(g)|2
χ(1)

+
∑

χ∈Irr(S|M)

|χ(g)|2
χ(1)

=
∑

χ∈Irr(S/M)

|χ̃(gM)|2
χ(1)

+
∑

χ∈Irr(S|M)

|χ(g)|2
χ(1)

=
|G/M |

|clSG/M
(gM)| +

∑

χ∈Irr(S|M)

|χ(g)|2
χ(1)

=
|G|

|clS(g)|
+

∑

χ∈Irr(S|M)

|χ(g)|2
χ(1)

,

which means that
∑

χ∈Irr(S|M)

|χ(g)|2
χ(1)

= 0.

Since each term in this sum is nonnegative, this means that χ(g) = 0 for each
χ ∈ Irr(S |M).

The fact that (3) is equivalent to (4) follows from the definition of V(S | M),
and that (5) and (1) are equivalent follows from [4, Proposition 4.3]. So we need
only show that (3) implies (5) to complete the proof. Assume (3). Then the
supercharacters of S lying in Irr(S | M) are constant on G \N and so on the cosets
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of M lying outside of N . It is clear that the S-irreducible characters with M in
their kernels are also constant on the cosets of M lying outside of N , so every
supercharacter of S is constant on each coset of M lying outside of N . Hence each
superclass lying outside of N is a union of M -cosets, which gives (5). �

Recall that every S-normal subgroup can be found from the S-character table.
Therefore, as a corollary to Theorem 5.3, it can be deduced from the S-character
table whether or not S is a nontrivial ∆-product.

Corollary 5.4. If S is ∆-product over M and N , this can be deduced from the

S-character table using (3) of Theorem 5.3.

Proof. A supercharacter theory S is a ∆-product over S-normal subgroupsM andN
if and only if condition (3) of Theorem 5.3 holds. Since every S-normal subgroup H
of G is the intersection of the kernels of some S-irreducible characters, specifically
those that contain H in their kernel, all of this information can be read off the
S-character table. �

Example 5.5. Let G = C30, and let c1 = (
√
5− 1)/2 and c2 = −(

√
5 + 1)/2. The

table
S 1 K1 K2 K3 K4

1 1 1 1 1 1
χ1 1 −1 1 1 1
χ2 4 0 −2 4 4
χ3 12 0 0 6c1 6c2
χ4 12 0 0 6c2 6c1

is the S-character table for a supercharacter theory S of G. From the table, we see
that the set of S-normal subgroups is {1, H,N}, where H = {1} ∪ K3 ∪ K4 and
N = K2 ∪ H . Using Lemma 5.1, we find that |K2| = 10, and |K3| = |K4| = 2.
It follows that |H | = 5 and |N | = 15. The S-irreducible characters that do not
have N in their kernels are {χ2, χ3, χ4} and each of these vanishes on G \N = K1.
Therefore, this supercharacter theory is a nontrivial ∆-product over H and N .

We have the following corollaries to Theorem 5.3. The first gives some informa-
tion about the singleton classes and linear characters of a ∆-product.

Corollary 5.6. Let S be a supercharacter theory of G. If S is a ∆-product over M
and N , then Z(S) ≤ N and M ≤ [G, S].

Proof. Since every S-class lying outside of N has at least |M | elements by (2) of
Theorem 5.3, we must have Z(S) ≤ N .

Since every S-character lying in Irr(S | M) vanishes outside of N by (3) of
Theorem 5.3, we must that Irr(S/[G, S]) ⊆ Irr(S/M). This means that M ≤ [G, S].

�

Corollary 5.7. Let S be a supercharacter theory of G, and assume that S is a ∆-

product over M and N . Let H ⊳S G satisfy HM < N . Then SG/H is a ∆-product

over HM/H and N/H.

