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Abstract

This paper gives a general algorithm for computing the character table of any Renner monoid Hecke
algebra, by adapting and generalizing techniques of Solomon used to study the rook monoid. The charac-
ter table of the Hecke algebra of the rook monoid (i.e., the Cartan type A Renner monoid) was computed
earlier by Dieng, Halverson, and Poladian using different methods. Our approach uses analogues of
so-called A- and B-matrices of Solomon. In addition to the algorithm, we give explicit combinatorial
formulas for the A- and B-matrices in Cartan type C and use them to obtain an explicit description of
the character table for the type C Renner monoid Hecke algebra.

Keywords: Renner monoid; Hecke algebra; character table; representation; Weyl group; symplectic rook
monoid.
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1 Introduction

1.1 Background

This paper concerns the character tables of Renner monoids and Hecke algebras associated to finite reductive
algebraic monoids. Reductive algebraic groups have long been a centerpiece of mathematics, and the related
study of reductive algebraic monoids has become a fully-fledged subject of its own. The subject was created
and developed in a series of papers by Renner, Putcha, and their collaborators (see [17] and its references),
and has since been studied by Solomon [19, 20], Halverson [7], Okniński [14], and others. The Braverman-
Kazhdan program [1, 13] has sparked renewed interest in reductive monoids: they conjecturally admit a
theory of harmonic analysis suitable for integral representations of Langlands L-functions.

An algebraic monoid over an algebraically closed field K is a Zariski closed submonoid of Matn(K), the
monoid of n×n matrices with entries in K. A reductive monoid is an algebraic monoid whose group of units
is an algebraic group; equivalently, it is an algebraic monoid that is regular as a semigroup. The structure
of reductive monoids mirrors that of reductive groups in many ways, and a good portion of the research in
the former involves connections and analogues to the latter.

In particular, the Renner monoid of a reductive monoid plays the same role as the Weyl group of a
reductive group, and it contains the Weyl group as its group of units. One can similarly define the Hecke
algebra of a Renner monoid, and by the Putcha-Tits’ Deformation Theorem [16, Theorem 4.1], this is
abstractly isomorphic to the monoid algebra of the Renner monoid itself.

A reductive monoid over a finite field is defined to be the set of Frobenius fixed points of a reductive
monoid over the algebraic closure. Like reductive groups, much of the reductive monoid structure still holds
in the finite case: the Renner monoid, Weyl group, Borel subgroup, cross-sectional lattice, and Bruhat-
Renner decomposition all remain intact after passing to the Frobenius fixed points. The finite Hecke algebra
is again a (trivial) deformation of the group algebra of the Renner monoid, and in a sense the Hecke algebra
is a “link” between the reductive group and its Renner monoid. Representations of the Renner monoid
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correspond to those of its Hecke algebra, and a monoid version of the Borel-Matsumoto theorem [11] tells
us that these in turn correspond to certain representations of the associated reductive monoid.

In this paper, we study the character theory of finite Renner monoids and their Hecke algebras. Much
work has been done in Cartan type A. Here, the Renner monoid is the rook monoid Rn, the set of all
partial permutation matrices ({0, 1}-matrices with at most one 1 in each row and column) of size n [20].
Munn [12] computed the character table of the rook monoid. Solomon [21] then reformulated this in terms
of A- and B-matrices, which encode the Renner monoid character table in terms of character tables of
certain subsemigroups. Steinberg [22] and Li, Li, and Cao [9] computed the character table for any Renner
monoid. Dieng, Halverson, and Poladian [3] computed the character table of the rook monoid Hecke algebra,
computing Frobenius and Murnaghan-Nakayama rules. Outside of Cartan type A, few results on the theory
of Renner monoid Hecke algebras are known. In this paper, we prove a general algorithm for computing the
character table of any generic Renner monoid Hecke algebra, originally defined by Godelle [5]. In the case of
the type Cn Renner monoid, the symplectic Renner monoid RSp2n, we turn this into specific formulas. We
describe RSp2n further in Section 2.4. To explain our results more precisely, we recall Solomon’s approach
in type A.

1.2 Solomon’s A- and B-Matrices

Let R be a Renner monoid, W be the Weyl group that is its group of units, and Λ its cross-sectional lattice
of idempotents. Then R = 〈W,Λ〉, and the representation theory of R is governed by the representation
theory of certain subsemigroups We that are groups with identity e ∈ Λ. In particular, the irreducible
representations ρ of R correspond bijectively to (and restrict to) the representations ρ of We, e ∈ Λ.

Let M be the character table of R, and let Y be the block diagonal matrix

Y :=













Hn . . . 0

Hn−1 . . .
. . .

. . . H1

0 . . . H0













,

where the Hi are the character tables of the We, e ∈ Λ. M and Y are both invertible, so we can write
M = AY = YB for invertible matrices A and B. Solomon first introduced these matrices in [21] in type A

and showed that they satisfy natural combinatorial formulas [21, Theorems 3.5, 3.11]. Solomon’s use of these
matrices as a bridge between a Renner monoid and certain important subsemigroups is instrumental to our
results.

1.3 Main Results of the Paper

Our results are divided into three parts. First, we prove a simple algorithm for computing the character table
of a Renner monoid Hecke algebra, using the q-analogue of the Solomon decomposition: Mq = AqYq = YqBq.
Similarly to the group case, we let

Yq :=













H∗
n . . . 0

H∗
n−1 . . .

. . .

. . . H∗
1

0 . . . H∗
0













,

where the H∗
i are the character tables of the group Hecke algebras H(We), e ∈ Λ. The B-matrix of a

Renner monoid encodes certain restriction multiplicities, and as a result we show that B and Bq are the
same (Proposition 3.1.1). Thus, the character table Mq can be computed from the knowledge of M and Yq,
both of which are known for all types.
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Second, we echo Solomon and give combinatorial descriptions of the A- and B-matrices for the Renner
monoid RSp2n. Both matrices are block upper triangular, with identity blocks on the diagonal, and can be
described using partition combinatorics. The A-matrix entries are products of binomial coefficients, while
the B-matrix entries are given as a sum of Littlewood-Richardson coefficients arising from a Pieri rule.

