
ar
X

iv
:1

90
5.

13
00

1v
2 

 [
m

at
h.

G
R

] 
 2

5 
A

pr
 2

02
0

FORMAL LANGUAGE CONVEXITY IN LEFT-ORDERABLE

GROUPS

HANG LU SU

Abstract. We propose a criterion for preserving the regularity of a formal lan-
guage representation when passing from groups to subgroups. We use this criterion
to show that the regularity of a positive cone language in a left-orderable group
passes to its finite index subgroups, and to show that there exists no left order
on a finitely generated acylindrically hyperbolic group such that the corresponding
positive cone is represented by a quasi-geodesic regular language. We also answer
one of Navas’ questions by giving an example of an infinite family of groups which
admit a positive cone that is generated by exactly k generators, for every k ≥ 3.
As a special case of our construction, we obtain a finitely generated positive cone
for F2 × Z.

1. Introduction

A language represents a subset of a group if its image under the evaluation map
is equal to that subset. The complexity of a language is determined by the minimal
complexity class of machines able to solve the membership problem for that lan-
guage. For example, languages recognized by finite state automata are called regular
languages. They are the simplest languages in a classification of formal languages
called the Chomsky hierarchy.

In this paper, we devise a criterion which we name language-convexity for subgroups
to inherit the regularity of a language representation of a group. Roughly speaking,
a subgroup is language-convex with respect to a language L if the prefixes of every
word in L represents an element in the subgroup, up to a bounded error. We apply
this criterion to positive cones of groups, which are the sets of elements greater than
the identity under a left-invariant total order.

Theorem 1.1. Let G be a finitely generated group with a regular positive cone. If H
is a finite index subgroup, then H also admits a regular positive cone.

A particularly simple class of regular languages is the class of finitely generated
semigroups, which can be recognized by automata with only two states. The property
of finite index subgroups inheriting a regular language representation of a positive
cone is optimal in some sense, as refining this property to inheriting finite generation

Key words and phrases. left-orderable group, regular language, finitely generated positive cones,
semigroups, acylindrically hyperbolic groups.
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in the positive cone is impossible. Indeed, take the Klein bottle group given by
presentation

K2 = 〈a, b : a−1ba = b−1〉.

It is easy to check that K2 admits the positive cone P = 〈a, b〉+. The subgroup given
by 〈a2, b〉, of index 2, is isomorphic to Z

2 since

a−2ba2 = a−1b−1a = b.

It is a basic fact of orderability (see for example [3, Section 2.2]) that a finitely
generated positive cone of a group corresponds to an isolated point in the space of
left orders of that group. Also well-known (see [3, Section 1.2.1]) is the fact that the
space of left orders on Z

2 is isomorphic to the Cantor set, and thus cannot have any
isolated points. Thus, Z2 does not admit a finitely generated positive cone, despite
being a finite index subgroup of K2.

While finitely generated positive cones are easy to describe, not many examples of
them are known. In his 2011 paper, Navas [10] constructs an infinite family of groups
given by presentation Γn = 〈a, b : banb = a〉 which have positive cones of rank 2. The
author then poses the following problem: for every k ≥ 3, find an infinite family of
groups which admit a positive cone of rank k. We solve this problem completely by
looking into finite-index subgroups of Γn.

Theorem 1.2. For every integer m ≥ 2, and integer n ≥ 2 of the form n = m−1+mt
for some odd integer t, there is a subgroup of index m in Γn = 〈a, b : banb = a〉 which
admits a positive cone of rank m+ 1.

In 2016, Hermiller and Šunić [7] showed that no finitely generated free product has
a regular positive cone. However, this property is not stable under taking a Cartesian
product with the integers. For example, Rivas [12] had constructed an example of a
regular positive cone for F2 × Z. Furthermore, a 2018 result of Mann and Rivas [9]
states that this group has isolated points in its space of left orders. Since each finitely
generated positive cone implies an isolated point in the space of left orders of a group
(see for example [3, Section 2.2]), this naturally leads to the question of whether
F2 × Z admits a finitely generated positive cone. A special case of our Theorem 1.2
shows the following.

Corollary 1.3. There exists a positive cone for F2 ×Z which is finitely generated as
a semigroup.

Moreover, we generalize the result of Hermiller and Šunić [7] to acylindrically hy-
perbolic groups, which are a generalization of the class of non-elementary hyperbolic
groups. Some examples of acylindrically hyperbolic groups are mapping class groups
of closed, oriented surfaces, groups of outer automorphism of free groups, and free
products. Our result postdates [1] that of Calegari, who showed in 2003 that no
fundamental group of a hyperbolic manifold has a regular geodesic positive cone.

Theorem 1.4. A quasi-geodesic positive cone language of a finitely generated acylin-
drically hyperbolic group cannot be regular.

Since it is known that the lower bound of being 1-counter (the lowest complexity
for a context-free language) is attained for some orders on free groups by a 2013
result of Šunić [14], our bound is the best possible within the Chomsky hierarchy. In
2006, Farb posed the question of whether mapping class groups of closed, oriented
surfaces of genus greater or equal to two, with either zero or one puncture, have a
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finite index subgroup which is left-orderable [5, Problem 6.3]. Our theorem makes
partial progress on Farb’s question by finding a lower bound on the formal language
complexity for positive cones of acylindrically hyperbolic groups which are represented
by languages containing only quasi-geodesic words. (Note that finite index subgroups
of acylindrically hyperbolic groups are acylindrically hyperbolic [11].)

Our paper is structured as follows. We review some background in Section 2,
which should be sufficient to understand the starting point of our paper: Hermiller
and Šunić’s result [7]. In Section 3, we show how pairs of fellow-travelling words
form a regular language. In Section 4, we present the language-convexity criterion
for subsets to inherit the property of having a regular language representation, then
prove Theorem 1.1. The last two sections can be read independently of one another.
In Section 5, we first provide an (m+1)-generated positive cone for certain subgroups
of index m of Γn = 〈a, b : banb = a〉 for integers n ≥ 2, m ≥ 2. We then use this result
to prove Corollary 1.3. Next, we show that m+1 is the minimal number of generators
for the provided positive cones of these subgroup of index m of Γn, for an infinite
number of values of n, proving Theorem 1.2. In Section 6, we apply our language-
convexity criterion to known results in acylindrically hyperbolic groups to show that
if there were a regular quasi-geodesic positive cone language for an acylindrically
hyperbolic group, it would allow us to construct a regular positive cone for the free
group on two elements. This is a contradiction by the result of Hermiller and Šunić
[7] (Theorem 2.4).

