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ABSTRACT

We extend, in significant ways, the brief theory of truncated boolean representable
simplicial complexes introduced in 2015. This theory, which includes all matroids,
represents the largest class of finite simplicial complexes for which combinatorial
geometry can be meaningfully applied.

1 Introduction

In this paper, we extend the theory of TBRSC (truncated boolean representable simplicial complexes)
created in [14, Sec. 8.2]. The paper is reasonably self-contained, but familiarity with [14] will be
very useful.

Matroids [12], BRSC (boolean representable simplicial complexes) and TBRSC, as models of
discrete geometry, are all concerned with the generalized notion of independence. All matroids admit
a boolean representation (usually many), so do BRSC, but not conversely, so BRSC are beyond
matroids [2]. The set of independent subsets of a finite set of points V form a simplicial complex
(V,H) (in the sense of elementary algebraic topology [15]), H being a nonempty collection of subsets
of V closed under taking subsets.

We are interested in simplicial complexes S = (V,H) arising from a geometry, as to be explained
below. In this introduction we only concern ourselves with simple simplicial complexes, i.e. those
such that all pairs v1v2 of (distinct) elements of V are in H. But non-simple simplicial complexes
are also considered in [14] and several papers.

Simple matroids arise through transversals of the partial differences for chains in geometric lat-
tices, where we identify the vertices with the atoms of the lattice. More generally, a BRSC may be
obtained through transversals of the partial differences for chains in an arbitrary lattice, the role of
atoms being played by any join-generating set [14, Chapter 5].

Given a simplicial complex S = (V,H), the combinatorial and algebraic fields use the term rank
r as the cardinality of the largest set in H. The topological and geometric fields use d = r − 1 as
the dimension of S. We use both as will be explained. We say that S is paving (of dimension d) and
write S ∈ Pav(d) if S has dimension d and H contains all subsets of V of cardinality d. Thus we
may identify the class of (finite) graphs with Pav(1).

For (T)BRSC the geometry comes in similarly to matroids as will be explained. Let us restrict to
the paving case for simplicity. Let M = (V,H) be a matroid in Pav(d). For simplicity of explanation
we assume that d = 2, but all generalizes to arbitrary d.
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The lattice of flats L(M) of M induces a closure operator on 2V (see [14, Section 4.2] for the
most general version). Let X denote the closure of X ⊆ V . Let

 L = {F ∈ L(M) | 2 ≤ |F | < |V |}.

If M is a matroid, then each pair of points of V is contained in a unique block in  L. This makes  L
a PBD (pairwise balanced design) (with λ = 1) in design theory. Conversely, and except for trivial
cases, every such PBD determines a matroid in Pav(2) (see e.g [10, Proposition 4.2]).

This generalizes to BPav(2) (the BRSC in Pav(2)) as follows (see [14, Section 6.3]). Let S =
(V,H) ∈ BPav(2). Then  L = {F ∈ L(S) | 2 ≤ |F | < |V |} is a partial geometry since |F1 ∩F2| ≤ 1 for
all distinct F1, F2 ∈  L. This implies that each pair of points of V is contained in at most one block
in  L (pretty much the central notion). If S is not a matroid, this is not enough to produce a PBD,
but we get a PBD by adding to  L all pairs of points of V contained in no element of  L.

If S = (V,H) is a simplicial complex and k ≥ 1, then Tk(S) = (V,H ∩ P≤k(V )) is the truncation
of S to rank k. Note that we use rank here, not dimension.

In general, the truncation of a BRSC is not a BRSC (so we get a wider concept denoted by
TBRSC), but it is easily characterized as follows.

Given a a simplicial complex S = (V,H) of dimension d, we define

ε(S) = ε(H) = {X ⊆ V | ∀Y ∈ H ∩ P≤d(X) ∀p ∈ V \X Y ∪ {p} ∈ H}.

Then transversals of the partial differences for chains in ε(S) define a BRSC denoted by Sε.
In the paving case, we actually have ε(S) = L(Sε). Moreover, Sε truncated to the rank of S is

the unique largest TBRSC S0 contained in S. We mean largest with respect to inclusion of faces
(for the same vertex set). This relation is called the weak order in matroid theory [12, Section 7.3].

Now S is a TBRSC if and only if Td+1(S
ε) = S. This provides a useful criterion to recognize a

TBRSC.
We note that even if M is a matroid, M ε is not necessarily a matroid (see [10, Examples 5.5 and

5.6]). Indeed, ε(M) constitutes a lattice under intersection, but not necessarily a geometric lattice.
See [10], where this is further developed.

We note that, if M is a matroid of rank r, then ε(M) consists precisely of the (r − 1)-closed
subsets of V in the terminology introduced by Crapo [3]. But TBRSC also shed a new light on
Crapo’s concept of erection. An erection of a matroid M = (V,H) of rank r is a matroid M ′ of rank
≤ r + 1 such that M = Tr(M

′). In [3], Crapo proved that a collection {B1, . . . , Bk} ⊂ 2V form a
collection of maximal flats of an erection of M if and only if:

(1) the closure of each Bi in L(M) is V ;

(2) each Bi is (r − 1)-closed (i.e. belongs to ε(M));

(3) every facet of M (i.e. maximal subset in H) is contained in a unique Bi.

He then proves that the collection of all erections of M (including the trivial erection M) form a
lattice for the weak order, and the maximal erection is called the free erection.

These conditions were designed to remain in the matroid context. We go beyond matroids to the
wider class of TBRSC and consider arbitrary differences of rank, generalizing the work of Crapo and
others [3, 11, 13]. For a TBRSC S, these operations can be viewed as strong maps (∨-maps) of Sε

(see [9] and Chapter 5, especially Sections 5.4 - 5.5 and 8.2 of [14]).
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The outline of this paper is as follows:
In Sections 2 and 3 we provide the basic theory of BRSC and TBRSC, respectively. In Section

4 we discuss low dimensions.
Section 5 deals with the join operator: (V,H) ∪ (V,H′) = (V,H ∪H′). In this paper we use join

referring to the lattice of all simplicial complexes on a fixed vertex set V , ordered by inclusion. This
is the same as the lattice of semigroup ideals of the monoid (2V ,∩).

In general, (T)BRSC are not closed under join, but the class TBPav(d) (the TBRSC in Pav(d))
is. A key resource are the complexes Bd(V,L) (where 2 ≤ d ≤ |L| < |V |), containing all subsets of
V with at most d points and all subsets of V with d+ 1 points which intersect L in exactly d points.

Note that, given S = (V,H) ∈ TBPav(d), we have Bd(V,L) ⊆ S if and only if L ∈ ε(S).
Moreover, S is a TBRSC if and only if

S =
⋃

L∈ L

Bd(V,L) = Td+1(Sε)

where  L ⊆ P≥d(V ) \ {V }. More generally, S0 = Td+1(S
ε) is the largest paving TBRSC contained

in S, and is therefore the largest subcomplex of S allowing some geometrical features. This strictly
includes all paving matroids.

In Section 6, we show that the maximum number of vertices for a minimal S ∈ TBPav(d)\BPav(d)
is (d + 1)(d + 2). On the other hand, the prevariety T BP2 (consisting of all paving TBRSC of
dimension ≤ 2) is not finitely based.

In Section 7, we discuss three questions involving the largest pure subcomplex of a BRSC or of
one of its truncations. We answer them negatively in the general case, but we show them to hold for
low dimensions,

Finally, we discuss in Section 8 some of the topological properties of the geometric realization of
a TBRSC, generalizing previous results for BRSC.

2 Boolean representable simplicial complexes

For the material presented in this section, the reader is referred to [14]. All the results mentioned
here will be used throughout the paper without further reference.

All lattices and simplicial complexes in this paper are assumed to be finite. Given a set V and
n ≥ 0, we denote by Pn(V ) (respectively P≤n(V ), P≥n(V )) the set of all subsets of V with precisely
(respectively at most, at least) n elements.

A (finite) simplicial complex is a structure of the form S = (V,H), where V is a finite nonempty set
and H ⊆ 2V contains P1(V ) and is closed under taking subsets. The elements of V and H are called
respectively vertices and faces. To simplify notation, we shall often denote a face {x1, x2, . . . , xn} by
x1x2 . . . xn.

A face of S which is maximal with respect to inclusion is called a facet. We denote by fct(S) the
set of facets of S. The rank and dimension of S are defined respectively by

rk(S) = max{|I| : I ∈ H}, dim(S) = rk(S) − 1.

We say that S = (V,H) is:

• simple if P2(V ) ⊆ H;
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• paving if Pdim(S)(V ) ⊆ V .

We denote by Pav(d) the class of all paving simplicial complexes of dimension d.
Two simplicial complexes (V,H) and (V ′,H′) are isomorphic if there exists a bijection ϕ : V → V ′

such that
X ∈ H if and only if Xϕ ∈ H′

holds for every X ⊆ V .
If S = (V,H) is a simplicial complex and W ⊆ V is nonempty, we call

S|W = (W,H ∩ 2W )

the restriction of S to W . It is obvious that S|W is still a simplicial complex.
A simplicial complex M = (V,H) is called a matroid if it satisfies the exchange property:

(EP) For all I, J ∈ H with |I| = |J | + 1, there exists some i ∈ I \ J such that J ∪ {i} ∈ H.

An important example of matroids are the uniform matroids Uk,n: for all 1 ≤ k ≤ n, we write
Uk,n = (V, P≤k(V )) with |V | = n.

Given an R × V matrix M and Y ⊆ R, X ⊆ V , we denote by M [Y,X] the submatrix of M
obtained by deleting all rows (respectively columns) of M which are not in Y (respectively X).

A boolean matrix M is lower unitriangular if it is of the form




1 0 0 . . . 0
? 1 0 . . . 0
? ? 1 . . . 0
...

...
...

. . .
...

? ? ? . . . 1




Two matrices are congruent if we can transform one into the other by independently permuting
rows/columns. A boolean matrix is nonsingular if it is congruent to a lower unitriangular matrix.

Equivalently, nonsingular matrices can be characterized through the concept of permanent. The
permanent of a square matrix M = (mij) (a positive version of the determinant) is defined by

PerM =
∑

π∈Sn

n∏

i=1

mi,iπ.

But, even though our matrix is boolean, we compute its permanent in the superboolean semiring SB,
which can be described as the quotient of the usual semiring (N,+, ·) by the congruence with classes
{0}, {1}, {2, 3 . . .}. Then a square boolean matrix is nonsingular if and only if its permanent is 1 in
SB.

We note that the classical results on determinants involving only a rearrangement of the permu-
tations extend naturally to permanents.

Given an R× V boolean matrix M , we say that the subset of columns X ⊆ V is M -independent
if there exists some Y ⊆ R such that the submatrix M [Y,X] is nonsingular.

A simplicial complex S = (V,H) is boolean representable (BRSC) if there exists some boolean
matrix M such that H is the set of all M -independent subsets of V . Since P1(V ) ⊆ H, this implies
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that all the columns of M are nonzero. Moreover, for all distinct p, q ∈ V , the columns M [R, p] and
M [R, q] are different if and only if pq ∈ H.

By restricting the set of columns, it is easy to see that a restriction of a BRSC is still a BRSC
[14, Proposition 8.3.1(i)].

All matroids are boolean representable [14, Theorem 5.2.10], but the converse is not true.
A subset F of 2V is called a Moore family if V ∈ F and F is closed under intersection (that

is, a Moore family is a submonoid of the monoid of all subsets of V under intersection). Every
Moore family, under inclusion, constitutes a lattice (with intersection as meet and the determined
join F1 ∨ F2 = ∩{F ∈ F | F1 ∪ F2 ⊆ F}). We say that X ⊆ V is a transversal of the successive
differences for a chain

F0 ⊂ F1 ⊂ . . . ⊂ Fk

in F if X admits an enumeration x1, . . . , xk such that xi ∈ Fi \ Fi−1 for i = 1, . . . , k.
If Tr(F) is the set of transversals of the successive differences for chains in F , then (V,Tr(F))

constitutes a BRSC. Moreover, every BRSC can be obtained this way by taking as Moore family its
lattice of flats (see [14, Chapters 5 and 6]):

We say that X ⊆ V is a flat of S = (V,H) if

∀I ∈ H ∩ 2X ∀p ∈ V \X I ∪ {p} ∈ H.

The set of all flats of S is denoted by L(S). Note that V, ∅ ∈ L(S) in all cases, and L(S) is indeed a
Moore family (and therefore a lattice). Note also that P≤d−1(V ) ⊆ L(S) for every S ∈ Pav(d).