Finally, we use Solomon’s method to give combinatorial formulas for the Hecke algebra character table of
RSp2n. Starkey [4, Theorem 9.2.11] gave a combinatorial rule for the type A group Hecke algebra character
table, which was generalized by Shoji [18] to Ariki-Koike algebras. We show that these formulas result in a
similar formula for the Hecke algebra character table of RSp2n.

1.4 Outline

In Section 2, we give preliminaries about Renner monoids and their characters. We define the rook monoid
and symplectic Renner monoid, give Solomon’s results on the A- and B-matrices of type A, and show that
the B-matrix encodes multiplicities of certain restrictions.

In Section 3, we develop these results for the Hecke algebra. In Section 3.1, we define the Hecke algebra
character table for a general Renner monoid by defining “standard elements”. We then prove that the B-
matrix for the Hecke algebra is the same as for the Renner monoid, which gives an algorithm to compute
the Hecke algebra character table (Theorem 3.1.4). In Section 3.2, we then show that the Hecke algebra
character table can be used to compute character values at nonstandard elements.

In Section 4, we shift focus over to the symplectic Renner monoid RSp2n, and compute the A-matrix
(Theorem 4.2.4). The rows and columns of this matrix are indexed by either partitions or pairs of partitions;
our formula involves binomial coefficients made from partition data. This echoes Solomon’s formula for the
rook monoid A-matrix, which is also in terms of similar binomial coefficients.

In Section 5, we give a Pieri rule for type C, which allows us to compute the B-matrix for RSp2n

(Corollary 5.2.4). Our formula involves Littlewood-Richardson coefficients. Note that for Rn, the A-matrix
is a {0, 1}-matrix, while for RSp2n in general, it isn’t. We close that section with a formula of group characters
analogous to Solomon’s type-A formula in [21, Corollary 3.14]. The important feature of the formula is that
it is entirely a statement involving group characters, but a proof without monoids is not obvious.

Finally, in Section 6, we use our preceding work to compute character tables for the Hecke algebras of
Rn and RSp2n. In Section 6.1, we extend character table formulas by Starkey and Shoji to Renner monoid
Hecke algebras (see Theorem 6.1.1). Then in the next subsection, we perform some example computations,
including the Hecke algebra character table of RSp4.

In Section 7, we discuss some open questions suggested by this research. Then in the appendix, we
compute the A- and B-matrices, and thus the character table, for RSp6.

Acknowledgements: This research was primarily conducted at the 2018 University of Minnesota-Twin
Cities REU in combinatorics and algebra. Our research was supported by NSF RTG grant DMS-1745638.
We would like to thank Benjamin Brubaker for his help, support, and mentorship throughout the project.
We would also like to thank the anonymous referee for a careful reading of the paper and for suggestions
that lead to multiple improvements in the exposition.

2 Preliminaries on Renner monoids

In this section, we set up notation and cite results from other papers about the structure of Renner monoids
and their characters. A particular focus for us is the symplectic Renner monoid RSp2n, which we define in
Section 2.4. Our main tool in this paper is the analogue of Solomon’s A- and B-matrices, which are matrices
which encode a Renner monoid character table in terms of the (group) character tables of certain subgroups
We; we define these matrices in Section 2.6.

2.1 Renner Monoids

We lay out some important definitions relating to the Renner monoid. See [9] for more details.
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Let M be a finite reductive monoid, let G be its group of units, and let R be its Renner monoid. Let W
be the Weyl group of G, with simple reflections S, and let Λ be the cross-section lattice of idempotents of
R. Every idempotent of R is conjugate to a unique element of Λ. For e ∈ Λ, define

W(e) = {w ∈ W | we = ew}, W∗(e) = {w ∈ W | we = ew = e},

W∗(e) = W(e)/W∗(e).

In other words, W∗(e) is the parabolic subgroup of W generated by the set of simple reflections s ∈ S where
es = se 6= e. We have W(e) = W∗(e) ×W∗(e).

We can view W∗(e) as sitting in R: eW∗(e)e is a subsemigroup of R that is a group with identity e, and
thus is isomorphic as a group to W∗(e). We set We := eW∗(e)e for convenience. Note that

We = eW∗(e)e = eW∗(e) = W∗(e)e = eW(e)e = eW(e) = W(e)e,

since eW∗(e) = W∗(e)e = e.
For e, f ∈ Λ, and for any w ∈ W, the cosets W(e)w, wW(e),W∗(e)w,wW∗(e), and W(e)wW(f) have

unique elements of minimal length. Let the sets of these minimal length elements be denoted Red(e, ·),
Red(·, e), Red∗(e, ·), Red∗(·, e), Red(e, f), respectively. So for example, if w ∈ Red(e, ·), then if ew = w1ew2,
we must have l(w2) ≥ l(w), and if w ∈ Red∗(e, ·), then if ew = w1ew2, we must have l(w1)+ l(w2) ≥ l(w).

Proposition 2.1.1. [5, Proposition 1.11] Let r ∈ R. Then,

• There exists a unique triple (w1, e,w2) such that r = w1ew2 and e ∈ Λ, w1 ∈ Red∗(·, e), w2 ∈ Red(e, ·).

• There exists a unique triple (w ′
1, e,w

′
2) (with the same e) such that r = w ′

1ew
′
2 and w1 ∈ Red(·, e), w2 ∈

Red∗(e, ·).

In particular, to every r ∈ R we can associate a unique idempotent e ∈ Λ. We also obtain a length
function: l(r) = l(w1) + l(w2) = l(w ′

1) + l(w ′
2).

2.2 Character Theory of Renner Monoids

In this section, we summarize some facts from Li, Li, and Cao’s work on representations of Renner monoids [9]
that are salient to us.

Let χ be an irreducible character of R. Then χ is constant on the elements of the quotient R/[R, R], where
[R, R] is the submonoid of commutators of R. We will call elements of R/[R, R] the Munn classes of R, so we
can say that χ is determined by its values on representatives of the Munn classes. The character table of R
is square, with both rows and columns indexed by the set

Q(R) =
⊔

e∈Λ

P(We), where P(We) indexes the representations of We.