Proof. By Theorem 5.3, χ vanishes on G \ N for all χ ∈ Irr(S | M). So every χ
in Irr(S/H) ∩ Irr(S | M) vanishes outside of N . Since Irr(S/H) ∩ Irr(S | M) =
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Irr(S/H) ∩ Irr(S | HM), this is equivalent to every χ in Irr(SG/H | HM/H) van-
ishing outside of N/H . The result follows from Theorem 5.3. �

The following result shows how one may “extend the gap” between the subgroups
M and N for which S is a ∆-product.

Corollary 5.8. Let S be a supercharacter theory of G. Suppose that S is a ∆-

product over M and N , and K ⊳S G. If N ≤ K, then S is a ∆-product over M
and K. Also if K ≤M , then S is a ∆-product over K and N .

Proof. This is immediate from Lemma 4.3 and the equivalent characterization (4)
of Theorem 5.3. �

As opposed to Corollary 5.8, the following two results shows how one may “shrink
the gap.”

Proposition 5.9. Let S be a supercharacter theory of G, and let M,N1, and N2

be S-normal subgroups of G satisfying M ⊆ N1 ∩N2. If S is a ∆-product over M
and N1, and also over M and N2, then S is a ∆-product over N1 ∩N2.

Proof. Assume that S is a ∆-product over M and N1, and also over M and N2.
By Theorem 5.3, we have that V(S | M) ≤ N1 ∩ N2, which means that S is a
∆-product over M and N1 ∩N2. �

Proposition 5.10. Let S be a supercharacter theory of G and let M1,M2, and N
be S-normal subgroups of G. If S is a ∆-product over M1 and N , and also over M2

and N , then S is a ∆-product over M1M2 and N .

Proof. By Theorem 5.3, we have that V(S | M1) and V(S | M2) are contained in
N . Hence so is their product, as is M1M2 by Lemma 5.2. By Lemma 4.4, we have

V(S |M1M2) = V(S |M1)V(S |M2) ≤ N,

so S is a ∆-product over M1M2 and N by Theorem 5.3. �

6. ∗-products
The ∗-product is a special example of a ∆-product. Specifically, “S is an ∗-

product over N” means “S is a ∆-product over N and N .” In this section, we
tailor the results of the previous section to ∗-products.

Proof of Theorem 2. First we assume (1) and prove (2). By Theorem 5.3, we
have χ(g) = 0 for each g ∈ G \ N and χ ∈ Irr(S | N). Now, let g ∈ N and
suppose that χ(g) = 0 for each χ ∈ Irr(S | N). By Theorem 5.1, it follows that
|clS(g)| = |N |. As this is impossible, no such g exists and (2) is proved. Now, (2)
implies (3) is immediate and (3) implies (1) follows from Theorem 5.3. The proof
is complete. �

Remark 6.1. It is clear from the definitions that (G,N) is a Camina pair if and
only if m(G) is a ∗-product over the Camina kernel N . As mentioned in the in-
troduction, Lewis and Wynn proved in [8] that m(G) is a nontrivial ∗-product is
enough to guarantee that every supercharacter theory of a group G with a Camina
kernel is a nontrivial ∗-product. This surprising result implies therefore that every
supercharacter theory of a group G is a nontrivial ∗-product if and only if m(G) is.
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Since a ∗-product is a special example of a ∆-product, we already knew from
Corollary 5.4 that one may determine if S is a nontrivial ∗-product from the S-
character table. We also get this as a corollary to Theorem 2.

Corollary 6.2. If S is ∗-product over N , this can be deduced from the S-character

table using (2) of Theorem 2.

Proof. A supercharacter theory S is a ∗-product overN⊳SG if and only if condition
(2) of Theorem 2 holds. Since N is the intersection of the kernels of all S-irreducible
characters that contain N in their kernel, this information can be read off of the
S-character table. �

We mention the following consequence of Theorem 2. Note that if [G,G] ≤ N ,
then every irreducible character of G/N is linear. Therefore, if S is any superchar-
acter theory ofN whose superclasses of unions of G-classes, then the supercharacter
theory T = S∗m(G/N) of G satisfiesN = V(S). Theorem 2 shows that the converse
of this statement also holds.