It follows from [14, Corollary 5.2.7] that a simplicial complex S = (V,H) is boolean representable
If and only if the transversals of the successive differences for chains in L(S) are precisely the elements
of H.

By [14, Proposition 8.3.3(i)], the flats of a BRSC determine flats on any restriction: if F is a flat
of a BRSC S = (V,H) and W ⊆ V , then F ∩W ∈ L(S|W ).

The lattice L(S) induces a closure operator on 2V defined by

X = ∩{F ∈ L(S) | X ⊆ F}

for every X ⊆ V . It follows from the definitions that X = V when X contains a facet of S.
By [14, Corollary 5.2.7], S = (V,H) is boolean representable if and only if every X ∈ H admits

an enumeration x1, . . . , xk satisfying

x1 ⊂ x1x2 ⊂ . . . ⊂ x1 . . . xk. (1)

It is well known that in the case of matroids, this enumeration can be chosen arbitrarily [12].

3 Truncation

In this section, we exposit the basic facts about TBRSCs. The proofs of the results can be found in
[14, Section 8.2], but we include them in the Appendix for the sake of completeness and convenience
for the reader.

Given a simplicial complex S = (V,H) and k ≥ 1, the k-truncation of S is the simplicial complex
Tk(S) = (V, Tk(H)), where Tk(H) = H ∩ P≤k(V ).
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We say that a simplicial complex S = (V,H) is a TBRSC if S = Tk(S′) for some BRSC S′ and
k ≥ 1. For every d ≥ 1, we denote by TBPav(d) the class of all paving TBRSCs of dimension d.

To recognize a TBRSC, it is convenient to develop an alternative characterization. The key is
building the flats of a canonical BRSC having our TBRSC as a truncation. The following result
characterizes the flats of a truncation with respect to the flats of the original complex.

Proposition 3.1 [14, Proposition 8.2.2] Let S = (V,H) be a simplicial complex and let k ≥ 1. Then

L(Tk(S)) = {X ∈ L(S) | fct(Tk(S)) ∩ 2X = ∅} ∪ {V }.

Proof. In the Appendix. �

It follows that the lattice of flats of Tk(S) is obtained from the lattice of flats of S by identifying
the elements of an up set (namely the subset of flats containing some facet of Tk(S)). In semigroup-
theoretic terms, this makes L(Tk(S)) a Rees quotient of the ∨-semilattice of L(S).

For any simplicial complex S = (V,H) of dimension d, we define

ε(S) = ε(H) = {X ⊆ V | ∀Y ∈ H ∩ P≤d(X) ∀p ∈ V \X Y ∪ {p} ∈ H}.

Note that ε(S) generalizes to arbitrary simplicial complexes what Crapo calls d-closed sets of a
monoid in his fundamental paper from 1970 [3].

The following lemma is clear from the definition.

Lemma 3.2 [14, Lemma 8.2.3] Let S = (V,H) be a simplicial complex. Then:

(i) ε(S) is a Moore family;

(ii) L(S) ⊆ ε(S).

Given S = (V,H), write Hε = Tr(ε(S)) and let Sε = (V,Hε) denote the BRSC defined by the
lattice ε(S).

Lemma 3.3 [14, Lemma 8.2.4] Let S = (V,H) be a simplicial complex of dimension d. Then:

(i) Td+1(Hε) ⊆ H;

(ii) ε(S) ⊆ L(Sε);

(iii) Sε is a BRSC.

Proof. In the Appendix. �

Now we can state the main result of this section:

Theorem 3.4 [14, Theorem 8.2.5] Let S = (V,H) be a simplicial complex of dimension d. Then the
following conditions are equivalent:

(i) S = Td+1(S′) for some boolean representable simplicial complex S′;

(ii) S = Td+1(Sε).

Furthermore, in this case we have L(Sε) = ε(S).

Proof. In the Appendix. �
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We present now two examples which show that the class of TBRSCs is intermediate between the
class of BRSCs and the class of simplicial complexes. We analyze these examples in the Appendix.

The first example shows that a TBRSC is not necessarily a BRSC, even in the paving case.

Example 3.5 Let V = {1, . . . , 6}, H = (P≤3(V ) \ {135, 235, 146, 246, 346, 456}) and S = (V,H).
Then S ∈ TBPav(2) but is not boolean representable.

The second complex shows that a (paving) simplicial complex is not necessarily a TBRSC.

Example 3.6 Let V = {1, . . . , 4}, H = P≤2(V ) ∪ {123} and S = (V,H). Then S is not a TBRSC.

With respect to the equality L(Sε) = ε(S) in Theorem 3.4, we can show it holds for all paving
simplicial complexes:

Proposition 3.7 Let d ≥ 0 and S = (V,H) ∈ Pav(d). Then L(Sε) = ε(S).

Proof. In the Appendix. �

However, the next example, also analyzed in the Appendix, shows that equality may not hold.

Example 3.8 Let S = (V,H) be the simplicial complex defined by V = {1, . . . , 5} and

H = (P≤2(V ) \ {14, 24, 35}) ∪ {123}.

Then ε(S) ⊂ L(Sε).

4 Low dimensions

Proposition 4.1 Every TBRSC of dimension 1 is boolean representable.

Proof. Let S = (V,H) be a TBRSC of dimension 1. For every a ∈ V , let Fa = {a} ∪ {b ∈ V \ {a} |
ab /∈ H}. Every a ∈ V is a transversal of the successive differences for the chain ∅ ⊂ V in L(S).
Suppose now that a, b ∈ V are distinct and ab ∈ H. Then ab is a transversal of the successive
differences for the chain ∅ ⊂ Fa ⊂ V , so it suffices to show that Fa ∈ L(S).

Since S is a TBRSC, there exists a boolean matrix M with column space V such that, for every
X ∈ P≤2(V ), we have X ∈ H if and only if X is M -independent. Since P1(V ) ⊆ H, all the columns
of M are nonzero, so X ∈ H if and only if the columns of X are different. Thus Fa is the set of all
b ∈ V having columns in M equal to the column of a.

Let X ∈ H∩ 2Fa and p ∈ V \ Fa. Then |X| ≤ 1 and the column of p is different, so X ∪ {p} ∈ H
and so Fa ∈ L(S) as required. �

Example 3.5 shows that Proposition 4.1 fails for dimension 2, even in the paving case.
The next lemma features a class of matroids which is useful to build counterexamples.

Lemma 4.2 Let V be a finite nonempty set and let F ⊆ P2(V )∪P3(V ) be such that F ∩F ′ = ∅ for
all distinct F,F ′ ∈ F . Let H consist of all X ∈ P≤3(V ) containing no element of F . Then (V,H) is
a matroid.

Proof. In the Appendix. �

The next result shows that, when it comes to separate BRSCs from TBRSCs, Example 3.5 has
the minimum number of vertices.

Proposition 4.3 Every TBRSC with at most 5 vertices is boolean representable.
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Proof. Let S = (V,H) be a TBRSC with |V | ≤ 5. In view of Proposition 4.1, we may assume that
dim(S) ≥ 2.

Suppose first that |V | = 3. Then S is the uniform matroid U3,3, hence a BRSC.
Suppose next that |V | = 4. We may assume that dim(S) = 2, otherwise S = U4,4. If S := T3(S′)

for some BRSC S′ of dimension 3, then S = U3,4 and is therefore a BRSC.
Thus we may assume that |V | = 5. If dim(S) = 4, then S = U5,5 is a BRSC. If dim(S) = 3 and

S = T4(S′) for some BRSC S′ of dimension 4, then S = U4,5 and is also a BRSC. Hence we may
assume that dim(S) = 2.

Suppose that S is not a BRSC. Then L(S) ⊂ ε(S). Let Z ∈ ε(S) \ L(S). Comparing the
definitions of ε(S) and L(S), we see that H ∩ P3(Z) 6= ∅, hence we may take a1a2a3 ∈ H ∩ P3(Z).
Since a1a2a3 ∈ H ⊆ Hε, we may assume that there exists a chain ∅ = Z0 ⊂ Z1 ⊂ Z2 ⊂ Z3 in ε(S)
such that ai ∈ Zi \Zi−1 for i = 1, 2, 3. By Lemma 3.2(i), a1a2a3 is also a transversal of the successive
differences for the chain

∅ ⊂ Z1 ∩ Z ⊂ Z2 ∩ Z ⊂ Z3 ∩ Z

in ε(S), hence there exists a chain

∅ = Z ′
0 ⊂ Z ′

1 ⊂ Z ′
2 ⊂ Z ′

3 ⊂ Z ′
4 = V (2)

in ε(S). Since |V | = 5, there exists some j ∈ 1234 such that |Z ′
j \ Z ′

j−1| = 2. Without loss of
generality, we may assume that Z ′

j = Z ′
j−1 ∪ 12.

If X ∈ P3(V ) does not contain 12, then X is a transversal of the successive differences for the
chain (2), hence X ∈ T3(Hε) = H. Thus the only possible elements of P3(V ) \ H = P3(V ) \ Hε are
123, 124, 125.

If 12 /∈ H, we have necessarily

H = {X ∈ P≤3(V ) | 12 6⊆ X},

because any other 2-subset is contained in some element of H∩P3(V ). By Lemma 4.2, S is a matroid,
hence boolean representable.

Thus we may assume that we have one of the following four cases:

(C1) H = P≤3(V ) \ {123, 124, 125};

(C2) H = P≤3(V ) \ {123, 124};

(C3) H = P≤3(V ) \ {123};

(C4) H = P≤3(V ).

Now (C3) and (C4) are clearly both matroids (hence BRSCs). We can show that (C1) is a BRSC by
checking that 34, 35, 45 are flats. Similarly, (C2) is a BRSC because 15, 34, 35, 45 are flats. Therefore
every TBRSC with 5 vertices is a BRSC. �
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5 Join

Given two simplicial complexes S = (V,H) and S′ = (V,H′) we define the join of S and S′ as the
simplicial complex

S ∨ S′ = (V,H ∪H′).

Notice that given a simplicial complex (V,H), then H is just a down set of 2V under inclusion. The
down sets of 2V form a lattice equal to the lattice of semigroup ideals of the monoid (2V ,∩), and
this construction is precisely the join in this lattice.

Proposition 5.1 Let S = (V,H) and S′ = (V,H′) be BRSCs with |V | ≤ 4. Then S ∨S′ is a BRSC.

Proof. If dim(S ∨ S′) = 1, we may use Proposition 4.1 and Theorem 5.3. The only other nontrivial
case is dim(S ∨S′) = 2. But it is easy to check [14, Example 5.2.11] that if |V | = 4 and dim(S) = 2,
then S is a BRSC if and only if |H ∩ P3(V )| 6= 1. It follows that if S ∨ S′ is not a BRSC, then S or
S′ is not a BRSC. �

The next example shows that neither BRSCs nor TBRSCs are closed under join when we consider
5 vertices (even at dimension ≤ 2). We analyze this example in the Appendix.

Example 5.2 Let V = 12345. Let S1 = (V, P≤2(V )) and S2 = (V,H2) be defined by

H2 = {X ∈ P≤3(V ) | 12, 34 6⊆ X}.

But things work out better in the paving case:

Theorem 5.3 Let d ≥ 1 and let (V,H), (V,H′) ∈ TBPav(d). Then (V,H ∪H′) ∈ TBPav(d).

Proof. Let
R = {Z ∩ Z ′ | Z ∈ ε(H), Z ′ ∈ ε(H′)}.

In view of Lemma 3.2(i), R is a Moore family. Hence (V,Tr(R)) is a BRSC. We claim that

H ∪H′ = Td+1(Tr(R)). (3)

Let X ∈ H. By Theorem 3.4, there exists a chain

Z0 ⊂ Z1 ⊂ . . . ⊂ Zn (4)

in ε(H) and an enumeration x1, . . . , xn of the elements of X such that xi ∈ Zi\Zi−1 for every i. Since
V ∈ ε(H′), then (4) is also a chain in R, hence X ∈ Tr(R). But |X| ≤ d + 1, thus H ⊆ Td+1(Tr(R))
and also H′ ⊆ Td+1(Tr(R)) by symmetry.