Given λ ∈ P(We) ⊂ Q(R), the Munn class corresponding to λ can be represented by rλ = ewλe, where
wλ is a representative for the conjugacy class of We corresponding to λ (which we also denote Wλ). The
character χλ can be written as a sum of character values of χλ, where χλ is the character ofWe corresponding
to λ [9, Theorem 4.1]. In particular, if λ ∈ P(W), then χ(w) = χ(w) for all w ∈ W.

In fact, also by [9, Theorem 4.1], we have:

Proposition 2.2.1. Let M := M(R) be the character table of R, let λ ∈ P(We), µ ∈ P(Wf). Then if e > f,
χλ(rµ) = 0, and if e = f, χλ(rµ) = χλ(wµ).

We pick an order of Q once and for all such that if we index the rows and columns of M with this
order, then if λ ∈ P(We), µ ∈ P(Wf) with e < f then the row corresponding to λ is higher than the row
corresponding to µ.
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2.3 Injective Partial Transformations and the Rook Monoid

The rook monoid Rn is the monoid of injective partial transformations of n = {1, 2, . . . , n}. It is the Renner
monoid of type An−1. We follow notation in [8, 9].

An injective partial transformation of n is a bijective map σ : I(σ) → J(σ) where I(σ), J(σ) ⊆ n. When
I(σ) = n, σ is a permutation of n.

We compose injective partial transformations (from the left) by viewing them as maps n ∪ {0} → n ∪ {0}
where every element of n ∪ {0} not in I(σ) maps to 0. We can also view an injective partial transformations
as a partial permutation matrix i.e. an n×n matrix with at most one 1 per row and column, with all other
entries 0. With this identification, composition of functions corresponds to matrix multiplication.

Set I◦(σ) = {i ∈ n | σk(i) 6= 0 for all k ≥ 0}, let σ◦ be the partial injective transformation

σ◦(i) :=

{
σ(i), if i ∈ I◦(σ)

0, else,

and let σ◦ = σ− σ◦, where the subtraction is subtraction of matrices. Then, σ◦ is a permutation on the set
I◦(σ), and σ◦ is nilpotent.

Given K ⊆ n with |K| = t, define the idempotent eK to be the identity transformation on K. Let µK

(resp. µ−
K) be a bijective, order-preserving map from t to K (resp. from K to t). These elements can be seen

as rank |K| “inverses”: µKµ
−
K = eK and µ−

KµK = et. Given σ ∈ W, define σK := µ−
KσµK; σK permutes the

entries of t and is 0 elsewhere, so we can view it as a permutation in St. (Note that our permutations act
on the left, while in [8], they act on the right, so their definition of σK is the reverse of ours).

The group of units of Rn is the Weyl group W = Sn. The cross-sectional lattice Λ is {et, 0 ≤ t ≤ n}. The
groups Wet

are St, where S0 is taken to be the trivial group. The set Pt := P(St) is the set of partitions of
t, and therefore, Q(Rn) = {λ | λ ⊢ t, 0 ≤ t ≤ n}.

2.4 The Symplectic Renner Monoid

The Renner monoid of type Cn is called either the symplectic Renner monoid or the symplectic rook monoid.
It is the set of symplectic injective partial transformations, and is denoted RSp2n. We follow [8] for its
definition.

Let m = 2n, and define the bar involution on m to be given by i = m+ 1− i. We say that a subset P of
m is admissible if P = m or if for all i ∈ P, i /∈ P. We say that a bijective transformation on m is symplectic
if it sends admissible sets to admissible sets, and we say that an injective partial transformation on m is
symplectic if it is bijective and symplectic or if both its domain and range are proper admissible sets. In
particular, a cycle is symplectic if and only if the set of its entries is admissible. We define:

WSp2n = {symplectic bijective transformations on m},

RSp2n = {symplectic injective partial transformations on m}.

If σ ∈ RSp2n and K is an admissible set, the elements µK, µ
−
K , and σK are all symplectic injective partial

transformations, so are all contained in RSp2n. For any 0 ≤ t ≤ 2n, we define the set

C(t, σ) := {K ⊆ I◦(σ) | K admissible, |K| = t, σ(K) = K}.

Then C(t, σ) represents all of the admissible subsets of size t which consist of all the entries some cycles of
the permutation σ◦. σ acts on elements of C(t, σ) as permutations in St, so we also let

Sµ,σ = {K ∈ C(t, σ) | |µ| = t and σK has cycle type µ}.

If σ ∈ Rn, we view n as a subset of m by inclusion, and since every subset of n is admissible, we get

C(t, σ) = {K ⊆ I◦(σ) | |K| = t, σ(K) = K}.
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These definitions will be important in Section 4.
The group of units of RSp2n is the Weyl group W = WSp2n. We give a matrix description of this monoid

in Section 2.5. The cross-sectional lattice Λ is the set {et, 0 ≤ t ≤ n} ∪ {1}. The groups We, e ∈ Λ, e 6= 1

are the groups St, 0 ≤ t ≤ n. Therefore,

Q(RSp2n) = SPn ⊔

n
⋃

t=0

Pt,

where SPn := P(WSp2n) is the set of double partitions of total size n [4, Theorem 5.5.6].
Our main tool when working with RSp2n will be the character formula of Li, Li, and Cao:

Proposition 2.4.1. [8, Theorem 4.2] For all σ ∈ RSp2n, if χ is a character of RSp2n such that χ is a
character of St, then

χ(σ) =
∑

K∈C(t,σ)

χ(σK).

Note that RSp2n is also the Renner monoid of type Bn by [10, Theorem 12].

2.5 Matrix Description for the Symplectic Renner Monoid

Li, Li, and Cao show in [8, Proposition 2.1] that

RSp2n = {A ∈ R2n | APAt = AtPA = 0} ∪WSp2n

where

P =

(

0 Jn
−Jn 0

)

, Jn =













0 . . . 1
. . . 1

. . .
1 . . .

1 . . . 0













.

Jn is the n × n anti-diagonal matrix of 1’s, and we view R2n as a submonoid of Mat2n. WSp2n ⊂ R2n,
so WSp2n is a subgroup of S2n. From this, we establish:

Proposition 2.5.1.