2. Background

The goal of this section is to present sufficient background to understand the start-
ing point of this paper which is the statement of Theorem 2.4 due to Hermiller
and Šunić. We end the section by briefly discussing Corollary 1.3 and Theorem 1.4.
Should it be needed, we suggest additional reference [3] for orderability, and reference
[4] for finite state automata.

2.1. Left-orders and positive cones. A group G is left-orderable if it admits a
strict total order ≺ of its elements such that the relation g ≺ h holds if and only if
the relation fg ≺ fh holds for all g, h and f in G. Given an order ≺, the associated
positive cone P is the set of elements which are greater than the identity,

P = {g ∈ G : g ≻ 1}.

P has two defining properties:

(1) P is a semigroup in the sense that PP ⊆ P .
(2) P defines a partition for G, G = P ⊔ P−1 ⊔ {1} where the union is disjoint.

Equivalently, given a semigroup P which partitions G as above, we may define a
left-invariant order ≺ by

g ≺ h ⇐⇒ g−1h ∈ P.

The induced positive cone by this left order is exactly P . Thus, the notions of left-
order and positive cone are equivalent.

It is straightforward to show that positive cones are closed under taking subgroups:
if H is a subgroup of G, then H is also left-orderable with positive cone P ∩H .
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2.2. Regular languages. A language over a finite set X is a subset of the free
monoid X∗ = ∪∞

n=0X
n, the set of arbitrarily long words with symbols in X.

Definition 2.1. A language is regular if it is accepted by a finite state automaton.

A finite state automaton is a quintuple A = (S,X, τ, A, s0), where S is a finite
set called the state set, X is a finite alphabet for the input words, τ : S × X → S
is a transition function taking one state to another, A ⊆ S is a set of states called
the accept states (or final states), and s0 ∈ S is the initial state. The function τ
extends recursively to τ : S × X∗ → S by setting τ(s, wx) = τ(τ(s, w), x) where
w ∈ X∗, x ∈ X, and s ∈ S. The accepted language by the automaton is the set of
words

{w ∈ X∗ : τ(s0, w) ∈ A}.

Remark 2.2. Let X be a finite alphabet, and set P = 〈X〉+ to be a semigroup
generated by X. We remark that P is always accepted by an automaton A with two
states. Indeed, set the states to be S = {s0, s1} and the accept state to A = {s1},
and define τ such that

τ(s0, x) = s1, τ(s1, x) = s1, ∀x ∈ X.

This automaton does not accept the empty word, since the inital state s0 is not an
accept state. However, it accepts any non-empty string in the semigroup, which is
represented by always being in the accept state s1 after one input letter. This shows
that the property of being finitely generated as a semigroup is stronger than being a
regular language.

Given two alphabets X and Y and a function f : X → Y ∗ there is a unique
monoid homomorphism h : X∗ → Y ∗ extending f , namely, the map sending w ∈ X∗,
w = x1 . . . xn to h(w) = f(x1) . . . f(xn), where each f(x) for x ∈ X is a word in
Y ∗. The image of a regular language L ⊆ X∗ under a monoid homomorphism is
also regular. For a group G = 〈X〉, the evaluation map π : X∗ → G is the monoid
homomorphism sending words in X to the element they represent in G. Note that
by abuse of notation, we do not distinguish between a generating set for G and the
set of symbols used to represent it.

The following definition will be useful throughout our paper.

Definition 2.3 (Regular positive cone). We say that a positive cone P of a finitely
generated group G is a regular positive cone if there exists a finite generating set X
and a regular language L ⊂ X∗ such that π(L) = P , where π is the evaluation map.

Theorem 2.4 (Hermiller and Šunić [7]). Let A,B be two non-trivial, finitely gener-
ated, left-orderable groups. Let G = A ∗B. Then G does not admit a regular positive
cone.

In particular, this theorem states that F2 cannot admit a regular positive cone.
However, our Corollary 1.3 states that there is a positive cone for F2 × Z which is
finitely generated as a semigroup. In other words, taking the Cartesian product of
F2 with Z allows the resulting group to have a finitely generated positive cone, an
even stronger property than having a regular positive cone.

Theorem 1.4 generalizes Theorem 2.4 up to quasi-geodesic positive cones (see Def-
inition 6.1) in a class of groups containing free products, called acylindrically hyper-
bolic (see Section 6.1). Both proofs will depend on the language-convexity criterion
(see Proposition 4.2).
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3. Pairs of Fellow-Travelling Words Form A Regular Language

We will prove that the set of pairs of words which represent the same element
and asynchronously M-fellow-travel for some M ≥ 0 is a regular language. This
construction will play a key part in the proof of Proposition 4.2. In this section, fix
X to be a finite alphabet closed under formal inversion, and fix $ to be a padding
symbol. Define X$ := X ∪ {$}. Let G be a group generated by X, and let Γ be the
associated Cayley graph with vertex set V (Γ) and word metric d. Let π : (X$)∗ → G
be the evaluation map which maps x ∈ X to itself and $ to the identity. As a
shorthand, we will often denote π(w) by w̄.

Definition 3.1 (Synchronous and asynchronous fellow-travel). Let (u, v) ∈ (X$ ×
X$)∗. We can identify (X$ × X$)∗ with the subset of (X$)∗ × (X$)∗ consisting of
pairs of words (u, v) where u ∈ X$∗, v ∈ X$∗ and u and v have the same length. Let
u = x1 . . . xn and v = y1 . . . yn, and ui := x1 . . . xi, vi := y1 . . . yi be the prefixes of u
and v, respectively. Let M be a fixed non-negative constant. We say that u and v
synchronously M-fellow-travel if d(ūi, v̄i) ≤ M for i = 0, . . . , n. We say that u and
v asynchronously M-fellow-travel if there exists a synchronously M-fellow-travelling
pair (u′, v′) ∈ (X$ × X$)∗ such that u′ and v′ are obtained by inserting padding
symbols $ between the symbols of u and v. We will refer to u′ and v′ as the padded
version of u and v, respectively.

Proposition 3.2. Let M ≥ 0. The language of pairs of words (u, v) ∈ (X$ × X$)∗

such that u and v synchronously M-fellow-travel and represent the same element in
G,

LM := {(u, v) ∈ (X$ ×X$)∗ : ū = v̄ and d(ūi, v̄i) ≤M, i = 1, . . . , n}

is a regular language.