Conversely, let X ∈ Td+1(Tr(R)). Since H,H′ ∈ Pav(d), we may assume that |X| = d + 1. Then
there exists a chain

R0 ⊂ R1 ⊂ . . . ⊂ Rd+1 (5)

in Tr(R) and an enumeration x1, . . . , xd+1 of the elements of X such that xi ∈ Ri \Ri−1 for every i.
Write Rd = Z ∩ Z ′ with Z ∈ ε(H) and Z ′ ∈ ε(H′). Since xd+1 /∈ Rd, we may assume that

xd+1 /∈ Z. Since (V,H) ∈ TBPav(d) yields P≤d−1(V ) ⊆ ε(H), then

∅ ⊂ x1 ⊂ x1x2 ⊂ . . . ⊂ x1 . . . xd−1 ⊂ Z ⊂ V

is a chain in ε(H) having X as a transversal of the successive differences. Thus X ∈ H by Theorem
3.4 and so (5.3) holds. Note also that P≤d(V ) ⊆ H ⊆ H ∪H′.

Therefore (V,H ∪H′) = Td+1(V,Tr(R)) ∈ TBPav(d). �
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The next example, analyzed in the Appendix, shows that we cannot replace TBPav(d) by BPav(d)
in Theorem 5.3.

Example 5.4 Let V = 123456, H = P≤2(V ) ∪ {123, 124, 125, 126} and

H′ = P≤2(V ) ∪ {X ∈ P3(V )
∣∣ |X ∩ 46| = 1}.

Then (V,H), (V,H′) ∈ BPav(d) but (V,H ∪H′) /∈ BPav(d).

Let V be a finite nonempty set and let L ⊆ V be such that 2 ≤ d ≤ |L| < |V |. We write

Bd(V,L) = (V,Bd(V,L)) = (V,Tr(P≤d−1(V ) ∪ {V,L})).

This is easily seen to be equivalent to the following condition:

Bd(V,L) = P≤d(V ) ∪ {X ∈ Pd+1(V )
∣∣ |X ∩ L| = d}.

If V is clear from the context, we may omit V from Bd(V,L) and Bd(V,L).

Lemma 5.5 Let V be a finite nonempty set and let L ⊆ V be such that 2 ≤ d ≤ |L| < |V |. Then
Bd(V,L) ∈ BPav(d).

Proof. It is immediate that P≤d−1(V )∪{V,L} ⊆ L(Bd(L)), hence every X ∈ Bd(L) is a transversal
of the successive differences for some chain in L(Bd(L)). Thus Bd(L) ∈ BPav(d). �

We can now prove the following result, characterizing TBPav(d).

Theorem 5.6 Let d ≥ 2 and S = (V,H) ∈ Pav(d). Then the following conditions are equivalent:

(i) S ∈ TBPav(d);

(ii) S = ∨{Bd(V,L) | L ∈  L} for some nonempty  L ⊆ P≥d(V ) \ {V }.

Proof. (i) ⇒ (ii). Let  L = (P≥d(V ) \ {V }) ∩ ε(S). Since dim(S) = d, we have  L 6= ∅.
Let X ∈ H. Since P≤d(V ) ⊆ Bd(L) for every L ∈  L, we may assume that |X| = d + 1. By

Theorem 3.4, there exists a chain
Z0 ⊂ Z1 ⊂ . . . ⊂ Zd+1

in ε(S) and an enumeration a1, . . . ad+1 of the elements of X so that ai ∈ Zi\Zi−1 for i = 1, . . . , d+1.
Now a1 . . . ai ∈ L(S) ⊆ ε(S) for i = 0, . . . , d− 1, hence X is a transversal of the chain

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . a1 . . . ad−1 ⊂ Zd ⊂ V

and so X ∈ Bd(Td). Since Zd ∈  L, we get H ⊆ ∨{Bd(L) | L ∈  L}.
The opposite inclusion is immediate.
(ii) ⇒ (i). By Lemma 5.5 and Theorem 5.3. �

In such a decomposition (S = ∨{Bd(V,L) | L ∈  L}), we may refer to the elements of  L as lines.
The following lemma shows that the decomposition provided by Theorem 5.6 is not unique.

Lemma 5.7 Let d ≥ 2 and let V be a finite set with |V | ≥ d + 1. For every a ∈ V , we have

Bd(V, V \ {a}) =
⋃

L∈ La

Bd(V,L), (6)

where  La = {L ∈ Pd(V ) | a ∈ L}.
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Proof. It suffices to show that both sides of (6) contain the same X ∈ Pd+1(V ). So let X ∈ Pd+1(V ).
Suppose that X ∈ Bd(V, V \ {a}). Then |X ∩ (V \ {a})| = d, hence a ∈ X. Take b ∈ X \ {a}.

Then X \ {b} ∈  La and so

X ∈ Bd(V,X \ {b}) ⊆
⋃

L∈ La

Bd(V,L).

Conversely, suppose that X ∈ Bd(V,L) with L ∈  La. Since |X| = d+1 and |L| = d, we must have
X = L∪{c} for some c ∈ V \L. Hence a ∈ L ⊂ X yields |X ∩ (V \{a})| = d and X ∈ Bd(V, V \{a}).
Therefore (6) holds as required. �

We prove next a version of Theorem 5.6 for BPav(d).

Theorem 5.8 Let d ≥ 2 and S = (V,H) ∈ Pav(d). Then the following conditions are equivalent:

(i) S ∈ BPav(d);

(ii) S = ∨{Bd(V,L) | L ∈ L(S) \ (P≤d−1(V ) ∪ {V })};

(iii) S = ∨{Bd(V,L) | L ∈  L} for some nonempty  L ⊆ P≥d(V ) \ {V } satisfying

|L ∩ L′| ≤ d− 1 for all distinct L,L′ ∈  L. (7)

Proof. (iii) ⇒ (i). Since P≤d(V ) ⊆ H, we have P≤d−1(V ) ⊆ L(S). Let K ∈  L and suppose that
X ∈ H∩ 2K and p ∈ V \K. Since P≤d(V ) ⊆ H ⊆ P≤d+1(V ), we may assume that |X| = d or d + 1.

Suppose that |X| = d+1. Since X ∈ H = ∪
L∈ LBd(L), we have X ∈ Bd(L) for some L ∈ L. Thus

|X ∩ L| = d and so |K ∩ L| ≥ d. In view of (7), we get K = L, hence X ⊆ L, a contradiction since
|X| = d + 1 and |X ∩ L| = d. Therefore |X| = d, hence X ∪ {p} ∈ Bd(K) ⊆ H and so K ∈ L(S).

Let a1, . . . , ad−1 ∈ V be distinct. Then

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . ad−1 ⊂ V (8)

is a chain in L(S). If a1, . . . , ad−1 ∈ L ∈  L, then (8) can be refined to

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . ad−1 ⊂ L ⊂ V, (9)

also a chain in L(S). It is easy to check that every X ∈ H is a partial transversal of the successive
differences for some chain of type (8) or (9), hence S is boolean representable.

(i) ⇒ (ii). Since P≤d−1(V ) ∪ {V } ⊆ L(S) and the maximum length of a chain in L(S) is
d + 1, it follows easily that the maximal chains in L(S) must be of the form (8) or (9), with
L ∈ L(S) \ (P≤d−1(V ) ∪ {V }). Thus (ii) holds.

(ii) ⇒ (iii). Suppose that L,L′ ∈ L(S) are distinct and satisfy |L∩L′| ≥ d. We may assume that
L∩L′ ⊂ L. Let a1, . . . , ad−1 ∈ L be distinct. Since P≤d−1(V ) ⊆ L(S), we get a chain of length d+ 2

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . ad−1 ⊂ L ∩ L′ ⊂ L ⊂ V

in L(S), contradicting dimH = d. Therefore |L ∩ L′| ≤ d− 1. �
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Corollary 5.9 Let d ≥ 2 and and let V be a finite set with |V | ≥ d + 1. Let ∅ 6=  L ⊆ 2V be such
that |L| ∈ {d, d + 1, |V | − 1} for every L ∈ L. Then ∨{Bd(V,L) | L ∈  L} is boolean representable.

Proof. In view of Lemma 5.7, we may assume that |L| ∈ {d, d + 1} for every L ∈  L. Let L,L′ ∈  L
be distinct. It is easy to check that

Bd(L) ∪ {L} = ∪{Bd(L \ {a}) | a ∈ L} (10)

holds for every L ∈ Pd+1(V ). Now we may use (10) for replacing  L by some equivalent  L′ satisfying
(7):

(1) If L,L′ ∈  L ∩ Pd+1(V ) are such that |L ∩ L′| = d, we replace Bd(L) ∪ Bd(L′) by

(∪{Bd(L \ {a}) | a ∈ L}) ∪ (∪{Bd(L′ \ {a}) | a ∈ L′}).

(2) If L ∈  L ∩ Pd+1(V ) and L′ ∈ Pd(L), we replace Bd(L) ∪ Bd(L′) by ∪{Bd(L \ {a}) | a ∈ L}.

Indeed, these replacements are legitimate in view of (10), and each such replacement decreases the
number of L ∈  L ∩Pd+1(V ). Eventually, we end up with some  L′ satisfing (7). By Theorem 5.8, our
complex is boolean representable. �

Another way of ensuring closure under join is by restricting the type of complexes in BPav(d).
We define, for every d ≥ 2 and every finite set V with at least d + 2 elements,

Y(V ) = {(V,H) ∈ BPav(d) | (V,H) has no restriction isomorphic to Ud,d+2}.

Proposition 5.10 Let d ≥ 2 and let V be a finite set with at least d + 2 elements. Then

(V,H1), (V,H2) ∈ Y(V ) implies (V,H1 ∪H2) ∈ Y(V ).

Proof. We show that
Fl(V,Hi) ⊆ P≤d+1(V ) ∪ {V }. (11)

Let i ∈ {1, 2} and F ∈ L(V,Hi). Suppose that d + 1 < |F | < |V |. Since Pd(V ) ⊆ Hi and no
restriction of (V,Hi) to a d-subset of F is isomorphic to Ud,d+2, there exists some X ∈ Pd+1(F )∩Hi.
But then F contains a facet of (V,Hi) and so F = V , a contradiction. Therefore (11) holds.

Now let
 Li = {F ∈ L(V,Hi) | d ≤ |F | < |V |}.

By (11), we have
 Li = {F ∈ L(V,Hi)

∣∣ |F | ∈ {d, d + 1} }. (12)

Since (V,Hi) ∈ BPav(d), we have Hi =
⋃

L∈ Li

Bd(V,L) by Theorem 5.8. Thus H1∪H2 = ∪{Bd(V,L) |

L ∈  L1 ∪  L2} and so (V,H1 ∪H2) ∈ BPav(d) by (12) and Proposition 5.9.
Suppose that there exists some W ∈ Pd+2(V ) such that Pd+1(W ) ∩ (H1 ∪ H2) = ∅. Then

Pd+1(W ) ∩H1 = ∅, contradicting (V,H1) ∈ Y(V ). Therefore (V,H1 ∪H2) ∈ Y(V ). �
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Finally, we prove that, when we start with a complex S ∈ Pav(d), there is a largest paving
TBRSC contained in S, and it is precisely Td+1(S

ε).

Theorem 5.11 Let S = (V,H) ∈ Pav(d) and

τ(S) = {(V,H′) ∈ TBPav(d) | H′ ⊆ H} ∪ {(V, P≤d(V ))}.

Then:

(i) there exists some (unique) S0 = (V,H0) ∈ τ(S) such that H′ ⊆ H0 for every (V,H′) ∈ τ(S);

(ii) S0 = Td+1(Sε).

Proof. (i) Let H0 = ∪{H′ | (V,H′) ∈ τ(S)}. Clearly, P≤d(V ) ⊆ H′ for every (V,H′) ∈ τ(S). In
view of Theorem 5.3, it follows that (V,H0) ∈ τ(S) and we are done.

(ii) By Lemma 3.3, Td+1(Sε) is a TBRSC and Td+1(H
ε) ⊆ H. Since S ∈ Pav(d), we have

P≤d−1(V ) ∪ {V } ⊆ ε(S) and so P≤d(V ) ⊆ Hε. Hence Td+1(Sε) is paving and Td+1(Sε) ∈ τ(S).
Therefore Td+1(Hε) ⊆ H0.

To prove the opposite inclusion, we may assume that dim(S0) = d (otherwise H0 = P≤d(V ) ⊆ Hε

and we are done). It follows from Theorem 3.4 that S0 = Td+1((S0)ε), so it suffices to show that
(H0)ε ⊆ Hε, which follows itself from ε(S0) ⊆ ε(S). We prove the latter inclusion.