RSp2n
∼= {A ∈ R2n | AtJ2nA = AJ2nA

t = 0 or J2n}

Proof. We first show that

{A ∈ R2n | AtPA = APAt = 0} = {A ∈ R2n | AtJ2nA = AJ2nA
t = 0}

Indeed, note that J2nA
t = (bij) is still an element of R2n by nature of having at most one entry in every

row and column that is equal to 1, so that the condition that

AJ2nA
t = 0 ⇐⇒ ∀i, j, (AJ2nA

t)ij = cij =

2n∑

k=1

aikbkj = 0

means all the aikbkj are 0 (since all summands must be non-negative in the evaluation of cij). Clearly, if
dij := (APAt)ij, then cij = ±dij, so that cij = 0 ⇐⇒ dij = 0. Thus AJ2nA

t = 0 ⇐⇒ APAt = 0, and the
non-full rank components of these sets coincide.

It suffices to show that

WSp2n = {A ∈ R2n | AtJ2nA = AJ2nA
t = J2n}

For A ∈ WSp2n, we have that
A(k) = ik =⇒ A(k) = ik
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for if not, then using our first definition of the symplectic rook monoid, {k,A−1(ik)} would be an admissible
set mapped to a non-admissible set. Yet note that

AtJ2nA = AJ2nA
t = J2n ⇐⇒ AJ2n = J2nA ⇐⇒ J2nAJ2n = A

having used the fact that J−1
2n = J2n and At = A−1 which follows because A ∈ W must be full rank and

hence orthogonal. However, J2nAJ2n = A is exactly the condition that A(k) = ik ⇐⇒ A(k) = ik, as J2n
is the permutation corresponding to (1 1)(2 2) · · · (n n) and hence conjugating a permutation matrix by J2n

makes it so that k 7→ A(k). Thus,

A = J2nAJ2n ⇐⇒ A(k) = A(k) ⇐⇒ A(k) = A(k)

so every A ∈ WSp2n satisfies A = J2nAJ2n. Similarly, matrices A ∈ R2n satisfying A = J2nAJ2n are full
rank and map admissible sets to admissible sets. For if not, then there would exist

k, s 6= k s.t. A(k) = ik, A(s) = ik

contradicting the condition that J2nAJ2n = A.

Remark 2.5.2. Li, Li, and Cao [8, Corollary 2.3] suggest an alternate equivalent description of the sym-
plectic rook monoid:

RSp2n = {A ∈ R2n | APAt = AtPA = 0 or P}.

Yet note that

WSp2 =

{(
1 0

0 1

)

,

(

0 1

1 0

)}
,

but

A =

(

0 1

1 0

)

, P =

(

0 1

−1 0

)

=⇒ APAt =

(

0 −1

1 0

)

6= 0 or P,

which does not match the original definition. Our Proposition 2.5.1 is intended as a fix for this minor error.
Note that this does not pose a significant problem for that paper, as the authors mostly use their definition
in terms of admissible sets.

2.6 Decomposing Character Tables of Finite Inverse Semigroups

Steinberg [22] tells us that the character table M of any finite inverse semigroup is invertible. Therefore, we
can define the Solomon A- and B-matrices:

Definition 2.6.1. Let M := M(R) be the character table of the Renner monoid R. Let Y := Y(R) be the
block diagonal matrix with blocks M(We) for all e ∈ Λ, with rows and columns indexed the same way as
M. Then we define the invertible matrices A and B as

M = AY = YB.

In type A, Solomon showed that these matrices are combinatorially interesting. For any partition λ, let
λ(i) denote the number of parts of λ of size i. For two partitions λ, µ, let

(

λ

µ

)

:=
∏

i≥1

(

λ(i)
µ(i)

)

.

Proposition 2.6.2. [21, Propositions 3.5, 3.11] Let R = Rn, λ ∈ Pl, µ ∈ Pm. Then

Aλ,µ =

(

λ

µ

)

, Bλ,µ =

{
1, λ ⊇ µ, and λ− µ is a horizontal strip

0, otherwise.
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We will obtain similar (although more complicated) combinatorial descriptions for the A- and B-matrices
in the case where R = RSp2n (Theorem 4.2.4, Corollary 5.2.4).

The B-matrix has a representation theoretic interpretation, due in type A to Solomon in the proof
of [21, Proposition 3.11]:

Proposition 2.6.3. Let R be a Renner monoid, with B-matrix B. Then

Bλ,µ = dimHom
(

ResRWλ
χµ, χλ

)

,

the multiplicity of χλ in ResRWλ
χµ.

Proof. Since M = YB, for any ν ∈ Q(R),

χµ(rν) =
∑

λ∈Q(R)

YνλBλµ =
∑

λ∈P(Wν)

χλ(wν)Bλµ.

On the other hand,

χµ(rν) =
(

ResRWν
χµ

)

(wν) =
∑

λ∈P(Wν)

χλ(wν)dimHom
(

ResRWν
χµ, χλ

)

.

Now, by linear independence of characters, and noting that Wν = Wλ, the result follows.

Our formulas for the A- and B-matrices for RSP2n in Sections 4 and 5 give two combinatorial interpre-
tations of the RSp2n character table.

3 Characters of Hecke Algebras

In this section, we give a procedure to compute the Renner monoid Hecke algebra character table for any
Renner monoid R. This method uses the B-matrix of R, as well as the character tables of the We. Dieng,
Halverson, and Poladian [3] have computed the character table for the Renner monoid Hecke algebra in Type
A. In Section 6, we do the same for type C.

Our method for computing the character tables for Renner monoids has been the Solomon decomposition

M = AY = YB.

In this section, we consider the Hecke algebra version of this decomposition,

Mq = YqBq.

B encodes multiplicities of restrictions, which we will use to show that Bq = B. Since M and Yq are known
for all types, we can compute B, and thus the character table of any Renner monoid Hecke algebra by a
simple matrix multiplication.

In Section 3.1, we prove the formula Mq = YqB, and in Section 3.2, we show that the character values of
every element of the Hecke algebra can be given as a linear combination of the values on so called “standard
elements”. Later on, in Section 6, we use our method to explicitly compute the character table of H(RSp4).