We remark that if (u, v) is a pair of words over the unpadded alphabet (X ×X)∗,
and (u, v) asynchronously M-fellow-travel and represent the same element in G, then
there are padded versions u′ and v′ of u and v, respectively, such that (u′, v′) ∈ LM .
Roughly speaking, u′ and v′ are the versions of u and v where one word “waits” for
the other after each symbol by virtue of the placement of $ between two symbols of
X. In that sense, LM captures the language of asynchronously M-fellow-travelling
words in (X ×X)∗.

Sketch of the proof of Proposition 3.2. Define the finite-state automaton A as fol-
lows. The automaton A is the quintuple (S,X$ ×X$, τ, A, s0), where BM ⊆ V (Γ) is
the set of group elements contained in a ball of radius M around the identity, and
S := BM ∪ {ρ}, where ρ denotes a fail state. Let g ∈ BM , and define the transition
function τ : S × (X$ ×X$)∗ → S, as

τ(g, (x, y)) =

{

x̄−1gȳ x̄−1gȳ ∈ BM

ρ x̄−1gȳ /∈ BM

, g ∈ BM

τ(ρ, (x, y)) = ρ ∀(x, y) ∈ (X$ ×X$)∗.

Let the accepting set of states be A = {1}, and the initial state be s0 = 1. It is
now straightforward to check by induction that this automaton accepts exactly the
language LM . �
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A proof of the following well-known theorem can be found in [4, Section 1.4] and
involves constructing the appropriate automata.

Theorem 3.3 (Predicate calculus). Given regular languages L1 and L2 over the same
finite alphabet Y , the following languages are also regular.

• L1 × L2 where L1 × L2 = {(u, v) ∈ (Y × Y )∗ : u ∈ L1, v ∈ L2}.
• L1 ∩ L2.

Moreover, if L3 is a regular language over a product of finite alphabets Y1 × · · · × Yn
and Proji : (Y1 × · · · × Yn)

∗ → Y ∗

i is the projection map on the ith coordinate, then
Proji(L3) is a regular language.

We repeatedly use predicate calculus to prove the next lemma.

Definition 3.4 (Padded language). Let L be the regular language accepted by the
finite state automaton A = (S,X, τ, A, s0). Fix $ as a padding symbol. The padded
language L$ of L is the language accepted by the automaton A$ = (S,X, τ $, A, s0),
where τ $ is the function from S × (X ∪ {$}) to S defined as

τ $(s, x) :=

{

τ(s, x) s ∈ S, x ∈ X

s s ∈ S, x = $.

The language L$ consists of all padded versions of the words in L, and is regular by
construction.

Lemma 3.5. Let L ⊆ X∗ be a regular language, let M ≥ 0, and let LM be the
language of synchronously M-fellow-travelling pairs of words in (X$×X$)∗ such that
in each pair (u, v), the words u and v represent the same element in G, as defined in
Proposition 3.2. Then,

L̃ := {v ∈ (X$)∗ : ∃u ∈ L$ such that (u, v) ∈ LM},

is a regular language, and π(L̃) = π(L).

Note that L̃ is a language of words which synchronously M-fellow-travel with words
in the padded language L$ and represent the same elements of G as the words in L.

Proof of Lemma 3.5. We will be using Theorem 3.3 several times. Let

L′ := {(u, v) ∈ (X$ ×X$)∗ : u ∈ L$ and v ∈ (X$)∗}.

Observe that L′ = L$ × (X$)∗ so it is regular. Set

L′′ := {(u, v) ∈ (X$ ×X$)∗ : u ∈ L$ and (u, v) ∈ LM}.

Since L′′ = LM ∩ L′, so L′′ is also regular. Set

L̃ := {v ∈ (X$)∗ : ∃u ∈ L$ such that (u, v) ∈ LM}

and observe that L̃ = Proj2(L
′′), so it is regular. Finally, we observe that

π(L) = π(Proj1(L
′)), π(L) = π(L$)

= π(Proj1(L
′′)), (u, v) ∈ L′ ⇒ (u, u) ∈ L′′

= π(Proj2(L
′′)), (u, v) ∈ L′′ ⇒ π(u) = π(v)

= π(L̃).

�
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4. Language Convex Subgroups

This section is dedicated to the definition of language-convexity and the proof of
Theorem 1.1. For this section, let X be a finite alphabet which is closed under formal
inversion and let G = 〈X〉 be a group generated by X. Let Γ be the associated Cayley
graph with the graph metric. For w in X∗, w = x1 . . . xn, and for i = 1, . . . , n, we
will denote by wi the prefix of length i of w, i.e. wi := x1 . . . xi. Let |w| denote the
length of w. Set π : X∗ → G as the evaluation map. For convenience, we will denote
π(w) by w̄.

4.1. Word-induced paths. Every word in (X$)∗ induces a path in the Cayley graph
Γ. Indeed, assume that we have a word w ∈ X∗. Let w = x1 . . . xn for xi ∈ X and
i = 1, . . . , n. The induced path pw = (1 = w̄0, . . . , w̄n−1, w̄n) is a sequence composed
of vertices w̄i which are the elements of G. The path pw can be parametrized in
the natural way as a continuous function pw : [0, n] → Γ satisfying pw(i) = ūi for
0 ≤ i ≤ n. On the other hand, if w′ ∈ (X$)∗, then take w′ as inducing the same
sequence of vertices as its unpadded version. We view the path pw′ as unparametrized.

Definition 4.1 (language-convexity). Let L be a language over X. A subset H ⊆ G
is language-convex with respect to L if there exists an R ≥ 0 such that for each w ∈ L
with w̄ ∈ H , the induced path pw lies within distance R of H in Γ.

Proposition 4.2 (language-convexity criterion). Let X be a finite set which is closed
under formal inversion, X = X−1. Set G = 〈X〉. Let L be a regular language, and
let P = π(L) where π is the evaluation map onto G. Let H be a subgroup of G. If
H is language-convex with respect to L, then there exists a regular language LH such
that π(LH) = H ∩ P .

This definition will be useful for the proof of the above proposition.

Definition 4.3 (Geodesic words). A geodesic path is a path p connecting two vertices
v1, v2 ∈ V (Γ) such that p has the shortest length amongst all paths from v1 to v2 in
Γ. A word w ∈ (X$)∗ is geodesic if w ∈ X∗ and the induced path pw is geodesic. If
g is a group element such that w̄ = g, then w is a geodesic representative of g.