Let Z ∈ ε(S0). Then

∀X ∈ H0 ∩ P≤d(Z) ∀p ∈ V \ Z X ∪ {p} ∈ H0.

Suppose that X ∈ H ∩ P≤d(Z) and p ∈ V \ Z. Since S0 ∈ Pav(d), we have X ∈ H0 ∩ P≤d(Z) and
Z ∈ ε(S0) yields X ∪ {p} ∈ H0 ⊆ H. Thus Z ∈ ε(S) and so ε(S0) ⊆ ε(S) as required. �

The next example, analyzed in the Appendix, shows that the paving requirement for subcom-
plexes cannot be removed from the definition of τ(S).

Example 5.12 Let S = (V,H) ∈ Pav(3) be defined by V = {1, . . . , 7} and H = P≤3(V ) ∪ {1abc |
a ∈ 23, b ∈ 45, c ∈ 67}. Then S has no largest truncated boolean representable subcomplex.

6 On TBPav(d) \BPav(d)

We proved in Proposition 4.3 that we need at least 6 points to separate TBPav(2) from BPav(2).
This section starts with a full account of the 6 point case.

Proposition 6.1 Up to isomorphism, the complexes with 6 points in TBPav(2)\BPav(2) are of the
form (123456,H) for:

(1) H = B2(1234) ∪ B2(12);

(2) H = B2(1234) ∪ B2(12) ∪ B2(15);

(3) H = B2(1234) ∪ B2(12) ∪ B2(15) ∪ B2(25);

(4) H = B2(1234) ∪ B2(12) ∪ B2(35);

(5) H = B2(1234) ∪ B2(12) ∪ B2(15) ∪ B2(35).

Moreover, all the above 5 cases are nonisomorphic.

Proof. In the Appendix. �

13



Ordering the sets of faces through inclusion, we can build the following diagram

(3) (5)

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

(2)

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

(4)

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

(1)

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

(V,B2(1234) ∪ {123})

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

(V,B2(1234) ∪ {124})

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

(V,B2(1234))

The missing triangles in the three lowest elements are respectively

124, 134, 234, 156, 256, 356, 456, 123, 134, 234, 156, 256, 356, 456

123, 124, 134, 234, 156, 256, 356, 456

hence all the edges correspond to covering relations (check the enumeration of the missing triangles
for (1)–(5) in the proof of Proposition 6.1).

We note that:

• (V,B2(1234)) ∈ BPav(2) by Lemma 5.5.

• (V,B2(1234) ∪ {123}) /∈ TBPav2. Indeed, suppose that there exist Z ∈ ε(B2(1234) ∪ {123})
such that |Z ∩ 123| = 2. Since 124, 134, 234 /∈ H, we successively get 4 ∈ Z and 1234 ⊆ Z, a
contradiction. In view of Theorem 3.4, this implies (V,B2(1234) ∪ {123}) /∈ TBPav2.

• (V,B2(1234) ∪ {124}) /∈ TBPav2. Similar to the preceding case.

• No simplicial complex isomorphic to (4) embeds in (3). To prove this, recall the missing
triangles in (3) and (4). We can check that 3x is contained in a missing triangle of (3) for every
x 6= 3. Similarly, 4y is contained in a missing triangle of (3) for every y 6= 4. Suppose that
ϕ ∈ S6 is such that the isomorphic image of (3) through ϕ (call it (3”)) has (4) as subcomplex.
Then the missing triangles of (3”) are a proper subset of the missing triangles of (4). Hence
(3ϕ)x is contained in a missing triangle of (4) for every x 6= 3ϕ, and (4ϕ)y is contained in
a missing triangle of (4) for every y 6= 4ϕ. However, only 4 satisfies this property, yielding
3ϕ = 4 = 4ϕ, a contradiction.

Note also that an arbitrary S ∈ TBPav(d) \ BPav(d) needs not having a restriction isomorphic
to Ud,d+2. The complexes featuring Proposition 6.1 constitute all counterexamples for d = 2.

We intend now to show that TBPav(d) \ BPav(d) is in some sense finitely generated. We start
with a couple of lemmas.

Let T BR (respectively T BP) denote the class of all finite truncated boolean representable sim-
plicial complexes (respectively finite paving truncated boolean representable simplicial complexes).

A class of simplicial complexes closed under isomorphism and restriction is called a prevariety.
For details on prevarieties, see [14, Sections 8.4 and 8.5].
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Lemma 6.2 The classes T BR and T BP are prevarieties of simplicial complexes.

Proof. In the Appendix. �

Let S ∈ TBPav(d) \ BPav(d). By Lemma 6.2, every restriction of S is in T BP (with possibly
lower dimension). We say that S is minimal if every proper restriction of S is boolean representable.

Lemma 6.3 Let d ≥ 2. Then the maximum number of vertices for a minimal S ∈ TBPav(d) \
BPav(d) is (d + 1)(d + 2).

Proof. Let S = (V,H) ∈ TBPav(d) \ BPav(d) be minimal. Hence S /∈ BPav(d) but every proper
restriction of S is boolean representable. By [14, Theorem 8.5.2(ii)], we get |V | ≤ (d + 1)(d + 2).

Now we consider the Swirl, the simplicial complex defined in the proof of [14, Theorem 8.5.2(ii)],
where it is proved that every proper restriction of this complex is boolean representable, but the
Swirl is not. The Swirl is defined as follows:

Let A = {a0, . . . , ad} and Bi = {bi0, . . . , bid} for i = 0, . . . , d. Write also Ai = A \ {ai} and

Ci = Pd+1(Ai ∪ (Bi \ {bi0})) ∪ {Bi}.

We define

V = A ∪
d⋃

i=0

Bi, H = P≤d+1(V ) \
d⋃

i=0

Ci.

It is easy to check that all the X ∈ H ∩ Pd+1(V ) fall into four cases (not necessarily disjoint):

(a) there exist bij , bkℓ ∈ X with i 6= k;

(b) there exist bi0, aj ∈ X;

(c) there exist bij , ai ∈ X with j > 0;

(d) X = a0 . . . ad.

Define
 L = {L ∈ Pd(V ) | there exist some bij, bkℓ ∈ L with i 6= k}
∪ {L ∈ Pd(V ) | there exist some bi0, aj ∈ L}
∪ {L ∈ Pd(V ) | there exist some bij, ai ∈ L with j > 0}
∪ {Ai ∪Bi | i = 0, . . . , d}.

It is straightforward to check that H = ∪{Bd(L) | L ∈  L}, hence S ∈ TBPav(d) by Theorem 5.6.
Since |V | = (d+1)(d+2)), we have found some minimal S ∈ TBPav(d)\BPav(d) with (d+1)(d+2)
vertices as required. �

Let V be a prevariety of simplicial complexes. We say that V is finitely based if there exists some
m ≥ 1 such that every simplicial complex not in V admits a restriction not in V with at most m
vertices.

Given a prevariety V of simplicial complexes and d ∈ N, we define the prevariety

Vd = {S ∈ V | dim(S) ≤ d}.

Let BP denote the class of all finite paving boolean representable simplicial complexes. By [14,
Theorem 8.5.2], BPd is finitely based for every d ≥ 1. Since T BP1 = BP1 by Proposition 4.1, it
follows that T BP1 is finitely based.

Theorem 6.4 T BP2 is not finitely based.
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Proof. It suffices to build arbitrary large simplicial complexes not in T BP2 with all proper restric-
tions in T BP2.

Suppose that S = (V,H) ∈ Pav(2). Then P≤1(V ) ⊆ L(S) ⊆ ε(S), and so

S ∈ T BP2 if and only if, for every X ∈ H ∩ P3(V ),

there exists some Z ∈ ε(S) such that |X ∩ Z| = 2. (13)

Let n ≥ 6 and take as vertex set

V = {x0, . . . , xn, y0, . . . , y6, z0, . . . , z6},

where we identify
x0 = y0 = z6, x1 = z0 = y6, y1 = z1 = xn.

Let

T = {xixi+1xi+2 | i = 0, . . . , n− 2} ∪ {yiyi+1yi+2 | 0 ≤ i ≤ 4} ∪ {zizi+1zi+2 | 0 ≤ i ≤ 4},

H = P≤3(V ) \ T and S = (V,H). We show next that:

for every X ∈ (H ∩ P3(V )) \ {x0x1y1}, there exists some F ∈ L(S) such that |X ∩ F | = 2. (14)

Indeed, such an X contains necessarily some element of V \ x0x1y1. Without loss of generality, we
may assume that this element is among x2, . . . , xn−1 (the other cases follow by symmetry).

Suppose that X ⊂ x0 . . . xn, say X = xixjxk with i < j < k. Since X ∈ H, then i, j, k are not
consecutive integers. If k < n, then k > 1 and k − i > 2, hence xixk ∈ L(S) and we are done. Thus
we may assume that k = n. If i > 1, then k − i > 2, hence xixk ∈ L(S) and we are done. Thus we
may assume that i ≤ 1. Since k = n, this implies 2 ≤ j ≤ n− 1. Since n ≥ 6, we get either k− j > 2
(yielding xjxk ∈ L(S)) or j − i > 2 (yielding xixj ∈ L(S)).

Hence we may assume that at least one of the other elements of X (say a) is not of the form xj .
Let i ∈ {2, . . . , n−1} be such that xi ∈ X. It is easy to check that xia ∈ L(S). Therefore (14) holds.

Next we show that
for every Z ∈ ε(S), |Z ∩ {x0x1y1}| 6= 2. (15)

Let Z ∈ ε(S) and assume that |Z ∩ {x0x1y1}| ≥ 2. Assume first that x0, x1 ∈ Z. Since
xixi+1xi+2 /∈ H for i = 0, . . . , n − 2, we get successively x2 ∈ Z, . . . , xn ∈ Z. Since xn = y1, we get
x0x1y1 ⊆ Z.

Suppose now that x0, y1 ∈ Z. Since x0 = y0, we use the same argument to deduce that y2 ∈
Z, . . . , y6 ∈ Z. Since y6 = x1, we get x0x1y1 ⊆ Z.

Finally, suppose that x1, y1 ∈ Z. Since x1 = z0 and y1 = z1, we use the same argument to deduce
that z2 ∈ Z, . . . , z6 ∈ Z. Since z6 = x0, we get x0x1y1 ⊆ Z and (15) is proved.

In view of (13), it follows from (15) that S /∈ T BP2.
Fix now v ∈ V and write W = V \ {v}. We must show that S|W ∈ T BP2 (since T BP2 is closed

under restrictions, this implies that S|W ′ ∈ T BP2 for any W ′ ⊂ V ).
Since S ∈ Pav(2), we only need to show that the righthand side of (13) holds when we replace S

by S|W . Let X ∈ H ∩ P3(W ). Suppose first that X 6= x0x1y1. By (14), there exists some F ∈ L(S)
such that |X ∩ F | = 2. It follows that F ∩ W ∈ L(S|W ). Since |X ∩ (F ∩ W )| = 2, the desired
condition is satisfied if X 6= x0x1y1.
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Thus we may assume that X = x0x1y1. It follows that either v = xi with 2 ≤ i ≤ n− 1 or v = yj
or v = zj with 2 ≤ j ≤ 5.

Suppose that v = xi. Let Z = x0 . . . xi−1. It is immediate that Z ∈ ε(S|W ) and |Z ∩x0x1y1| = 2.
If v = yj (respectively v = zj), we take Z = y0 . . . yj−1 (respectively Z = z0 . . . zj−1). Therefore, in
view of (13), we get S|W ∈ T BP2 as required. �

7 The pure core

Let S = (V,H) be a simplicial complex of dimension d. We say that S is pure if all the facets of S
have dimension d.

We define pure(S) = (V ′,H′) by

V ′ = ∪(H ∩ Pd+1(V )), H′ = ∪{2X | X ∈ H ∩ Pd+1(V )}.

It is immediate that pure(S) is the largest pure subcomplex of S, also called the pure core of S.
This section is devoted to the following questions, all related to the concept of pure core:

Problem 7.1 Let S be a BRSC. Is pure(S) a BRSC?

Problem 7.2 Let S be a BRSC and let k ≥ 1. Is pure(Tk(S)) a BRSC?

Problem 7.3 Let H be a BRSC and let k ≥ 1. Is pure(Tk(S)) a TBRSC?