3.1 Character Values on Standard Elements of H(R): The B-Matrix

Let R be a Renner monoid, and let H(R) be the (one-parameter) generic Hecke algebra of R in the sense
of [5, Definition 1.30]. In particular, for some finite algebraic extension K of C(q), H(R) is the K-algebra
with basis {Tr | r ∈ R} and relations

TxTr =






Txr, if x ∈ S, l(xr) = l(r) + 1

qTr, if x ∈ S, l(xr) = l(r)

(q− 1)Tr + qTxr, if x ∈ S, l(xr) = l(r) − 1

ql(r)−l(xr)Txr, if x ∈ Λ.
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Since We is isomorphic (as a group) to W∗(e), H(We) includes into H(R) via Tw 7→ Tew. Clearly this is
not the only possible inclusion, as Tw 7→ hTewh−1 is also an inclusion for any invertible element h ∈ H(R).

By the Putcha-Tits deformation theorem [20, p. 347], H(R) has the same representation theory as R.
Every irreducible character χ of R corresponds to an irreducible character of H(R), and we write χ∗ for this
character. Thus we see that the B-matrices of the Renner monoid and Hecke algebra are equal:

Proposition 3.1.1. Bq = B, the B-matrix of R.

Proof. By Proposition 2.6.3, Bλ,µ = dimHom
(

ResRWλ
χµ, χλ

)

. Note that the proof of Proposition 2.6.3
applies also to H(R), so

(Bq)λ,µ = dimHom
(

Res
H(R)

H(Wλ)
χ∗
µ, χ

∗
λ

)

Since H(R) ∼= K[R], these multiplicities are the same, so

Bλ,µ = dimHom
(

ResRWλ
χµ, χλ

)

= dimHom
(

Res
H(R)

H(Wλ)
χ∗
µ, χ

∗
λ

)

= (Bq)λ,µ.

For µ ∈ Q, let χ∗
µ be the character of the group Hecke algebra H(We) corresponding to µ.

Corollary 3.1.2. If h ∈ H(We) ⊂ H(R), then

χ∗
λ(h) = Res

H(R)

H(We)
χ∗(h) =

∑

µ∈P(We)

Bµλχ
∗
µ(h).

The rows of the character table for R are indexed by Munn classes; we want to create a Hecke algebra
character table indexed by these same Munn classes. We do this by choosing row representatives, which
we call “standard elements”, such that the Hecke algebra character table becomes the monoid character
table under the specialization q 7→ 1. Moreover, we want these representatives to be of the form Tλ := Trλ ,
where rλ ∈ R is an element of the Munn class λ. This construction is done for group Hecke algebras
in [4, Section 8.2].

Let λ ∈ Q(R). Notice that from Corollary 3.1.2, Tλ ∈ H(R) will be a standard element if it is a standard
element in H(Wλ). By [4, Definition 8.2.9], it is sufficient to take rλ = ewe, where w ∈ Wλ = We is any
element of minimal length in its conjugacy class (because Wλ is a parabolic subgroup of W, this element
will indeed be in Wλ).

We summarize the above work as follows:

Definition 3.1.3. Let R be a Renner monoid with Hecke algebra H(R). Then the character table of H(R)

is the matrix Mq, where for λ, µ ∈ Q(R),

(Mq)λµ = χ∗
µ(Tλ).

Theorem 3.1.4. Let Yq be the block diagonal matrix with blocks M(H(We)) for all e ∈ Λ, and let B be the
B-matrix of R. Then

Mq = YqB.

Theorem 3.1.4 gives an algorithm to compute the Hecke algebra character table for any Renner monoid.
The character table for the group Hecke algebra has been computed for every type, with important work
done by Starkey, Pfeiffer, Geck, and others [4, §9-11]; so Yq can be obtained. In addition, Li, Li, and Cao [9]
have computed the character table for any Renner monoid, and so the formula B = Y−1M can be used to
work backwards and obtain the B-matrix in the cases where an explicit formula is not already known.

The next subsection shows that we can compute every character value of H(R) from the character table,
and the remaining sections are devoted to enacting our program for the type C Renner monoid RSp2n.
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3.2 Non-Standard Elements

In this section, we prove that Definition 3.1.3 is truly a character table, in the sense that we can obtain the
character values on any element of H by taking linear combinations of the rows of the character table.

In other words, we prove the following:

Theorem 3.2.1. Let r ∈ R, and let χ∗ be an irreducible character of H(R). Then χ∗(Tr) can be expressed
as a linear combination

χ∗(Tr) =
∑

λ∈Q(R)

cr,λχ
∗(Tλ)

of the character values χ∗(Tλ), where the coefficients cr,λ do not depend on χ.

Dieng, Halverson, and Poladian used a recursive argument to prove this result for type A in [3], and we
use a similar argument here. For h, h ′ ∈ H(R), we say that h and h ′ are equivalent and write h ≡ h ′ if h
and h ′ become equal in the quotient H(R)/[H(R),H(R)]. Since characters are trace functions, h ≡ h ′ means
that χ(h) = χ(h ′) for all characters of H(R).

Then, Theorem 3.2.1 follows from the following result.

Proposition 3.2.2. Every basis element Tr of H is equivalent to a linear combination of standard elements.

We will prove this proposition with the help of a lemma.

Lemma 3.2.3. Let r = w1ew2 ∈ R, where w1, w2 ∈ W, e ∈ Λ. Then Tr is equivalent to a linear combination
of elements of the form Tewe, w ∈ W.

Proof. We have
Tr = Tw1ew2

= Tw1
TeTw2

≡ TeTw2
Tw1

=
∑

w∈W

awTew,

where the aw ∈ K arise from the Hecke algebra relations from multiplying Tw2
and Tw1

.
Now,

Tew = Teew = ql(ew)−l(w)TeTeTw ≡ ql(ew)−l(w)TeTwTe = ql(ew)−l(ewe)Tewe,

so
Tr ≡

∑

w∈W

awql(ew)−l(ewe)Tewe.

Proof of Proposition 3.2.2. If r = ewe for w ∈ W(e), then r ∈ We, so Tr ∈ H(We), and Geck and
Pfeiffer [4, §8.2] give a procedure to write Tr as equivalent to a linear combination of standard elements.

By Proposition 2.1.1, we can write r = w1ew2 for a unique idempotent e ∈ Λ, and we can choose
w1, w2 ∈ W so that l(r) = l(w1) + l(w2). We will reduce this to the case covered by Geck and Pfeiffer by
induction on Λ (note that Λ is finite since R is finite).