Proof of Proposition 4.2. Let L and P be as in the statement of Proposition 4.2.
Suppose that H is language-convex with respect to L. We want to show that H ∩ P
can be represented by a regular language.

Let R be, as in Definition 4.1, the convexity parameter for H . Set

Y = {y ∈ H : |y| ≤ 2R + 1}.

Let ϕ : Y ∗ → X∗ be the monoid homorphism sending each element y ∈ Y to a
geodesic representative in terms of the finite generating set X. Fix M = 3R+1. Let
L̃ be the regular language given by Lemma 3.5, which consists of the set of padded
words in X$ which synchronously M-fellow-travel with words in the padded language
L$. Recall that π(L̃) = π(L). Set

LH = ϕ(Y ∗) ∩ L̃.

The regularity of LH is given by Theorem 3.3. We will argue that LH is a language
representing H ∩ P .

We start by showing that π(LH) ⊇ H ∩ P . Let g ∈ H ∩ P . Set u = x1 . . . xn to be
a representative of g in L. Since ū ∈ H , we have by language-convexity that for each
prefix ui = x1 . . . xi, the evaluation ūi is at distance at most R from H . Therefore,
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there exists hi ∈ H satisfying d(ūi, hi) ≤ R in Γ. Since ū0 = 1 and ūn ∈ H , we are
allowed to set h0 = 1 and hn = ūn. For each i ∈ {1, . . . , n}, let yi = h−1

i−1hi. Observe
that yi ∈ Y . Indeed,

|yi| = d(hi−1, hi) ≤ d(hi−1, ūi−1) + d(ūi−1, ūi) + d(ūi, hi) ≤ 2R + 1.

Let w = y1 . . . yn and wi = y1 . . . yi. Let v = ϕ(w). It is clear that v̄ = hn = g, and
that v belongs to the monoid ϕ(Y ∗).

To show that v ∈ L̃, we will to show that it asynchronously M-fellow-travels with u.
First observe that each ūi is at distance at most R from each ϕ(wi) by construction of
v. Recall that the geodesic subpath connecting ϕ(wi−1) to ϕ(wi) is labelled by ϕ(yi)
for i = 1, . . . n, where w0 is the empty word. Therefore, any vertex in such a subpath
is at distance at most 2R + 1 from ϕ(wi) and hence at most M = 3R + 1 from ūi.
Let u′ be the padded word for u which has |yi| − 1 padding symbols $ added after
each xi for i = 1, . . . , n. Then (u′, v) synchronously M-fellow-travel. This shows that
v ∈ L̃, and thus π(LH) ⊇ H ∩ P .

To conclude the proof, we show that π(LH) ⊆ H ∩ P . If w ∈ LH , then w̄ ∈

π(ϕ(Y ∗)). Since π(ϕ(Y )) ⊆ H , we have that w̄ ∈ H . Moreover, w̄ ∈ π(L̃) = π(L) =
P , so we obtain that π(LH) ⊆ H ∩ P . �

For a language L over X∗, denote by A(L) an automaton accepting the language
L such that it has a minimal number of states amongst all automata accepting L.
Denote by |A(L)| the number of states of A(L). We conclude this section by getting
an estimate for |A(LH)|, where LH is as in Proposition 4.2.

Let γH denote the growth function of the subgroup H ≤ G with respect to the
generating set X, that is

γH(n) = |{g ∈ H : |g| ≤ n}|.

Corollary 4.4. Let G,X and L be as in Proposition 4.2. Let H be language-convex
with respect to L with convexity parameter R. There is a regular language LH repre-
senting H ∩ π(L) such that

|A(LH)| ≤ (2R + 1) · |A(L)| · γH(2R + 1) · (γG(3R+ 1) + 1).

Proof. Recall from the proof of Proposition 4.2 that we can take LH = ϕ(Y ∗) ∩ L̃,
where L̃ is given by Lemma 3.5, and Y = {h ∈ H : |h| ≤ 2R + 1}. Recall that for
y ∈ Y , ϕ(y) is a geodesic in X representing y. It is easy to show that |A(ϕ(Y ∗))| ≤
(2R + 1) · γH(2R + 1). The states of an automaton accepting an intersection of
two regular languages are given by the product of the states of the two automaton
accepting each of the languages. Therefore, we have

|A(LH)| ≤ (2R + 1) · γH(2R + 1) · |A(L̃)|.

It remains to bound |A(L̃)|. Set M = 3R + 1. Set LM to be the language in
Proposition 3.2. It follows from the proof of Proposition 3.2 that A(LM) has at most
γG(3R + 1) + 1 states. Finally, set L̃, L′, L′′ and L$ to be as in Lemma 3.5. Recall
from the proof of Lemma 3.5 that L′ = L$× (X$)∗, L′′ = LM ∩L′ and L̃ = Proj2(L

′′).
Since taking a projection does not increase the number of states, |A(L̃)| ≤ |A(L′′)|.
By the previous remark about intersection, |A(L′′)| ≤ |A(L′)| · |A(LM)|. One can
construct an automaton for L′ = L$×(X$)∗ by taking the product of automata for L$

and (X$)∗. By Remark 2.2 and Definition 3.4, |A((X$)∗)| = 1 and |A(L$)| = |A(L)|.
We conclude that |A(L′)| ≤ |A(L)|. Putting it all together, the corollary follows. �
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We will now use our language-convexity criterion to show that finite index sub-
groups are language-convex with respect to any language. We will then apply our
result in the proof of Corollary 1.3 to show that there is a regular positive cone
for F2 × Z. We will then show a stronger version of that result by independently
constructing a positive cone for F2 × Z which is finitely generated as a semigroup.

Lemma 4.5. Let H be a language-convex subgroup of a finitely generated group G
with respect to a language L. If K is a finite index subgroup of H, then K is also
language-convex subgroup of G with respect to L.

Proof. Let R be the language-convexity constant of H with respect to L. Assume
that K is a finite index subgroup of H . Let C = {h1, . . . , hn} be a list of coset
representatives of K in H . Let R′ = maxhi∈C |hi|. If h ∈ H , then there exists an
i ∈ {1, . . . , n} such that h = khi. Then d(h, k) = |h−1

i k−1k| = |hi| ≤ R′. This shows
that H ⊆ NR′(K).