Note that Problem 7.3 admits the equivalent statement:

If S is a TBRSC and k ≥ 1, is pure(Tk(S)) a TBRSC? (16)

For the nontrivial implication, let S be a TBRSC of rank r and assume that Problem 7.3 has a
positive answer. Since S is a TBRSC, we have S = Tr(S

′) for some BRSC S′.
Suppose first that k ≥ r. Then Tk(S) = S, hence we must show that pure(S) is a TBRSC. Since

S = Tr(S
′), our goal follows from the answer of Problem 7.3 for S′ and r.

Assume now that k < r. It is easy to check that Tk(S) = Tk(S′). Since the answer of Problem 7.3
implies that pure(Tk(S′)) is a TBRSC, then pure(Tk(S)) is a TBRSC and so (16) has also a positive
answer.

Since matroids are pure and closed under restriction [12], all questions have positive answers for
matroids. We show that none of them admits a positive answer in general, but we establish particular
cases.

The following example, analyzed in the Appendix, answers Problem 7.1 negatively for dimension
3. It also answers Problems 7.2 and 7.3 for dimension 3 and k = 4.

Example 7.4 Let V = {1, . . . , 7} and R = {∅, 1, 3, 5, 12, 56, 356, 1234, V }. Then S = (V,Tr(R)) is
a BRSC but pure(S) is not a TBRSC.

However, we can find positive answers for all the problems in particular cases as we shall see.
The following lemma will prove useful:

Lemma 7.5 Let S = (V,H) be a simplicial complex and let I, J ∈ H be such that I ⊆ J . Then there
exists some I ′ ∈ H such that I ⊆ I ′ and I ′ = J .

Proof. In the Appendix. �
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Matroids admit a wide variety of characterizations. One of them is the following: a simplicial
complex M = (V,H) is a matroid if and only if

for all X,Y ∈ H, X = Y implies |X| = |Y |. (17)

Indeed, if X = Y and |X| > |Y |, it follows easily from the exchange property that Y ∪ {x} ∈ H for
some x ∈ X \ Y , hence Y ∪ {x} = Y . In the case of matroids, the enumeration in (1) can be chosen
arbitrarily (see [12]). By taking x as last, we reach a contradiction. Thus |X| = |Y |.

Conversely, suppose that (17) holds. Let I, J ∈ H be such that |I| = |J | + 1. Suppose that
J ∪ {i} /∈ H for every i ∈ I \ J . Then I ⊆ J and so by Lemma 7.5 this contradicts (17). Thus M
satisfies the exchange property and is therefore a matroid.

We define a simplicial complex S = (V,H) to be a near-matroid if

X = Y ⊂ V implies |X| = |Y |

for all X,Y ∈ H. The rank function ρ : L(S) \ {V } → N is defined by

Fρ = |X|, where X ∈ H is such that X = F.

Note that such an X exists by [14, Proposition 4.2.4].
It follows from (17) that every matroid is a near-matroid. The following result shows that the

converse fails, in fact a near matroid needs not be boolean representable.

Proposition 7.6 Let S be a simplicial complex of dimension d ≥ 0.

(i) If S is paving, then S is a near-matroid.

(ii) If S is boolean representable and d ≤ 2, then S is a near-matroid.

Proof. (i) Write S = (V,H) and suppose that X,Y ∈ H are such that X = Y ⊂ V . By [14,
Proposition 4.2.3], X and Y are not facets (it is easy to check that the closure of a facet must be
V ). Suppose that |X| < d. Since Pd(V ) ⊆ H, it follows that X = X, so in this case we get indeed
Y = X. Thus we may assume by symmetry that |X|, |Y | ≥ d. Since X and Y are not facets, then
|X| = d = |Y | and so S is a near-matroid.

(ii) Let X,Y ∈ H be such that X = Y ⊂ V . Since ∅ = ∅ and the closure of a facet is V , we may
assume that X,Y /∈ fct(S) ∪ {∅}.

Assume first that X = {a}. Let M be an R × V boolean matrix representing S. If Ca = {b ∈
V | M [R, a] = M [R, b]}, then Ca ⊆ a. Moreover, J ∈ H ∩ 2Ca implies |J | ≤ 1, and since all the
columns of M are nonzero (we have P1(V ) ⊆ H), it follows that a = Ca. Thus Y = X = Ca yields
|Y | = 1 = |X|.

Assume now that |X| > 1. By the previous case, we also have |Y | > 1. Since dim(S) ≤ 2 and
X,Y /∈ fct(S), we have necessarily |X| = 2 = |Y |. Therefore S is a near-matroid. �

Before discussing boolean representable near-matroids, we present two lemmas.

Lemma 7.7 Let S = (V,H) be a near-matroid and let F,F ′ ∈ L(S) be such that F ⊂ F ′ ⊂ V . Then
Fρ < F ′ρ.

Proof. In the Appendix. �
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Lemma 7.8 Let S = (V,H) be a near-matroid and let F,F ′ ∈ L(S) be such that F ⊂ F ′ ⊂ V . Let
a1 ∈ F ′ \ F and k = F ′ρ− Fρ. Then there exist a2, . . . ak ∈ V such that

F ⊂ F ∪ a1 ⊂ F ∪ a1a2 ⊂ . . . ⊂ F ∪ a1 . . . ak = F ′.

Proof. In the Appendix. �

Theorem 7.9 Let S be a boolean representable near-matroid and let k ≥ 0. Then:

(i) Tk(S) is a BRSC;

(ii) pure(Tk(S)) is a BRSC.

Proof. (i) Write S = (V,H) and let X denote the closure of X ⊆ V in L(S). We define

Fk = {F ∈ L(S) | Fρ < k} ∪ {V }.

Since L(S) is closed under intersection, it follows from Lemma 7.7 that Fk is a Moore family. Hence
(V,Tr(Fk)) is a BRSC. We show that Tk(S) = (V,Tr(Fk)).

Let X ∈ Tk(H) and let s = |X|. Then there exists an enumeration a1, . . . , as of the elements of
X such that

a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . as.

Hence X is a transversal of the successive differences for

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . as−1 ⊂ V,

which is a chain in Fk. Thus X ∈ Tr(Fk).
Conversely, assume that X ∈ Tr(Fk). Since Fk ⊆ L(S), it follows that X ∈ H.
Suppose that |X| > k. Since X ∈ Tr(Fk), there exist some F ∈ Fk and x ∈ X such that

F ∩X = X \ {x}. But F = Y for some Y ∈ Tk−1(H). Hence X \ {x} ⊆ Y and by Lemma 7.5 there
exists some Z ∈ H such that X \ {x} ⊆ Z and Z = Y = F . But then |Z| ≥ |X \ {x}| ≥ k > |Y |, a
contradiction since S is a near-matroid. Thus |X| ≤ k and so Tk(H) = Tr(Fk) as claimed.

(ii) Let F ′
k denote the set of all flats of S occurring in chains of the form

F0 ⊂ F1 ⊂ . . . ⊂ Fk

in Fk. We claim that F ′
k is a Moore family.

Let F,F ′ ∈ F ′
k. We may assume that F,F ′ 6= V . We have F ∩ F ′ ∈ Fk since Fk is a Moore

family. Since F ∈ F ′
k \ {V }, there exists some F ′′ ∈ L(S) such that F ⊆ F ′′ and F ′′ρ = k − 1. Now

we apply Lemma 7.8 to both inclusions ∅ ⊆ F ∩ F ′ ⊆ F ′′. This ensures that F ∩ F ′ will appear in
some chain of flats of length k in L(S) of the form

∅ ⊂ . . . ⊂ F ′′ ⊂ V.

Since F ′′ρ = k − 1, it follows from Lemma 7.7 that this is in fact a chain in Fk and therefore in F ′
k.

Thus F ∩ F ′ ∈ F ′
k. Since V ∈ F ′

k, then F ′
k is a Moore family. Writing V ′ = ∪F ′

k, it follows that
(V ′,Tr(F ′

k)) is a BRSC. We claim that pure(Tk(S)) = (V ′,Tr(F ′
k)).
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Let X ∈ H∩Pk(V ). Then there exists an enumeration a1, . . . , ak of the elements of X such that

a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . ak.

Hence X is a transversal of the successive differences for

∅ ⊂ a1 ⊂ a1a2 ⊂ . . . ⊂ a1 . . . ak−1 ⊂ V,

which is a chain of length k in Fk. Thus X ∈ Tr(F ′
k).

Conversely, assume that X ∈ Tr(F ′
k). We may assume that X is a facet of (V ′,Tr(F ′

k)). Then
there exists some chain

F0 ⊂ F1 ⊂ . . . ⊂ Fs (18)

in F ′
r and some enumeration a1, . . . , as of the elements of X such that ai ∈ Fi \Fi−1 for i = 1, . . . , s.

Since X is a facet, we must have F0 = ∅ and Fs = V . Suppose that Fs−1ρ = r < k − 1. Since
Fs−1 ∈ F ′

k, then it must occur in some chain of length k in F ′
k, hence we have some chain

Fs−1 = F ′
0 ⊂ F ′

1 ⊂ . . . ⊂ F ′
t ⊂ F ′

t+1 = V

in F ′
k for some t ≥ 1. Since as ∈ F ′

t+1 \ F
′
0, we have as ∈ F ′

j \ F
′
j−1 for some j ∈ {1, . . . , t + 1}, hence

there exists some Y ∈ Tr(F ′
k) ∩ Ps+t(V ) containing (strictly) X, contradicting X ∈ fct(V ′,Tr(F ′

k)).
Thus Fs−1ρ = k − 1.

Now ai ∈ Fi \ Fi−1 for i = 1, . . . , s− 1 and so we can apply Lemma 7.8 s− 1 times to refine (18)
to a chain of length k in L(S) of the form

F0 ⊂ F0 ∪ a1 ⊆ . . . ⊆ F1 ⊂ F1 ∪ a2 ⊆ . . . ⊆ Fs−1 ⊂ Fs,

which admits a transversal of the successive differences containing X. Since X ∈ fct(V ′,Tr(F ′
k)),

it follows that s = k and so in view of Lemma 7.7 we have X ∈ H ∩ Pk(V ), hence X is a facet of
pure(Tk(S)). Therefore pure(Tk(S)) = (V ′,Tr(F ′

k)) as claimed. �

Together with Proposition 7.6, this yields:

Corollary 7.10 Problems 7.1, 7.2 and 7.3 have positive answers for boolean representable near-
matroids. In particular, they hold for:

(i) paving BRSC;

(ii) BRSC of dimension ≤ 2.

As remarked earlier, Example 7.4 answers negatively Problem 7.2 for dimension 3 and k = 4. On
the other hand, Problem 7.2 has a positive answer for k ≤ 2: if S is a BRSC, then Tk(S) is a BRSC
by Proposition 4.1 and pure(Tk(S)) is a BRSC by Corollary 7.10(ii).

The next example (discussed in the Appendix) answers negatively Problem 7.2 for dim(S) = 3
and k = 3.

Example 7.11 Let S = (V,H) with V = ∪{i, i′, i′′ | i ∈ Z3},

Z = ∪{i(i + 1)(i + 1)′, i′′(i + 1)(i + 1)′ | i ∈ Z3}

and
H = (P≤3(V ) \ Z) ∪ {ii′′(i + 1)p | i ∈ Z3, p ∈ V \ ii′′(i + 1)(i + 1)′}

∪ {ii′′(i + 1)′p | i ∈ Z3, p ∈ V \ ii′′(i + 1)(i + 1)′}.

Then S is a BRSC but pure(T3(S)) is not.
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Another counterexample, also analyzed in the Appendix, is given by the boolean module B(4): a
simplicial complex of dimension 3 admitting a 4 × (24 − 1) boolean matrix representation where all
columns are distinct and nonzero (so we have all possible nonzero columns).

Example 7.12 The boolean module B(4) is pure and its truncation to rank 3 is a pure TBRSC which
is not a BRSC.

We turn now our attention to Problem 7.3.
As remarked earlier, Example 7.4 also answers negatively Problem 7.3 for dimension 3 and k = 4.

The next result shows, that, unlike Problem 7.2, Problem 7.3 admits a positive answer for k ≤ 3.

Theorem 7.13 Let S be a BRSC and let 1 ≤ k ≤ 3. Then pure(Tk(S)) is a TBRSC.

Proof. In the Appendix. �

8 Topology

In this section, we generalize to TBRSCs results proved in [9] for the topology of BRSCs.
Let S = (V,H) be a simplicial complex. We say that S is connected if the graph T2(S) is

connected. The proof for the following result is essentially the proof given for BRSCs in [9, Lemma
3.1].