Corollary 6.3. Let N be a normal subgroup of G. There is a supercharacter theory

S of G satisfying V(S) = N if and only if G/N is abelian. In the event that G/N
is abelian and N ⊳S G, we have V(S) = N if and only if S = SN ∗m(G/N).

Note that this also shows (perhaps not surprisingly) that there is no obvious
relationship between V(C) and V(D), even if C 4 D. In particular, even though
the condition V(G) < G is rather strong (in fact this condition guarantees that G
is essentially a p-group [7, Lemma 2.6]), the only thing that can be deduced from
G having a supercharacter S such that V(S) < G is that G is not perfect (i.e.
[G,G] < G).

Example 6.4. We return to Example 5.5, to further decompose S. Let ψi ∈ Irr(SN )
such that 〈ψi, (χi)N 〉 > 0. Then by Lemma 4.1, we have χi(1)/ψi(1) ∈ {1, 2}. Thus,
by order considerations, we must have ψ2(1) = 2 and ψ3(1) = ψ4(1) = 6. So the
SN -character table is

SN 1 K2 K3 K4

1 1 1 1 1
ψ2 2 −1 2 2
ψ3 6 0 3c1 3c2
ψ4 6 0 3c2 3c1

Similarly, if ηi ∈ Irr(SH) is such that 〈ηi, (χi)N 〉 > 0, the SH -character table is

SH 1 K3 K4

1 1 1 1
η3 2 c1 c2
η4 2 c2 c1

Since H = {1} ∪K3 ∪K4, and since both ψ3 and ψ4 vanish on K2 = N \H , it
follows that SN is a nontrivial ∗-product over H . Since |SN | = 4 = |SH | + 1, we
conclude that

SN = SH ∗M(N/H).
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Moreover, it follows that

S = (SH ∗M(N/H))∆ SG/H .

We conclude with the following consequences of Lemma 5.2 and Theorem 2. The
first shows that we may use the S-character table to deduce whether or not S is a
nontrivial ∗-product or a nontrivial ∆-product in a systemic way.

Theorem 6.5. Let S be a supercharacter theory of G, and let N > 1 be S-normal.

There exists an S-normal subgroup H containing N for which S = SH ∆ SG/N if

and only if V(S | N) < G.

Proof. One direction is clear from Theorem 5.3. Now suppose that V(S | N) < G.
If N = V(S | N), then S is an ∗-product over N (a ∆-product over N and N) by
Theorem 2. Otherwise, we must have N < V(S | N) by Lemma 5.2; hence S is a
∆-product over N and V(S | N) by Theorem 5.3. �

We now obtain a similar result specifically for ∗-products. If N ⊳S G and N *
[G, S], it is easy to see that V(S | N) = G. So let us consider an S-normal subgroup
N ≤ [G, S]. If V(S | N) = N , then S is a ∗-product over N by Theorem 2;
otherwise V(S | N) > N by Lemma 5.2. Thus we may consider the subgroup
V2(S | N) = V(S | V(S | N)). We may then define the ascending chain of
subgroups Vi(S | N), defined by Vi(S | N) = V(S | Vi−1(S | N)) for i ≥ 2.

Lemma 6.6. Let S be a supercharacter theory of G, and let N > 1 be S-normal.

Let V be the terminal member of Vi(S | N). Then V < G if and only if there exists

a proper S-normal subgroup H of G containing N for which S is a ∗-product over
H.

Proof. First suppose that V < G. Then there is some index n for which we have
Vn(S | N) = Vn+1(S | N) = V(S | Vn(S | N)). Then S is a ∗-product over V and
clearly N ≤ V .

Now suppose that there exists a proper S-normal subgroup H of G containing
N for which S is a ∗-product over H . Then, since V(S | H) = H , we have
Vi(S | N) ≤ H for all i by Lemma 4.3. In particular, V ≤ H < G. �
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