Then for all w ∈ L with w̄ ∈ K, we have that pw ⊆ NR(H) by language-convexity of
H . Moreover, NR(H) ⊆ NR(NR′(K)) = NR+R′(K). Therefore K is language-convex
with convexity parameter (R +R′). �

Theorem 1.1 is a corollary of this lemma.
A particularly nice application of this lemma is on the braid group on three strands,

which admits a regular positive cone. This group has a finite index subgroup isomor-
phic to F2 ×Z, which inherits a regular positive cone by Lemma 4.5. We will review
the this material in the proof of Corollary 1.3.

5. Constructing an infinite family of groups with k-generated

positive cones

Consider the group Γn = 〈a, b : banb = a〉. Let ∆ = an+1. Note that ∆ is central
in Γn. Indeed,

b∆ = ban+1 = (ban)a = (ab−1)a = a(b−1a) = a(anb) = ∆b.

By [10], Γn admits a positive cone Pn = 〈a, b〉+ for all integer n ≥ 1. The following
lemma will be useful in the study of positive cones of subgroups of Γn.

Lemma 5.1. For all integer n ≥ 1, the element b−sa where s ≥ 0 belongs to Pn.

Proof. We will show this by induction on s that b−sa = a(an−1b)s. If s = 0, then

b0a = a = a(an−1b)0.

As for the s⇒ s+ 1 case,

b−(s+1)a = b−sb−1a

= a(an−1b)sa−1(b−1a) (anb = b−1a)

= a(an−1b)sa−1anb

= a(an−1b)san−1b

= a(an−1b)s+1.

Since Pn = 〈a, b〉+, the element b−sa = a(an−1b)s clearly belongs to Pn. �
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We are now going to look at a particular class of finite-index subgroups of Γn. Let
n,m, and µ be such that

(n− 1)µ ≡ −2 mod m.

Note that given a fixed pair n and m, there may not necessarily be a solution for µ.
For each triple n,m, and µ satisfying the equation above, define a homomorphism
ϕ : Γn → Z/mZ by setting ϕ(a) = µ and ϕ(b) = 1. We check that the map is a
homomorphism by verifying that the relation is satisfied in the image

ϕ(banba−1) ≡ 2 + (n− 1)ϕ(a) ≡ 0 mod m.

Proposition 5.2. Let n,m and µ be such that (n−1)µ ≡ −2 mod m. Let ϕ : Γn →
Z/mZ be a homomorphism such that ϕ(a) = µ and ϕ(b) = 1. Let H := kerϕ and let
P = 〈a, b〉+ be a positive cone for Γn (which is proven in [10]). Then H ∩ P admits
the finite generating set Y , where

Y := {b−sabs+(m−µ)}µ−1
s=0 ∪ {b−sabs−µ}m−1

s=µ ∪ {bm}.

The proof of this proposition will rely on the Reidemeister-Schreier method, which
we recall below.

Definition 5.3 (Schreier transversal). Let F be a free group, and H̃ be a subgroup
of F . A Schreier transversal T of H̃ is a subset of F such that for distinct t ∈ T , the
cosets H̃t are distinct,

⋃

t∈T H̃t = F , and such that each initial segment (prefix) of
an element of T belongs to T .

Proposition 5.4 (Reidemeister-Schreier method [8]). Let G = F/N , where F is free
with basis X and N is the normal closure of the relator set R. Let φ : F → F/N be
the natural map of F onto G. Let H be a subgroup of G with H̃ as the inverse image
under φ, and let T be a Schreier transversal for H̃ in F . For w in F , we define w̄
by the condition that

H̃w = H̃w̄, w̄ ∈ T.

For t ∈ T , x ∈ X, we define

γ(t, x)∗ = tx(tx)−1.

Define a one-to-one correspondence between γ(t, x)∗ and γ(t, x). Then H has pre-
sentation 〈Y | S〉 where Y = {γ(t, x) : t ∈ T, x ∈ X, γ(t, x)∗ 6= 1}.

Let F ′ be the free group generated with basis Y . Define τ : F → F ′ as follows. If
w = y1 . . . yℓ,

τ(w) = γ(1, y1) . . . γ(y1 . . . yi−1, yi) . . . γ(y1 . . . yℓ−1, yℓ).

Then S = {τ(trt−1) : t ∈ T, r ∈ R}.

Lemma 5.5. Let γ and γ∗ be as in Proposition 5.4, and ϕ, µ, and H be as in
Proposition 5.2. Then

Y = {b−sabs+(m−µ)}µ−1
s=0 ∪ {b−sabs−µ}m−1

s=µ ∪ {bm}

generates H.

Proof. Let φ : F2 → Γn be the canonical map from a free group on two elements onto
Γn. The set T = {b0, b−1, . . . , b−(m−1)} is a Schreier transversal for H̃ := φ−1(H),
since the restriction of ϕφ : F2 → Z/mZ is bijective. By the Reidemeister-Schreier
method, a generating set for H is given by {γ(t, x) : t ∈ T , x ∈ {a, b}, γ(t, x)∗ 6= 1}.
Now,
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γ(b−s, a)∗ =

{

b−sab−s+µ if 0 ≤ µ ≤ s

b−sabm−(−s+µ) if s + 1 ≤ µ ≤ m− 1

γ(b−s, b)∗ =

{

1 if 1 ≤ s ≤ m− 1

bm if s = 0.

By identifying γ(t, x) with γ(t, x)∗ when it is not the identity, we obtain Y as a
generating set for H . �

Proof of Proposition 5.2. We will first show that 〈Y 〉+ ⊆ H ∩ P . We have shown in
Lemma 5.5 that Y generates H , and by Lemma 5.1 that Y ⊆ P . Thus Y ⊆ H ∩ P .
Since H ∩ P is a semigroup, 〈Y 〉+ ⊆ H ∩ P .

To show that H ∩ P ⊆ 〈Y 〉+, we will show that for every word w ∈ 〈a, b〉+ whose
image π(w) is in H , there is a corresponding word v ∈ 〈Y 〉+ such that π(v) = π(w).

Write w = x1 . . . xℓ and let wi = x1 . . . xi. Recall the map τ : F2 → F (Y ) from
the Reidemeister-Schreier method (Proposition 5.4), where F (Y ) stands for the free
group with basis Y . Since π(w) ∈ H , τ(w) is well-defined, and π(τ(w)) = π(w) by
construction of τ . Furthermore,

τ(w) =

ℓ∏

i=1

γ(wi−1, xi).