Lemma 8.1 Let S = (V,H) be a TBRSC. Then S is connected unless H = P1(V ) and |V | > 1.

Proof. In the Appendix. �

It is well known that the geometric realization ||S|| of a simplicial complex S, a subspace of some
euclidean space Rn, is unique up to homeomorphism. For details, see e.g. [14, Appendix A.5].

Given a point v0 ∈ ||S||, the fundamental group π1(||S||, v0) is the group having as elements the
homotopy equivalence classes of closed paths

v0 qq

the product being determined by the concatenation of paths.
If S is connected, then π1(||S||, v0) ∼= π1(||S||, w0) for all points v0, w0 in ||S||, hence we may

use the notation π1(||S||) without ambiguity. We produce now a presentation for π1(||S||). This
combinatorial description is also known as the edge-path group of S (for details on the fundamental
group of a simplicial complex, see [15]).

We fix a spanning tree T of S and we define

A = {apq | pq ∈ H ∩ P2(V )},

RT = {aqpa
−1
pq | pq ∈ H ∩ P2(V )} ∪ {apqaqra

−1
pr | pqr ∈ H ∩ P3(V )} ∪ {apq | pq ∈ T}.

We may view π1(||S||) as the group defined by the group presentation

〈A | RT 〉. (19)

We compute next the fundamental group of a connected TBRSC. If it has dimension 1, it is a
graph and so it follows easily from the presentation (19) that its fundamental group is free of rank
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e−v+1, where e (respectively v denotes the number of edges (respectively vertices). Note that v−1
is the number of edges of the spanning tree T . Therefore we concentrate our attention in the case of
dimension ≥ 2. These TBRSCs are connected by Lemma 8.1.

Given a BRSC S = (V,H), the graph of flats Γ(L(S)) has vertex set V and edges p −− q whenever
p 6= q and pq ⊂ V .

Let C be a connected component of Γ(L(S)). If H∩P2(C) 6= ∅, we shall say that C is H-nontrivial.
Otherwise, we say that C is H-trivial. The size of C is its number of vertices.

The next result shows that, given a TBRSC S = (V,H) of dimension ≥ 2, the graph of flats
Γ(L(Sε)) and the size of its Hε-trivial components determine completely the fundamental group of
S. Note that L(Sε) = ε(S) by Theorem 3.4, hence, for all distinct p, q ∈ V , p −− q is an edge of
L(Sε) if and only if there exists some Z ∈ ε(S) such that pq ⊆ Z ⊂ V .

Theorem 8.2 Let S be a TBRSC of dimension ≥ 2. Assume that Γ(L(Sε)) has s Hε-nontrivial
connected components and r Hε-trivial connected components of sizes f1, . . . , fr. Then π1(||S||) is a
free group of rank (

s + f1 + . . . + fr − 1

2

)
−

r∑

i=1

(
fi
2

)
,

or equivalently, (
s− 1

2

)
+ (s− 1)(f1 + . . . + fr) +

∑

1≤i<j≤r

fifj.

Proof. This result was proved in [9, Theorem 3.3] for BRSCs (with Sε replaced by S). Therefore
it suffices to note that S and Sε have the same fundamental group. Indeed, π(||S||) = π(||T3(S)||)
and π(||Sε||) = π(||T3(Sε)||). Since S has dimension ≥ 2, it follows from Theorem 3.4 that T3(S) =
T3(Sε). It follows that π(||S||) = π(||Sε||) as required. �

Corollary 8.3 Let S be a simple TBRSC of dimension ≥ 2. Then π1(||S||) is a free group of rank(
t−1
2

)
, where t denotes the number of connected components of Γ(L(Sε)).

Proof. If S = (V,H) is simple, then each Hε-trivial connected component of Γ(L(Sε)) has precisely
one vertex. Hence, by Theorem 8.2, π1(||S||) is a free group of rank

(
t−1
2

)
. �

In [9, Example 3.5], it is shown that free groups of rank
(
n
2

)
(n ≥ 2) occur effectively as funda-

mental groups of simple BRSCs of dimension 2.
Let S = (V,J ) be a simplicial complex. We recall now the definitions of the (reduced) homology

groups of S (see e.g. [4]).
If S has c connected components, it is well known that the 0th homology group H0(S) is isomorphic

to the free abelian group of rank c. For dimension k ≥ 1, we proceed as follows.
Fix a total ordering of V . Let Ck(S) denote the free abelian group on J ∩ Pk+1(V ), that is,

all the formal sums of the form
∑

i∈I niXi with ni ∈ Z and Xi ∈ J ∩ Pk+1(V ) (distinct). Given
X ∈ J ∩ Pk+1(V ), write X = x0x1 . . . xk with x0 < . . . < xk. We define

X∂k =

k∑

i=0

(−1)i(X \ {xi}) ∈ Ck−1(S)
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and extend this by linearity to a homomorphism ∂k : Ck(S) → Ck−1(S) (the kth boundary map of
S). Then the kth homology group of S is defined as the quotient

Hk(S) = Ker ∂k/Im∂k+1.

The 0th reduced homology group of S, denoted by H̃0(S), is isomorphic to the free abelian group
of rank c− 1, where c denotes the number of connected components of S. For k ≥ 1, the kth reduced
homology group of S, denoted by H̃k(S) coincides with the kth homology group.

A wedge of spheres S1, . . . , Sm (of possibly different dimensions) is a topological space obtained
by identifying m points si ∈ Si for i = 1, . . . ,m.

We say that two topological spaces X and Y have the same homotopy type if there exist continuous
mappings α : X → Y and β : Y → X such that:

• there exists a homotopy between αβ and 1X ;

• there exists a homotopy between βα and 1Y .

An important theorem of Björner and Wachs [1] states that shellable simplicial complexes (a class
including matroids as a particular case) have the homotopy type of a wedge of spheres.

Theorem 8.2 also yields the following important consequence, where the proof is essentially the
proof given for BRSCs in [9, Theorem 3.6].

Theorem 8.4 Let S be a TBRSC of dimension 2. Then:

(i) the homology groups of S are free abelian;

(ii) S has the homotopy type of a wedge of 1-spheres and 2-spheres.

Proof. In the Appendix. �
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Appendix

We collect in this Appendix several proofs omitted from the main text, and the discussion of several
examples.

Proof of Proposition 3.1. Let X ∈ L(Tk(S)). If X contains a facet of Tk(S), then X = V , so we
assume that X contains no facet of Tk(S). Now let I ∈ H∩ 2X and p ∈ V \X. Since I /∈ fct(Tk(S)),
we have |I| < k and so I ∈ Tk(H). Now X ∈ L(Tk(S)) yields I ∪ {p} ∈ Tk(H) ⊆ H. Therefore
X ∈ L(S) and the direct inclusion holds.

Conversely, assume that X ∈ L(S) contains no facet of Tk(S). Let I ∈ H∩P≤k(X) and p ∈ V \X.
Since X ∈ L(S), we get I ∪ {p} ∈ H. But I is not a facet of Tk(S), hence |I| < k and so
I ∪ {p} ∈ Tk(H). Thus X ∈ L(Tk(S)) as required. �
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Proof of Lemma 3.3. (i) We prove that
Tk(Hε) ⊆ H (20)

holds for k = 0, . . . , d + 1 by induction on k.
The case k = 1 being trivial, assume that k ∈ {2, . . . , d + 1} and (20) holds for k − 1. Let

X ∈ Tk(Hε). We may assume that |X| = k. Then there exists an enumeration x1, . . . , xk of X
and Z0, . . . , Zk ∈ ε(S) such that Z0 ⊃ Z1 ⊃ . . . ⊃ Zk and xi ∈ Zi−1 \ Zi for i = 1, . . . , k. Let
X ′ = {x2, . . . , xk}. Since X ′ ∈ Tk−1(H

ε), it follows from the induction hypothesis that X ′ ∈ H. Now
|X ′| ≤ d, X ′ ⊆ Z1 and x1 ∈ V \ Z1, hence it follows from Z1 ∈ ε(S) that X = X ′ ∪ {x1} ∈ H. Thus
(20) holds for k = 1, . . . , d + 1.

(ii) Let X ∈ ε(S). Let I ∈ Hε ∩ 2X and p ∈ V \X. Since I ∈ Hε, there exists an enumeration
x1, . . . , xk of I and Z0, . . . , Zk ∈ ε(S) such that Z0 ⊃ Z1 ⊃ . . . ⊃ Zk and xi ∈ Zi−1\Zi for i = 1, . . . , k.
Now by Lemma 3.2(i)

Z0 ∩X ⊃ Z1 ∩X ⊃ . . . ⊃ Zk ∩X

is also a chain in ε(S) satisfying xi ∈ (Zi−1 ∩X) \ (Zi ∩X) for i = 1, . . . , k. Since V ⊃ Z0 ∩ X is
also a chain in ε(S) and p ∈ V \ (Z0 ∩X), we get I ∪ {p} ∈ Hε and so X ∈ L(Sε).

(iii) Let X ∈ Hε. Then X is a transversal of the partition of successive differences for some chain
of ε(S), and so is any subset of X. Thus Sε is a simplicial complex. By (ii), a chain in ε(S) is also
a chain in L(Sε). Therefore Sε is boolean representable. �

Proof of Theorem 3.4. (i) ⇒ (ii). Write S′ = (V,H′). We start by showing that

L(S′) ⊆ ε(S). (21)

Let F ∈ L(S′). Suppose that X ∈ H ∩ P≤d(F ) and p ∈ V \ F . Since H ⊆ H′, it follows from
F ∈ L(S′) that X ∪ {p} ∈ H′. But now |X| ≤ d implies X ∪ {p} ∈ Td+1(H′) = H and so F ∈ ε(S).
Therefore (21) holds.

Now let X ∈ H. Since H ⊆ H′, there exists an enumeration x1, . . . , xk of X and F0, . . . , Fk ∈
L(S′) such that F0 ⊃ F1 ⊃ . . . ⊃ Fk and xi ∈ Fi−1 \ Fi for i = 1, . . . , k. By (21), we have
F0, . . . , Fk ∈ ε(S) and so X ∈ Hε. Since dim(S) = d, then X ∈ Td+1(Hε) and so H ⊆ Td+1(Hε).
Therefore H = Td+1(Hε) by Lemma 3.3(i), and so S = Td+1(Sε).

(ii) ⇒ (i). This follows from Lemma 3.3(iii).
It remains to be proved that L(Sε) = ε(S).
Let X ∈ L(Sε). Let I ∈ H ∩ P≤d(X) and p ∈ V \X. Then I ∈ Hε by (ii) and so X ∈ L(Sε)

yields I ∪ {p} ∈ Hε. Since |I| ≤ d, we get I ∪ {p} ∈ Td+1(Hε) = H and so X ∈ ε(S). The opposite
inclusion follows from Lemma 3.3(ii). �

Analysis of Example 3.5. Indeed, it is easy to check that

∅ ⊂ 1 ⊂ 12 ⊂ 1235 ⊂ V, ∅ ⊂ 3 ⊂ 1235 ⊂ V, ∅ ⊂ 4 ⊂ V

are all chains in ε(S). Now every X ∈ H is a partial transversal of either chain (if X = 46, we use
the third chain, if X ⊇ 35 we use the second chain, in the remaining cases we use the first). Hence
H ⊆ Hε and so S = T3(Sε) by Lemma 3.3(i). Therefore S is a TBRSC by Theorem 3.4.

Consider now 134 ∈ H.

• Since 135 /∈ H, we get 5 ∈ 13. Since 235 /∈ H, we get 2 ∈ 35 ⊆ 13. Since 123 ∈ fct(S), we get
13 = V .
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• Since 146 /∈ H, we get 6 ∈ 14. Since 246 /∈ H, we get 2 ∈ 46 ⊆ 14. Since 124 ∈ fct(S), we get
14 = V .

• Since 346 /∈ H, we get 6 ∈ 34. Since 246 /∈ H, we get 2 ∈ 46 ⊆ 34. Since 234 ∈ fct(S), we get
34 = V .