First, if e is minimal, Lemma 3.2.3 tells us that Tr is equivalent to a linear combination of elements of
the form Tewe. By [5, Corollary 1.13], since e is minimal, we must have w ∈ W(e).

Next, assume that e is not minimal, and that for all f ∈ Λ, f < e, every element of the form Txfz, x, z ∈ W
is equivalent to a linear combination of standard elements. Again, Lemma 3.2.3 tells us that Tr is equivalent
to a linear combination of elements of the form Tewe.

By the definition of Red(e, e), we can write w = xyz, where x, z ∈ W(e), y ∈ Red(e, e), so ewe = xeyez.
Godelle [5, Corollary 1.13] tells us that either y ∈ W(e) or eye = f for some f ∈ Λ, f < e. In the first case,
xyz ∈ W(e), so ewe ∈ eW(e)e = We. In the second case, we have ewe = xeyez = xfz, so by hypothesis,
Tewe = Txfz is equivalent to a sum of standard elements.

Remark 3.2.4. See Example 6.2.2 for the computation of character values for a nonstandard element of
H(RSp4).
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4 Decomposing the Character Table of RSp2n: The A-Matrix

Most of the rest of the paper concerns the symplectic Renner monoid RSp2n. In this section, we compute
the A-matrix of RSp2n. This is an analogous result to Solomon’s [21, Proposition 3.5], which computed the
A-matrix for the rook monoid Rn. Let M := M(RSp2n) denote the character table of RSp2n, and recall that
the rows of M (and therefore the rows of our related matrices, A and B) are labelled by Munn classes of
elements of RSp2n and the columns are labelled by the irreducible representations, both of which are indexed
by Qn = Q(RSp2n).

4.1 Structure of the A-Matrix

Since Qn = SPn ⊔
⋃n

t=0 Pt, we can write by [9, Theorem 4.1]

M =

(

M(WSP2n) ∗
0 M(Rn)

)

,

so since Y is block diagonal, we can write

A =

(

Id U
0 T

)

,

where Id is an identity matrix and T is the A-matrix of Rn computed in [21, Proposition 3.5].
Therefore, to compute A, we need only compute the entries of U. Thus, we only need consider the values

of irreducible representations indexed by elements of
⋃n

t=0 Pt.

Lemma 4.1.1. Let α ∈ Qn, λ ⊢ t, 0 ≤ t ≤ n, and let r = rα. Then the matrix entry

Aα,λ = |Sλ,r|.

Proof. By Proposition 2.4.1,

Mα,λ = χλ(r) =
∑

K∈C(t,r)

χλ(rK).

We have seen (Section 2.3) that

C(t, r) =
⊔

µ⊢t

Sµ,r,

and all permutations rK, K ∈ Sµ,r have cycle type µ. Therefore,

Mα,λ = χλ(r) =
∑

K∈C(t,r)

χλ(rK) =
∑

µ⊢t

∑

K∈Sµ,r

χλ(rK) =
∑

µ⊢t

|Sµ,r| χλ(wµ)

Note that
(AY)α,λ =

∑

β∈Qn

Aα,βYβ,λ =
∑

µ⊢t

Aα,µYµ,λ =
∑

µ⊢t

Aα,µχλ(wµ),

where the second equality is because Y is block diagonal. Thus, by linear independence of characters of St,
we see that Aα,µ = |Sµ,r|.

Example 4.1.2. Lemma 4.1 allows us to compute Solomon’s A-matrix T .
In the case that α ∈ Pt, 0 ≤ t ≤ n, the representative rα has a proper admissible domain I(rα), so every

subset K ⊂ I(rα) is admissible. Hence, an element of Sλ,rα is simply a choice of cycles of rα with cycle type
λ.

The number of ways to choose λ(i) cycles of length i from α is
(α(i)

λ(i)

)

, so multiplying over all i, we get

that

Tα,λ =

(

α

λ

)

,

which matches Proposition 2.6.2.

11



4.2 Determining the U Block for RSp2n

All that remains to compute A is a combinatorial description of |Sλ,rα |, where λ ∈ Pt, α ∈ SPn. In this
case, rα is a group conjugacy class representative wα. Our computation will use particularly nice conjugacy
class representatives from [4, Section 3.4].

Let si, 1 ≤ i ≤ n − 1 be the permutation (i, i + 1)(i, i+ 1), and let ti = (i + 1, i + 1). Then Wn is a
Coxeter group with generators {t0, s1, . . . , sn−1}, and ti = sisi−1 . . . s1t0s1 . . . si−1si.

Let α ∈ SPn. Then α is a double partition (γ, δ) with |γ| + |δ| = n. Write δ = (a1, . . . , ap) with
a1 ≤ a2 . . . ≤ ap and γ = (ap+1, . . . , aq) with ap+1 ≥ ap+2 . . . ≥ aq.

Then, set
wα := b−

m1,a1
. . . b−

mp,ap
b+
mp+1,ap+1

. . . b+
mq,aq

,

where mj =
∑j−1

i=1 ai and

b−
m,a = tmsm+1 . . . sm+a−1, b+

m,a = sm+1 . . . sm+a−1.

We call b+
m,a (resp. b−

m,a) a positive (resp. negative) block.
By [4, Proposition 3.4.7], {wα} is a complete set of (minimal length) representatives of the conjugacy

classes of Wn.

Lemma 4.2.1. We have the following description of the blocks b+
m,a and b−

m,a:

b+
m,a = (m + 1, m+ 2, . . . m + a)(m + 1, m + 2, · · · m + a),

b−
m,a = (m + 1, m + 2, · · ·m + a− 1,m + a, m+ 1, m+ 2 · · ·m + a),

Proof. These are straightforward computations from the definitions.

Example 4.2.2.

b+
0,3 = s1s2 = (1, 2)(1, 2)(2, 3) = (1, 2, 3)(1, 2, 3),

while
b−
0,3 = t0s1s2 = (1, 1)(1, 2, 3)(1, 2, 3) = (1, 2, 3, 1, 2, 3).

Let w := wα. If K ∈ C(t,w), then K must be admissible, so no cycle of w supported in K can contain both
i and i for any i. In other words, K can only depend on the positive blocks of wα. Using this observation,
we can now give a combinatorial description of the |Sλ,w|.