Since w ∈ 〈a, b〉+, xi ∈ {a, b} for 1 ≤ i ≤ ℓ. Thus γ(wi−1, xi) ∈ Y ∪ {1} for 1 ≤ i ≤ ℓ.
Define v := y1 . . . yℓ where

yi =

{

γ(wi−1, xi) if γ(wi−1, xi) 6= 1

ε if γ(wi−1, xi) = 1

Then v ∈ 〈Y 〉+ and π(v) = π(τ(w)) = π(w). This shows that H ∩ P = 〈Y 〉+.
�

Definition 5.6 (Rank). The rank of a finitely generated group (resp. semigroup) is
the smallest size of a generating set needed to generate the group (resp. semigroup).

This corollary follows from Proposition 5.2.

Corollary 5.7. Let n,m and ϕ be such that (n − 1)ϕ(a) ≡ −2 mod m. Let H :=
kerϕ as in Proposition 5.2, and let P := Pn = 〈a, b〉+. Then the rank of H ∩ P is at
most m+ 1.

Recall that Corollary 1.3 states that F2×Z admits a positive cone which is finitely
generated as a semigroup. We will show that this fact is a corollary of Proposition
5.2.

Proof of Proposition 1.3. Let n = 2, m = 6. A possible solution for the equation

2 + (n− 1)ϕ(a) ≡ 0 mod 6

is ϕ(a) = 4. Let H = kerϕ. Then by Proposition 5.2, H admits a positive cone
generated by

Y = {ab2, b−1ab3, b−2ab4, b−3ab5, b−4a, b−5ab, b6}.



12 HL SU

A computation in GAP based on the Reduced Reidemeister-Schreier method [6,
Chapter 47] and Tietze transformations [6, Chapter 48] reveals that

H ∼= F2 × Z.

Indeed, under the presentation given by Γ2 = 〈a, b : ba2b = a〉, we have that H =
〈ab2, a2b2a2, a3〉. Using the following presentation for F2 × Z, F2 × Z = 〈x, y, z :
[x, z] = [y, z] = 1〉, the isomorphism map ψ : H → F2 × Z is given by

ψ(ab2) = x, ψ(a2b2a2) = y, ψ(a3) = z.

Making use of this map and the normal form provided in [10, Section 1], we find that

ψ(Y ) = {x, yxz−1, x−1yxz−1, x−1y−1x−1yx, x−1y−1z2, x−1y−1xz2, y−1x−1yxz−1}.

�

Remark 5.8. The group Γ2 = 〈a, b : ba2b = a〉 is isomorphic to the braid group
given by B3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉 by identifying a 7→ σ1σ2, b 7→ σ2

−1.

So far, we have shown that for certain integers pairs n ≥ 2 and m ≥ 2, there exists
a homomorphism ϕ : Γn → Z/mZ which creates a subgroup H := kerϕ of index m
which admits a positive cone with at most m + 1 generators. In the sequel, we will
show that for every fixed m, it is possible to pick an infinite family of Γn’s satisfying
a certain criterion on n such that the positive cone of the subgroup H in question
has a minimal number of generators that is exactly m+ 1. To aid our proof, we will
use the following lemma.

Lemma 5.9. Let G be an left-orderable group, and let P be a positive cone of G
generated by r elements. If G has rank at least r, then r is the rank of P .

Proof. Clearly, the rank of P is at most r. Suppose P can alternatively be generated
by a finite set of of cardinality k, P = 〈x1, . . . , xk〉

+, then since G = P ⊔ P−1 ⊔ {1},
we have that G = 〈x1, . . . , xk〉. Therefore, k ≥ r. �

Proposition 5.10. Let n = m − 1 + mt, where t is a non-negative integer. Let
Γn = 〈a, b | banb = a〉. Then a 7→ 1, b 7→ 1 extends to a surjective homomorphism
ϕ : Γn → Z/mZ. The group H := kerϕ is a subgroup of Γn of index m admitting a
presentation on m+ 1 generators and m relators, H = 〈x0, . . . , xm | S〉 where

S = {xix
t+1
m xi | i = 0, . . . , m− 2} ∪ {xm−1x

t
mxm−1x

−1
m }.

We may embed the generators of H into Γn by sending xi 7→ aiba−i−1 for i =
0, . . . , m− 2, xm−1 7→ am−1b, and xm 7→ am.

Corollary 5.11. Let m,n, t and H be as defined in Proposition 5.10. If t is an odd
integer, then the abelianization of H, Hab, is isomorphic to (Z/2Z)m × Z.

Proof of Corollary 5.11. Take the presentation of H as given in Proposition 5.10, and
make a natural identification xi 7→ yi, for i = 0, . . . , m from the generators of H to the
generators of the abelianization of H . Then, Hab has a presentation with generators
{y0, . . . , ym} and relators {2yi + (t + 1)ym : 0 ≤ i ≤ m − 2} ∪ {2ym−1 + (t − 1)ym}.
Assume t is odd, and define zi := yi +

t+1
2
ym for i = 0, . . . , m − 2, and zm−1 :=

ym−1 +
t−1
2
ym. By Tietze transformations, we may rewrite the presentation of Hab as

Hab = 〈z0, . . . , zm−1, ym | z20 , . . . , z
2
m−1〉,

from which we can clearly see that Hab isomorphic to (Z/2Z)m × Z. �
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Corollary 5.12. Let m,n, t and H be defined as in Proposition 5.10. If t is an odd
integer, then H has a positive cone of rank m+ 1

Proof. By Corollary 5.11, the subgroup H has an abelianization of rank m + 1. By
Proposition 5.2, H admits a positive cone P with m+ 1 generators. By Lemma 5.9,
m+ 1 is the rank of P . �

The previous corollary shows that for any m + 1 ≥ 3, the subgroup H ≤ Γn as
defined in Proposition 5.10 has a positive cone of rank m + 1 as long as n is of the
form n = m− 1 +mt with odd integer t ≥ 1. Therefore, the family

{H ≤ Γn | n = m− 1 +mt, t ≥ 1 and is odd}

satisfies the statement of Theorem 1.2. We will now prove Proposition 5.10.

Proof of Proposition 5.10. Let φ : F2 → Γn be the canonical map. We will be using
the Reidemeister-Schreier method again, this time with choice of transversal T =
{1, a, a2, . . . , am−1}. Our transversal T is a Schreier transversal since the restriction
ϕφ : F2 → Z/mZ is also bijective as now a 7→ 1. Recall the functions γ∗, γ and
τ from Proposition 5.4. We know that H is generated by {γ(t, x) : t ∈ T, x ∈
{a, b}, γ(t, x)∗ 6= 1}.