It follows that S is not a BRSC. �

Analysis of Example 3.6. Let a, b, c be an enumeration of 123. Let X ∈ ε(S) contain ab. Since
ab4 /∈ H, we have 4 ∈ X. Since ac4 /∈ H, we get c ∈ X. Hence X = V and so 123 cannot be a
transversal of the successive differences for a chain in ε(S). Therefore S is not a TBRSC. �

Proof of Proposition 3.7. Let F ∈ L(Sε). Take X ∈ H ∩ P≤d(F ) and p ∈ V \ F . Since P≤d(V ) ⊆ H,
we have P≤d−1(V ) ⊆ L(S), hence P≤d−1(V ) ⊆ ε(S) ⊆ L(Sε) by Lemmas 3.2(ii) and 3.3(ii). Thus
X ∈ Hε and since F ∈ L(Sε) we get X ∪ {p} ∈ Hε. Thus X ∪ {p} ∈ Td+1(H

ε) ⊆ H by Lemma 3.3(i)
and so F ∈ ε(S). �

Analysis of Example 3.8. Straightforward computation shows that ε(S) = {∅, 35, V }. It follows
easily that 124 ∈ L(Sε) \ ε(S). �

Proof of Lemma 4.2. It is immediate that (V,H) is a simplicial complex. Let I, J ∈ H with
|I| = |J | + 1. We may assume that |J ∩ I| ≤ 1.

Assume first that J ∩ I = {a}. Write J = ab and I = ac1c2. Suppose that abcs /∈ H for s = 1, 2.
Then abcs contains some Fs ∈ F for s = 1, 2. Since I, J ∈ H, we must have Fs = bcs for s = 1, 2.
But then F1 ∩ F2 = {b}, a contradiction. Thus J ∪ {cs} ∈ H for some s.

Assume now that J ∩ I = ∅. Write J = ab and I = c1c2c3. Suppose that abcs /∈ H for s = 1, 2, 3.
Then abcs contains some Fs ∈ F for s = 1, 2, 3. Since J ∈ H, we must have Fs ∈ {acs, bcs} for
s = 1, 2, 3. But then there exist i, j ∈ {1, 2, 3} such that |Fi ∩ Fj | = 1, a contradiction. Thus
J ∪ {cs} ∈ H for some s. �

Analysis of Example 5.2. Indeed, S1 is a uniform matroid and S2 is a matroid by Lemma 4.2. We
may write S1 ∨ S2 = (V,H) with

H = P≤2(V ) ∪ {X ∈ P3(V ) |, 12, 34 6⊆ X}.

We have 1235 ∈ H. Let Z ∈ ε(H).
If 13 ⊆ Z, then 123 /∈ H yields 2 ∈ Z, and 125 /∈ H yields 5 ∈ Z.
If 15 ⊆ Z, then 125 /∈ H yields 2 ∈ Z, and 123 /∈ H yields 3 ∈ Z. Out of symmetry, 35 ⊆ Z

implies 1 ∈ Z.
It follows that 135 /∈ Hε and so S1 ∨ S2 is not a TBRSC by Theorem 3.4. �

Analysis of Example 5.4. Indeed, it is easy to check that

L(V,H) ⊇ P≤1(V ) ∪ {12, V }, L(V,H′) ⊇ P≤1(V ) ∪ {1235, V },

and it follows easily that (V,H), (V,H′) ∈ BPav(d). We have seen in Example 3.5 that (V,H∪H′) /∈
BPav(d). �
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Analysis of Example 5.12. First, we show that S is not a TBRSC. Suppose it is. Then 1246 ∈ H ⊆ Hε

by Theorem 3.4. Then there exists some Z ∈ ε(S) such that |1246 ∩ Z| = 3. Out of symmetry, we
may assume that 24 ⊂ Z.

• If 1246 ∩ Z = 124, then 124 ∈ H ∩ 2Z and 1234 /∈ H yield 3 ∈ Z. Now 123 ∈ H ∩ 2Z and
1236 /∈ H yield 6 ∈ Z, a contradiction.

• If 1246 ∩ Z = 246, then 246 ∈ H ∩ 2Z and 2346 /∈ H yield 3 ∈ Z. Now 234 ∈ H ∩ 2Z and
1234 /∈ H yield 1 ∈ Z, also a contradiction.

Therefore S is not a TBRSC.
Now let J ⊆ 2V be the set of partial transversals of the partial differences for the chain

∅ ⊂ 1 ⊂ 123 ⊂ 12345 ⊂ V.

Then (V,J ) is a BRSC and J ⊆ H. On the other hand, P≤3(V ) ⊆ H. Since J ∪ P≤3(V ) = H and
S is not a TBRSC, it follows that S admits no largest truncated boolean representable subcomplex.
�

Proof of Proposition 6.1. We fix V = {1, . . . , 6} as the set of points and we consider S = (V,H) ∈
TBPav(2) \ BPav(2). Then there exists some BRSC S′ = (V,H′) such that S = T3(S′). Given
X ⊆ V , let X (respectively X̂) denote the closure of X in L(S′) (respectively L(S)).

Since S /∈ BPav(2) and P≤1(V ) ⊆ L(S), there exists some X ∈ P3(V ) ∩H such that

X ⊆ X̂ \ {x} for every x ∈ X. (22)

Without loss of generality, we may assume that X = 345. On the other hand, since S′ ∈ BPav(2)
and 345 ∈ H′, there exists some x ∈ 345 such that x /∈ 345 \ {x}. We may assume that x = 5. We
claim that

|34| = 4. (23)

Indeed, we know already that 5 /∈ 34. Suppose that 34 = 34. Then 34y ∈ H′ (and therefore 34y ∈ H)
for every y ∈ 1256, yielding 3̂4 = 34, contradicting (22). Without loss of generality, we may assume
that 34y /∈ H′ for some y ∈ 126, say y = 1. Hence 134 ⊆ 34. Suppose that 34 = 134. Since 134 /∈ H,
this implies 3̂4 = 34 = 134, contradicting (22). Thus |34| ≥ 4. Since 5 /∈ 34, we may assume without
loss of generality that 1234 ⊆ 34.

Suppose that 1234 ⊂ 34. Since 5 /∈ 34, we get 34 = 12346. It follows that 45z ∈ H′ for every
z ∈ 1236, hence 4̂5 = 45, contradicting (22). Therefore 34 = 1234 and so (23) holds.

It follows that ab5, ab6 ∈ H for all a, b ∈ 1234 distinct. Since 134 = 1234, it follows that
{123, 124, 234} 6⊆ H. Together with 134 /∈ H, this implies that the restriction

S′′ = S′|1234 = S|1234 = (1234,H′′)

misses at least two triangles.
On the one hand, 134 /∈ H and {123, 124, 234} 6⊆ H yield 1234 ⊆ 3̂4. On the other hand, it

follows from (22) that 5 ∈ 3̂4, hence 12345 ⊆ 3̂4. Since ab5, ab6 ∈ H′ for all a, b ∈ 1234 distinct,
then 1234 /∈ L(S) (if 1234 ∈ L(S), then 3̂4 ⊆ 1234) implies that 1234 \ {c} ∈ H for some c ∈ 1234.
Therefore S′′ has exactly one or two triangles. Since S′′ is a restriction of the BRSC S′, it follows
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that S′′ is a BRSC. On the other hand, it follows from [14, Example 5.2.11] that a paving BRSC with
4 points cannot have exactly one triangle, hence S′′ has exactly two triangles, whose intersection has
two points, say de.

Together with 1234 ∈ L(S′)′, this implies that de ∈ L(S′). Since 134 /∈ H, we have de ∈
{12, 23, 24}. Since we have not distinguished 3 from 4 so far, we may assume that de ∈ {12, 23}.

In any case, having 1234 ∈ L(S′) determines that ab5, ab6 ∈ H for all a, b ∈ 1234 distinct (12
elements), and de ∈ L(S′) determines which two elements among the four elements of P3(1234)
belong to H. Thus we only need to discuss what happens with 156, 256, 356, 456. If 356 ∈ H, then
35 ∈ L(S′) (in view of 1234 ∈ L(S′)), implying 35 = 35 (and consequently 3̂5 = 35), contradicting
(22). Therefore 356 /∈ H. Similarly, 456 /∈ H. It follows that we reduced the discussion to determine
whether or not 156, 256 ∈ H, for each choice of de ∈ {12, 23}.

If we omit both 156, 256 from H, we get the two cases

(1) H = B2(1234) ∪ B2(12),

(1’) H = B2(1234) ∪ B2(23),

which are clearly isomorphic.
Now adding 156 (respectively 256) is the only consequence of adding 15 (respectively 25) as a

line, and these additions do not interfere with each other. We are then bound to consider the cases:

(2) H = B2(1234) ∪ B2(12) ∪ B2(15);

(2’) H = B2(1234) ∪ B2(12) ∪ B2(25);

(3) H = B2(1234) ∪ B2(12) ∪ B2(15) ∪ B2(25);

(4) H = B2(1234) ∪ B2(23) ∪ B2(15);

(2”) H = B2(1234) ∪ B2(23) ∪ B2(25);

(5) H = B2(1234) ∪ B2(23) ∪ B2(15) ∪ B2(25).

The cases (2), (2’) and (2”) are clearly isomorphic. Applying the permutations (13) and (132) to
12345 in cases (4) and (5), respectively, we have reduced our discussion to the cases

(1) H = B2(1234) ∪ B2(12);

(2) H = B2(1234) ∪ B2(12) ∪ B2(15);

(3) H = B2(1234) ∪ B2(12) ∪ B2(15) ∪ B2(25);

(4) H = B2(1234) ∪ B2(12) ∪ B2(35);

(5) H = B2(1234) ∪ B2(12) ∪ B2(15) ∪ B2(35).

We list below the triangles missing in each of the cases:

(1) 134, 234, 156, 256, 356, 456;

(2) 134, 234, 256, 356, 456;
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(3) 134, 234, 356, 456;

(4) 134, 234, 156, 256, 456;

(5) 134, 234, 256, 456.

Out of cardinality arguments, we only have to distinguish (2) from (4) and (3) from (5). Now
1 appears only once among the missing triangles in (2), and all points appear more often in (4); 1
and 2 appear only once among the missing triangles in (3), but only 1 has a single occurrence in (5).
Therefore these complexes (1) – (5) are nonisomorphic.

By construction, any one of these 5 complexes is in TBPav(2). We confirm now that neither of
them is a BRSC. For the first three cases, we take 345 ∈ H.

(1) 134 /∈ H, hence 1 ∈ 3̂4; 234 /∈ H, hence 2 ∈ 3̂4; 3̂4 contains the facet 123, hence 3̂4 = V .
356 /∈ H, hence 6 ∈ 3̂5; 456 /∈ H, hence 4 ∈ 3̂5. Similarly, 3 ∈ 4̂5.

(2) Same argument as in (1).

(3) Same argument as in (1).

For the remaining two cases, we take 245 ∈ H.

(4) 234 /∈ H, hence 3 ∈ 2̂4; 134 /∈ H, hence 1 ∈ 2̂4; 2̂4 contains the facet 123, hence 2̂4 = V .
256 /∈ H, hence 6 ∈ 2̂5; 456 /∈ H, hence 4 ∈ 2̂5. Similarly, 2 ∈ 4̂5.

(5) Same argument as in (4).

�

Proof of Lemma 6.2. Let S = (V,H) ∈ T BR and let ∅ 6= W ⊆ V . Since S ∈ T BR, there exist a
BRSC S′ = (V,H′) and m ≥ 1 such that S = Tm(S′). We claim that

S|W = Tm(S′|W ). (24)

This is equivalent to the equality

H ∩ 2W = (H′ ∩ 2W ) ∩ P≤m(W ). (25)

Now S = Tm(S′) yields H = H′ ∩ P≤m(V ) and so

H ∩ 2W = (H′ ∩ P≤m(V )) ∩ 2W = (H′ ∩ 2W ) ∩ P≤m(W ).

Hence (25) and consequently (24) do hold.
Since BRSCs are closed under restriction, then S′|W is a BRSC and it follows from (24) that

S|W ∈ T BR. Thus T BR is closed under restriction. Since it is also closed under isomorphism, then
T BR is a prevariety of simplicial complexes.

On the other hand, the class of all finite paving simplicial complexes is a prevariety in view of [14,
Proposition 8.3.1(ii)]. Since the intersection of two prevarieties is obviously a prevariety, it follows
that T BP is a prevariety itself. �
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Analysis of Example 7.4. Since R is a Moore family, S is a BRSC. The maximal chains in R are

∅ ⊂ 1 ⊂ 12 ⊂ 1234 ⊂ V, ∅ ⊂ 5 ⊂ 56 ⊂ 356 ⊂ V, (26)

∅ ⊂ 3 ⊂ 1234 ⊂ V, ∅ ⊂ 3 ⊂ 356 ⊂ V. (27)

Hence dim(S) = 3. Since Tr(R) is the set of partial transversals of the successive differences for some
of these chains, it follows easily that

Tr(R) = (P≤2(V ) \ {134, 157, 167, 234, 257, 267, 457, 467})
∪ {123a | a ∈ 567} ∪ {124a | a ∈ 567} ∪ {356b | b ∈ 1247}.