Proposition 4.2.3.

|Sλ,w| = 2
∑

i λ(i) ·

(

γ

λ

)

.

Proof. By Lemma 4.2.1, only the cycles arising from positive blocks in wα are admissible. Moreover γ(i)

is the number of positive blocks of length i, and each positive block is comprised of two disjoint cycles.
To construct an element of Sλ,w, we must, for every i, specify λ(i) distinct cycles of length i in w in

such a way that the union K of their support is admissible; once we do this, wK will have cycle type λ.
The admissibility condition in this case reduces to the condition that we only choose at most one of the two
cycles in any given positive block. Multiplying over all i,

|Sλ,w| =
∏

i≥1

(

γ(i)

λ(i)

)

· 2λ(i) = 2
∑

i λ(i) ·

(

γ

λ

)

.

We have now completed the computation of the A-matrix for RSp2n.
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Theorem 4.2.4. The A-matrix of RSp2n is

A =

(

Id U
0 T

)

,

where

Tα,λ =

(

α

λ

)

, α ∈ Pt1 , λ ∈ Pt2 , 0 ≤ t1, t2 ≤ n,

and

Uα,λ = 2
∑

i λ(i) ·

(

γ

λ

)

, α = (γ, δ) ∈ SPn, λ ∈ Pt, 0 ≤ t ≤ n.

5 Restricting Monoid Representations to Group Representations

and Decomposing Character Tables

In this section, we determine the B-matrix of RSp2n by restricting the irreducible representations to the group
of units WSp2n, using also Solomon’s computation of the B-matrix of the rook monoid [21, Proposition 3.11].

Similarly to the A-matrix, since

M =

(

M(WSP2n) ∗
0 M(Rn)

)

,

we must have

B =

(

Id V

0 L

)

,

where Id is an identity matrix, L is the B-matrix of the rook monoid Rn, and V is to be computed. Let
Wn := WSp2n for ease of notation.

5.1 Restricting Representations From RSp2n to Wn

Definition 5.1.1. Given groups G and H, and corresponding representations VG and VH, we define the box
tensor representation VG⊠VH to be the representation of G×H with the action (g, h) ·(v1⊠v2) = gv1⊠hv2.

We can now explain the restriction of an RSp2n representation to Wn, in analogue to Solomon’s [21,
Corollary 3.15] for the rook monoid. Solomon shows that given an irreducible character χ of Rn corresponding
to a partition of t, the restriction χ |Sn

= IndSn

St×Sn−t
(χ⊠ ηn−t), where ηn−t is the trivial representation on

Sn−t. We show that similarly,

Proposition 5.1.2. If α ∈ Pt, 0 ≤ t ≤ n, let χ := χα. Then

χ|Wn
= IndWn

St×Wn−t
(χ⊠ ηn−t).

Proof. Let σ ∈ Wn. By Proposition 2.4.1,

χ(σ) =
∑

K∈C(σ,t)

χ(σK),

where σK = µ−
KσµK. Now µK sends t to K and µ−

K does the reverse, so there exists an element τ := τK ∈ Wn

such that τ|t = µK and τ−1|K = µ−
K . Then set σ ′

K := τ−1στ; this is an element of Wn such that σ ′
K|t = σK.

Thus, χ(σK) = (χ⊗ ηn−t)(σ
′
K). Since t∩K may be any subset of t, the elements τK, as K runs over C(σ, t),

are a set of coset representatives of Wn/(St ×Wn−t). Hence,

χ(σ) =
∑

K∈C(σ,r)

(χ⊗ ηn−t)(σ
′
K) =

∑

τ∈Wn/(St×Wn−t)

(χ⊗ ηn−t)(τστ
−1) = IndWn

St×Wn−t
(χ⊠ ηn−t)(σ).

Remark 5.1.3. We expect this proof to extend to other Renner monoids, in particular type Dn, using [9,
Theorem 4.1] in place of [8, Theorem 4.2]. Likewise, the same proof yields Solomon’s result for type An.
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5.2 A Pieri Rule Analogue for the Type Cn Weyl Group

We’ll now determine an analogue of the Pieri rule for Cn. We first highlight two facts from [4].

Proposition 5.2.1. [4, Lemma 6.1.3] Let n ≥ 1 and k, l ≥ 0 be integers such that n = k + l. Let (λ1, λ2)
and (µ1, µ2) be pairs of partitions with |λ1|+ |λ2| = k and |µ1|+ |µ2| = l. Then, using the diagonal embedding
Wk ×Wl ⊆ Wn, we have

IndWn

Wk×Wl
(χa1,a2

⊠ χb1,b2
) =

∑

(ν1,ν2)

cν1

a1,b1
cν2

a2,b2
χν1,ν2

where the cνa,b are Littlewood-Richardson coefficients and the sum runs over all pairs of partitions (ν1, ν2)

for which |νi| = |λi| + |νi| for i = 1, 2.

Proposition 5.2.2. [4, Lemma 6.1.4] Let n ≥ 1 and consider the parabolic subgroup Sn ⊂ Wn. Let ν ⊢ n

and let χν be the corresponding irreducible character. Then

IndWn

Sn
χν =

∑

λ,µ

cνλµχ(λ,µ).

We can now derive a more explicit formula for IndWn

Sk×Wl
(χν ⊠ ηl) for a fixed partition ν ⊢ k. Using

transitivity of induction along with Propositions 5.2.1 and 5.2.2, we have

IndWn

Sk×Wl
(χν ⊠ ηl) = IndWn

Wk×Wl
IndWk×Wl

Sk×Wl
(χν ⊠ ηl)

= IndWn

Wk×Wl





∑

λ,µ

cνλ,µχλ,µ ⊠ ηl





=
∑

λ,µ

cνλ,µ IndWn

Wk×Wl
(χλ,µ ⊠ χ[l],∅)

=
∑

λ,µ
λ+µ⊢k

cνλ,µ

∑

ν1,ν2

|νi|=|λi|+|µi|
ν1+ν2⊢n

cν1

λ,[l]
cν2

µ,∅
χν1,ν2

where [l] denotes a horizontal strip of size l. Note that cν2
µ, = 0 unless µ = ν2 in which case it is equal to 1.