Now,

γ(as, a)∗ =

{

1 0 ≤ s ≤ m− 2

am s = m− 1

γ(as, b)∗ =

{

asba−(s+1) 0 ≤ s ≤ m− 2

am−1b s = m− 1.

Therefore, by identifying xs := γ(as, b) with xs for s = 0, . . . , m − 2, γ(am−1, b)
with xm−1 and γ(am−1, a) with xm, the set {x0, . . . , xm} generates H .

To compute the relators of H , recall that for a word w = y1 . . . yℓ with prefixes
wi = y1 . . . yi, the function τ send w to τ(w) =

∏ℓ

i=1 γ(wi−1, yi). The first case of
relators to compute are relators of the form τ(asbanba−(s+1)) where s = 0, . . . , m− 2.
Then,

τ(asbanba−(s+1)) =

(
s−1∏

i=0

γ(ai, a)

)

γ(as, b)

(
s+n∏

i=s+1

γ(ai, a)

)

γ(as+n+1, b)

(
s∏

i=0

γ(as+n+2−i, a−1)

)

.

Observe that the first factor
∏s−1

i=0 γ(a
i, a) = 1. By replacing n with m − 1 +mt,

in the last factor, we obtain
∏s

i=0 γ(a
s+n+2−i, a−1) =

∏s

i=0 γ(a
s+1−i, a−1) = 1. We are

left with

τ(asbanba−(s+1)) = γ(as, b)

(
n+s∏

i=s+1

γ(ai, a)

)

γ(as+m(t+1), b) = xs

(
m−1+mt+s∏

i=s+1

γ(ai, a)

)

xs.

We claim by induction on t that
∏m−1+mt+s

i=s+1 γ(ai, a) = xt+1
m . The base case t = 0

gives us
m−1+s∏

i=s+1

γ(ai, a) = γ(as+1, a)γ(as+2, a) . . . γ(am−2, a)
︸ ︷︷ ︸

=1

γ(am−1, a)
︸ ︷︷ ︸

=xm

γ(am, a) . . . γ(am−1+s, a)
︸ ︷︷ ︸

=1

= xm.
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Assuming the hypothesis,

m−1+mt+s∏

i=s+1

γ(ai, a) =





m−1+m(t−1)+s
∏

i=s+1

γ(ai, a)





(
m−1+mt+s∏

i=mt+s

γ(ai, a)

)

= xtm

(
m−1+mt+s∏

i=mt+s

γ(ai, a)

)

= xtm

(
m−1+s∏

i=s

γ(ai, a)

)

= xtm γ(a
s, a)

︸ ︷︷ ︸

=1

(
m−1+s∏

s+1

γ(ai, a)

)

= xt+1
m .

Therefore, τ(asbanba−(s+1)) = xsx
t+1
m xs for 0 ≤ s ≤ m − 2. As for the s = m − 1

case,

τ(am−1banba−m) =

(
m−2∏

i=0

γ(ai, a)

)

︸ ︷︷ ︸

=1

γ(am−1, b)

(
m+n−1∏

i=m

(γ(ai, a)

)

γ(am+n, b)

(
m−1∏

i=0

γ(am+n+1−i, a−1)

)

We can simplify the last factor as follows, again replacing n by m− 1 +mt.
m−1∏

i=0

γ(am+n+1−i, a−1) =
m−1∏

i=0

γ(am−i, a−1) = γ(am−0, a−1)
︸ ︷︷ ︸

=x−1
m

m−1∏

i=1

γ(am−i, a−1)

︸ ︷︷ ︸

=1

= x−1
m .

We claim by induction on t that
∏m+n−1

i=m (γ(ai, a)) = xtm. The base case t = 0 gives
2m−2∏

i=m

(γ(ai, a)) =
m−2∏

i=0

(γ(ai, a)) = 1.

Assuming the hypothesis,
m(t+2)−2
∏

i=m

(γ(ai, a)) =





m(t+1)−2
∏

i=m

(γ(ai, a))









m(t+2)−2
∏

i=m(t+1)−1

(γ(ai, a))





= xt−1
m

(
2m−2∏

i=m−1

(γ(ai, a))

)

= xt−1
m · γ(am−1, a)

(
2m−2∏

i=m

(γ(ai, a))

)

= xt−1
m · xm

(
m−2∏

i=0

(γ(ai, a))

)

︸ ︷︷ ︸

=1

.

Therefore τ(am−1banba−m) = γ(am−1, b)xtmγ(m+ n, b)x−1
m = xm−1x

t
mxm−1x

−1
m . This

finishes the proof for the presentation of H . �
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6. No Acylindrically Hyperbolic Group Admits a Quasi-geodesic

Regular Positive Cone

The goal of this section is to prove Theorem 1.4. We will do so by showing that
for every acylindrically hyperbolic group G (see [11] for an in-depth discussion) and
for every quasi-geodesic language L representing a subset P of G, there is a subgroup
isomorphic to the free group on two elements which is language-convex with respect
to L in G. If P is a positive cone, this creates a contradiction to Theorem 2.4.

6.1. Acylindrically hyperbolic groups. A group G has an acylindrical action on
a metric space X with distance d if for all ǫ > 0, there exists non-negative constants
R and N , both depending on ǫ, such that for every two points a, b ∈ X satisfying
d(a, b) ≥ R, the set of elements g ∈ G satisfying

d(a, ga) ≤ ǫ and d(b, gb) ≤ ǫ

is at most N . If a group admits a non-elementary, acylindrical, isometric action on
a δ-hyperbolic space (a space where all geodesic triangles have the property that the
union of any two sides is contained in a δ-neighbourhood of the third side), then the
group is called acylindrically hyperbolic. Some examples include the mapping class
groups of closed, oriented surfaces, groups of outer automorphism of free groups, and
free products.

6.2. Quasi-geodesic positive cones. Let λ and ǫ be real constants such that λ ≥ 1
and ǫ ≥ 0. Let I be an interval of the real line. Let X be a metric space with metric
d. A (λ, ǫ)-quasi-geodesic is a map γ : I → X such that for all a, b ∈ I, we have the
inequalities

|a− b|

λ
− ǫ ≤ d(γ(a), γ(b)) ≤ λ|a− b|+ ǫ.

Recall from Section 4.1 that words induce paths in the corresponding Cayley graph
Γ. These paths may be viewed naturally as continuous maps. A (λ, ǫ)-quasi-geodesic
word w is a word which induces a (λ, ǫ)-quasi-geodesic path γ : [0, n] → Γ where n is
the length of w.