.

Write pure(S) = (V,H′). It is routine to check that

H′ = Tr(R) \ {347}.

Indeed, it is easy to see that each X ∈ P2(V ) is a partial transversal of the successive differences for
some chain of type (26), and to check which transversals of the successive differences for some chain
of type (27) cannot be obtained through chains of type (26).

Now we have 1235 ∈ H′. Let Z ∈ ε(H′) be such that |Z ∩ 1235| ≥ 3. We show that 1235 ⊆ Z.

• Suppose that 123 ⊆ Z. Since 123 ∈ H′ and 1234 /∈ H′, we have 4 ∈ Z. Since 34 ∈ H′ and
347 /∈ H′, we have 7 ∈ Z. Since 47 ∈ H′ and 457 /∈ H′, we get 5 ∈ Z.

• Suppose that 125 ⊆ Z. Since 125 ∈ H′ and 1257 /∈ H′, we have 7 ∈ Z. Since 127 ∈ H′ and
1267 /∈ H′, we have 6 ∈ Z. Since 567 ∈ H′ and 4567 /∈ H′, we have 4 ∈ Z. Since 24 ∈ H′ and
234 /∈ H′, we get 3 ∈ Z.

• Suppose that 135 ⊆ Z. Since 135 ∈ H′ and 1345 /∈ H′, we have 4 ∈ Z. Since 345 ∈ H′ and
2345 /∈ H′, we get 2 ∈ Z.

• Suppose that 235 ⊆ Z. Since 235 ∈ H′ and 2345 /∈ H′, we have 4 ∈ Z. Since 345 ∈ H′ and
1345 /∈ H′, we get 1 ∈ Z.

Thus there exists no Z ∈ ε(H′) such that |Z ∩ 1235| = 3. By Theorem 3.4, pure(S) is not a TBRSC.
�

Proof of Lemma 7.5. Let I ′ ∈ H be maximal with respect to I ⊆ I ′ ⊆ J . If I ′ ⊂ J , we can take
p ∈ J \ I ′ and get I ′ ∪ {p} ∈ H ∩ 2J , contradicting the maximality of I ′. Thus I ′ = J and we are
done. �

Proof of Lemma 7.7. Suppose that Fρ ≥ F ′ρ. Then there exist I, J ∈ H such that F = I, F ′ = J
and |I| ≥ |J |. Hence I ⊆ J and so by Lemma 7.5 there exists some I ′ ∈ H such that I ⊆ I ′ and
I ′ = J . But we have then |I ′| > |I| ≥ |J |, a contradiction since S is a near-matroid. Therefore
Fρ < F ′ρ. �
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Proof of Lemma 7.8. Write F = I with I ∈ H. Since a1 ∈ F ′ \ F , we have I ∪ a1 ∈ H. Thus

F ⊂ I ∪ a1 = F ∪ a1 ⊆ F ′.

Moreover,
F ∪ a1ρ = |I ∪ a1| = |I| + 1 = Fρ + 1.

If F ∪ a1 = F ′, we can now iterate this argument to produce a chain

F ⊂ F ∪ a1 ⊂ F ∪ a1a2 ⊂ . . . ⊂ F ∪ a1 . . . as = F ′

for some a2, . . . as ∈ V such that F ∪ a1 . . . ajρ = F ∪ a1 . . . aj−1ρ + 1 for j = 1, . . . , s. Thus s =
F ′ρ− Fρ = k and we are done. �

Analysis of Example 7.11. It is easy to check that S is indeed a simplicial complex. Clearly,
P≤1(V ) ⊂ L(S). If X ∈ P2(V ) is not contained in any element of Z, then X = X. Hence, if abc ∈ H
and ab is not contained in any element of Z, then abc is a transversal of the successive differences
for the chain

∅ ⊂ a ⊂ ab ⊂ V

in L(S). On the other hand, it is easy to check that the unique X ∈ P3(V ) ∩H having all 2-subsets
contained in elements of Z is 123 (see the picture below, where the yellow triangles are the elements
of Z):

1′

2′′

3
3′

1
3′′ 2

2′ 1′′

Now it is easy to check that ii′′(i + 1)(i + 1)′ ∈ L(S) for every i ∈ Z3. It follows that 123 is a
transversal of the successive differences for the chain

∅ ⊂ 1 ⊂ 11′′22′ ⊂ V

in L(S).
Finally, each facet of the form ii′′(i+1)p or ii′′(i+1)′p is a transversal of the successive differences

for the chain
∅ ⊂ i ⊂ ii′′ ⊂ ii′′(i + 1)(i + 1)′ ⊂ V

in L(S). Since we have now checked all facets, it follows that S is a BRSC.
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Let Cl(X) denote the closure of X ⊆ V in L(T3(S)). For each i ∈ Z3, we have i(i + 1)(i +
1)′, i′′(i + 1)(i + 1)′ /∈ H, so we successively get (i + 1)′ ∈ Cl(i(i + 1)) and i′′ ∈ Cl(i(i + 1)). Thus
Cl(i(i + 1)) contains ii′′(i + 1) ∈ fct(T3(S)), yielding Cl(i(i + 1)) = V . But then i ∈ Cl(123 \ {i}) for
every i ∈ 123. Since 123 ∈ T3(H), then there is no chain of the form (1) and so T3(S) is not boolean
representable.

We remark that S is not pure since it is straightforward to check that 1′2′2′′ is a facet. But
T3(S) is pure because there are no facets of dimension 1: given distinct p, q ∈ V , there exists some
r ∈ V \ pq such that pqr is not a yellow triangle. �

Analysis of Example 7.12. Let M be such a boolean matrix. Since the columns are all distinct and
nonzero, every pair of distinct columns is independent. Now let X be a set of independent columns
with |X| = 2 or 3. Let I ⊂ 1234 be such that the square matrix M [I,X] is nonsingular. Let
j ∈ 1234 \ I and let c be the column of M having a 1 at row j and 0 elsewhere. Then the permanent
of M [I ∪ {j},X ∪ {c}] equals the permanent of M [I,X], hence M [I ∪ {j},X ∪ {c}] is nonsingular.
and so X ∪ {c} is independent. Thus B(4) is pure.

Since B(4) is by definition a BRSC, then B
(4)
3 is a TBRSC. Let X denote the closure of X in

FlB
(4)
3 . Consider the columns of M defined by

a =




1
0
0
0


 , b =




1
1
1
0


 , c =




1
1
0
1


 .

The permanent of the matrix

M [134, abc] =




1 1 1
0 1 0
0 0 1




is 1, hence abc is independent. Define

d =




0
1
1
0


 , e =




1
0
1
0


 , f =




0
0
1
1


 g =




1
0
1
1


 .

We have

M [1234, abd] =




1 1 0
0 1 1
0 1 1
0 0 0


 , M [1234, bde] =




1 0 1
1 1 0
1 1 1
0 0 0


 , M [1234, abe] =




1 1 1
0 1 0
0 1 1
0 0 0


 .

Since no row of M [1234, abd] has precisely two zeroes, abd is dependent. The same occurs with bde.
It is immediate that M [123, abe] has permanent 1, hence abe is independent. Thus we successively
deduce d ∈ ab, e ∈ ab and so ab contains the facet abe. Therefore ab = V , where V denotes the full
set of vertices. Out of symmetry, so is ac.
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Now

M [1234, bcf ] =




1 1 0
1 1 0
1 0 1
0 1 1


 , M [1234, bcg] =




1 1 1
1 1 0
1 0 1
0 1 1


 , M [1234, bfg] =




1 0 1
1 0 0
1 1 1
0 1 1


 .

Since no row of M [1234, bcf ] has precisely two zeroes, bcf is dependent. The same occurs with bcg.
It is immediate that M [123, bfg] has permanent 1, hence bfg is independent. Thus we successively
deduce f ∈ bc, g ∈ bc and so bc contains the facet bfg. Therefore bc = V . Together with ab = ac = V ,

and abc being independent, this proves that B
(4)
3 is not a BRSC. �

Proof of Theorem 7.13. Suppose first that k ≤ 2. By Proposition 4.1, Tk(S) is a BRSC, therefore
pure(Tk(S)) is a BRSC by Corollary 7.10(ii).

Thus we may assume that k = 3. Write pure(T3(S)) = (V ′,H′) and consider the restriction S|V ′ .
Then pure(T3(S)) = pure(T3(S|V ′)3). Since BRSCs are closed under restriction, S|V ′ is also a BRSC.
Therefore we may assume that V ′ = V .

Let
F = F ∈  L(S)

∣∣ |F ∩X| 6= 1 for every X ∈ fct(S) ∩ P2(V )}.

We claim that F is a Moore family.
Clearly, V ∈ F . Let F,F ′ ∈ F . We have F ∩ F ′ ∈ L(S). Let X ∈ fct(S) ∩ P2(V ). Suppose that

|(F ∩ F ′) ∩X| = 1. Then |F ∩X| = 1 or |F ′ ∩X| = 1, contradicting F,F ′ ∈ F . Thus F ∩ F ′ ∈ F
and so F is a Moore family.

Therefore S′ = (V,Tr(F)) is a BRSC. We claim that pure(T3(S)) = T3(S′).
For every Y ⊆ V , let Y denote its closure in L(S). Let X ∈ H ∩ P3(V ). Then there exists an

enumeration a, b, c of the elements of X such that

∅ ⊂ a ⊂ ab ⊂ V (28)

and c /∈ ab. Clearly, ∅, V ∈ F .
Suppose that Y ∈ fct(S) ∩ P2(V ) satisfies |Y ∩ a| = 1. We may write Y = yz with y ∈ a. If

z ∈ ab (respectively z /∈ ab), then yzc (respectively ybz) is a transversal of the successive differences
for (28), contradicting yz ∈ fct(S). Thus a ∈ F .

Suppose now that Y ∈ fct(S) ∩ P2(V ) satisfies |Y ∩ ab| = 1. We may write Y = yz with y ∈ ab.
If y ∈ a (respectively y /∈ a), then ybz (respectively ayz) is a transversal of the successive differences
for (28), contradicting yz ∈ fct(S). Thus ab ∈ F .

Therefore (28) is a chain in F and so X ∈ Tr(F). It follows that H′ ⊆ Tr(F ) ∩ P≤3(V ).
Conversely, let X ∈ Tr(F ) ∩ P≤3(V ). Since F ⊆ L(S), we have Tr(F) ⊆ H and so X ∈ T3(H).

We certainly have X ∈ H′ if if |X| = 0 or 3, and the case |X| = 1 follows from V ′ = V . Hence we
may assume that |X| = 2. There exists an enumeration a, b of the elements of X and F ∈ F such
that a ∈ F and b /∈ F . But then, by definition of F , we get X /∈ fct(S). Hence there exists some
c ∈ V \X such that X ∪ {c} ∈ H. Thus X ∪ {c} ∈ H′ and so X ∈ H′. Therefore T3(Tr(F )) ⊆ H′

and so pure(T3(S)) = T3(S
′). It follows that pure(T3(S)) is a TBRSC. �

Proof of Lemma 8.1. Obviously, S is disconnected if H = P1(V ) and |V | > 1, and connected if
|V | = 1. Hence we may assume that pq ∈ H for some distinct p, q ∈ V .
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Let M be an R×V boolean matrix representing S. It follows from pq ∈ H that M [R, p] 6= M [R, q].
Thus, for every v ∈ V , we have either M [R, v] 6= M [R, p] or M [R, v] 6= M [R, q], implying that vp or
vq is an edge in H. Therefore S is connected. �

Proof of Theorem 8.4. (i) It follows from Lemma 8.1 that S is connected. By Hurewicz Theorem
(see [4]), the 1st homology group of S is the abelianization of π1(||S||), and therefore, in view of
Theorem 8.2, a free abelian group of known rank. The second homology group of any 2-dimensional
simplicial complex is Ker ∂2 ≤ C2(S), that is, a subgroup of a free abelian group. Therefore H2(S)
is itself free abelian.

(ii) By [16, Proposition 3.3], any finite 2-dimensional simplicial complex with free fundamental
group has the homotopy type of a wedge of 1-spheres and 2-spheres. �
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