Definition 6.1 (Quasi-geodesic positive cone language). Let G = 〈X〉, where X is
finite and closed under formal inversion, X = X−1. Let P be any positive cone for
G. We say that L is a quasi-geodesic positive cone language if L ⊂ X∗ and L satisfies
the following two conditions.

(1) Under the evaluation map π : X∗ → G we have that π(L) = P .
(2) There exists some constants λ and ǫ with λ ≥ 1 and ǫ ≥ 0 for which every

word w ∈ L is a (λ, ǫ)-quasi-geodesic word.

Theorem 1.4 says that if G is a finitely generated, acylindrically hyperbolic group
which admits a quasi-geodesic positive cone language L, then L cannot be accepted
by any finite state automaton. The following lemma concerns the existence of a
hyperbolically embedded subgroup (see [2, Section 2.1] for a rather long definition).
It is not strictly necessary to know the definition of hyperbolically embedded to follow
the next results.

Lemma 6.2. If G is an acylindrically hyperbolic group, then there exists a hyper-
bolically embedded subgroup H of G that is isomorphic to F2, the free group of two
elements.
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Proof. Osin proved in [11, Theorem 1.2] that G being acylindrically hyperbolic is
equivalent to containing a proper infinite hyperbolically embedded subgroup. All we
need for this proof is the result of Dahmani, Guirardel and Osin in [2, Section 6.2]
which is dependent on the existence of a proper infinite hyperbolically embedded
subgroup in G. The result states that if G contains a proper infinite hyperbolically
embedded subgroup, then for any n ∈ N there exists a subgroup H ≤ G such that H
is hyperbolically embedded in G and H ∼= Fn ×N , where Fn is a free group of rank
n and N is the maximal finite normal subgroup of G. In particular, there exists a
hyperbolically embedded subgroup H ≤ G such that H ∼= F2. �

Lemma 6.3. If H is a hyperbolically embedded subgroup of an acylindrically hyper-
bolic group G, then H is language-convex with respect to every quasi-geodesic language
L.

Definition 6.4 (Morse property). A subspace Y of a metric space X is said to be
Morse if for every λ ≥ 1 and ǫ ≥ 0, there exists a non-negative constant R depending
on λ and ǫ with the property that all (λ, ǫ)-quasi-geodesics in X whose endpoints are
in Y are contained in the neighbourhood of radius R around Y .

Proof of lemma 6.3. Our lemma is largely a consequence of Sisto’s theorem in [13,
Theorem 2], which says the following. Let G be a finitely generated group and let
H be a finitely generated subgroup that is hyperbolically embedded. Let Γ be the
Cayley graph of G with respect to the finite generating set X such that L ⊆ X∗. The
embedding of H in Γ has the Morse property.

Thus, there exists an R = R(λ, ǫ) such that for every (λ, ǫ)-quasi-geodesic word u
with the property that ū ∈ H , the induced path lies within R of the embedding of
H . In particular, this shows that H is language-convex with respect to L. �

Corollary 6.5. Let G be a finitely generated acylindrically hyperbolic group with
positive cone P . If there exists a regular quasi-geodesic positive cone language L
representing P , then there exists a regular positive cone language for F2.

Proof. By Lemma 6.2, we may assume there exists a hyperbolically embedded sub-
group H which is isomorphic to F2. The subgroup H is language-convex with respect
to L by Lemma 6.3, which means by Proposition 4.2 that H ∩P is a regular positive
cone for H ∼= F2. �

However, Hermiller and Šunić’s theorem (Theorem 2.4) states that there is no
regular language representing a positive cone of F2, contradicting the assumption of
Corollary 6.5. This proves Theorem 1.4.



LANGUAGE CONVEXITY 17

References

[1] D. Calegari. Problems in foliations and laminations of 3-manifolds. Proc. Symp. Pure Math.

71, 297-335, 2003.
[2] F. Dahmani, V. Guirardel, and D. Osin. Hyperbolically embedded subgroups and rotating

families in groups acting on hyperbolic spaces. Memoirs Amer. Math. Soc. 245 no. 1156, 2017.
[3] B. Deroin, A. Navas, and C. Rivas. Groups, Orders, and Dynamics. ArXiv e-prints, 2014.
[4] D. B. A. Epstein, M. S. Paterson, J. W. Cannon, D. F. Holt, S. V. Levy, and W. P. Thurston.

Word Processing in Groups. A. K. Peters, Ltd., Natick, MA, USA, 1992.
[5] B. Farb. Some problems on mapping class groups and moduli space. Proc. Symp. Pure and

Applied Math., Vol. 74, pp. 11-55, June 2006.
[6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.10.0, 2018.
[7] S. M. Hermiller and Z. Šunić. No positive cone in a free product is regular. IJAC, 27:1113–1120,

2017.
[8] R. C. Lyndon and P. E. Schupp. Combinatorial Group Theory. Springer-Verlag Berlin Heidel-

berg, 2001.
[9] K. Mann and C. Rivas. Group orderings, dynamics and rigidity. Ann. Inst. Fourier, 68:1399–

1445, 2018.
[10] A. Navas. A remarkable family of left-ordered groups: Central extensions of Hecke groups.

Journal of Algebra, 328:31–42, 2011.
[11] D. Osin. Acylindrically hyperbolic groups. Trans. Amer. Math. Soc. 368, 851-888, 2016.
[12] C. Rivas. Personal Communication.
[13] A. Sisto. Quasi-convexity of hyperbolically embedded subgroups. Mathematische Zeitschrift

283, 649-658, 2016.
[14] Z. Sunic. Explicit left orders on free groups extending the lexicographic order on free monoids.

Comptes Rendus Mathematique 351: 507–511, 2013.

Dpto. de Matemáticas, Universidad Autónoma de Madrid and Instituto de Cien-

cias Matemáticas, CSIC-UAM-UC3M-UCM.

E-mail address : homeowmorphism@gmail.com


	1. Introduction
	2. Background
	2.1. Left-orders and positive cones
	2.2. Regular languages

	3. Pairs of Fellow-Travelling Words Form A Regular Language
	4. Language Convex Subgroups
	4.1. Word-induced paths

	5. Constructing an infinite family of groups with k-generated positive cones
	6. No Acylindrically Hyperbolic Group Admits a Quasi-geodesic Regular Positive Cone
	6.1. Acylindrically hyperbolic groups
	6.2. Quasi-geodesic positive cones

	References