This sum reduces to

IndWn

Sk×Wl
(χν ⊠ ηl) =

∑

λ,µ
λ+µ⊢k

cνλ,µ
∑

ν1
ν1+µ⊢n

cν1

λ,[l]
χν1,µ

=
∑

γ,µ
γ+µ⊢n













∑

λ, λ+µ⊢k
γ−λ horiz. strip

of size l

cνλ,µc
γ
λ,[l]













χγ,µ

=
∑

γ,µ
γ+µ⊢n











∑

λ
γ−λ horiz strip

of size l

cνλ,µ











χγ,µ

The last line comes from swapping the order of summation and noting that cνλ,[l] is 1 if γ− λ is a horizontal

strip and 0 otherwise by [4, Corollary 6.1.7].
Thus we have found:
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Proposition 5.2.3. For n ≥ 1 and integers k, l such that k + l = n we have that

IndWn

Sk×Wl
(χν ⊠ ηl) =

∑

γ,µ
γ+µ⊢n













∑

λ
γ−λ horiz strip

of size l

cνλ,µ













χγ,µ

Now we can determine the B-matrix for RSp2n.

Corollary 5.2.4. In the matrix decomposition of

M(RSp2n) = YB,

with

B =

(

Id V

0 L

)

,

we have
V(γ,µ),ν =

∑

λ partition s.t.
γ−λ horiz strip
of size n − r

cνλ,µ

where (γ, µ) ∈ SPn, ν ∈ Pr, 0 ≤ r ≤ n; and L is the B-matrix of Rn with coefficients

Lγ,µ =

{
1 γ− µ is a horizontal strip

0 otherwise.

Proof. The values Lγ,µ are given by Proposition 2.6.2, so we consider the case where γ ∈ SP2n, µ ∈ Pt, 0 ≤
t ≤ n.

By Proposition 2.6.3, Bγµ is the multiplicity of χγ in ResRSp2n

Wn
χµ. By Proposition 5.1.2,

ResRSp2n

Wn
χµ = IndWn

St×Wn−t
(χµ ⊠ ηn−t),

and so Proposition 5.2.3 gives the desired result.

5.3 A Formula of Group Characters

We can use our calculation of the A- and B-matrices to determine a formula for group characters, in analogue
to [21, Corollary 3.14]. Let zα be the size of the centralizer of an element in α ∈ Qn, and let W be the
diagonal matrix (δα,βzα)α,β. Then YYT = W by the column orthogonality relations of character tables. For
the next result, we use the notation χλ := χ(wλ) for any element wλ in the conjugacy class indexed by λ.

Corollary 5.3.1. Let λ = (λ1, λ2) ⊢ n, µ ⊢ r ≤ n. Then

∑

α=(α1,α2)⊢n
β⊢t

z−1
α 2

∑
i µiχλ

αχ
µ
β

(

α1

µ

)

=
∑

λ
γ−λ horiz strip

of size n-t

cνλ,µ.

Proof. By Corollary 5.2.4, the right side of this equation is equal to Bγ,µ, so we will show that the left side
also equals Bγ,µ. Note that B = Y−1AY = YTW−1AY, so

Bλµ =
∑

α

(YTW−1)λ,α(AY)α,µ

=
∑

α

YT
α,λz

−1
α (AY)α,µ

=
∑

α

∑

β

z−1
α Yα,λAα,βYβµ,
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and the definition of Y along with Theorem 4.2.4, gives the result.

6 The Hecke Algebra Character Table for RSp2n

6.1 A Starkey-Shoji Rule

We computed the B matrix of RSp2n in Corollary 5.2.4. The group Hecke algebra character tables for types
A and C are well-known; see for instance, [4, §10.2-10.3]. Therefore, we can use Theorem 3.1.4 to compute
the character table M(H(RSp2n)) = YqB of H(RSp2n). The character table of H(Rn) appears in the lower
right corner of the larger character table, so our computations in type C include the type A computations:
the rook monoid Hecke algebra character table was first given in [3].

Recall (Section 3) that the irreducible characters and the standard elements of both RSp2n andH(RSp2n)

are indexed by Qn. For λ ∈ Qn, χλ, χ
∗
λ are the characters of RSp2n, H(RSp2n), respectively, while rλ (resp.

Tλ := Trλ) denote the standard elements of the Renner monoid (resp. Hecke algebra). wλ and Twλ
denote the

corresponding standard elements of Wλ and H(Wλ), while the corresponding group characters are denoted
χλ, χ

∗
λ.

Then by Theorem 3.1.4,

χ∗
λ(Tµ) = (Mq)µ,λ =

∑

ν∈Qn

(Yq)µ,νBν,λ =
∑

ν∈Q(Wµ)

χ∗
ν(Twµ

)Bν,λ.

In particular, by Corollary 5.2.4, we can break this up into several cases.
If λ ∈ SPn, µ ∈ Pt, then χλ(Tµ) = 0. The same is true if λ ∈ Pt ′ where t ′ > t.
If Wλ = Wµ, then χλ(Tµ) = χλ(Twµ

). Hence, we have reduced the computation to two cases: λ ∈ Pt,
and either µ ∈ SPn or µ ∈ Pt ′ , t ′ > t.

Starkey’s Rule [4, Theorem 9.2.11] is a combinatorial rule for the character table of the type A group
Hecke algebra. Shoji [18] generalized this formula to Ariki-Koiki algebras, including the type C group Hecke
algebra. We extend these formulas here to the Hecke algebras of type A and type C Renner monoids.

In the case λ ∈ Pt, µ ∈ Pt ′ , we have

χ∗
λ(Tµ) =

∑

ν⊢t ′

χ∗
ν(Twµ

)Bν,λ =
∑

ν⊢t ′

ν−λ horizontal strip

χ∗
ν(Twµ

).

Let Cα (resp. Sα, ρα) denote the conjugacy class (resp. parabolic subgroup, reflection representation)
in Sn corresponding to α. Using Starkey’s Rule [4, Theorem 9.2.11], our equation becomes:

χ∗
λ(Tµ) =

∑

ν⊢t ′

ν−λ horizontal strip

∑

α⊢t ′

χν(wα)
|Cα ∩ Sµ|

|Sµ|
det(q− ρµ(wα))

=
∑

α⊢t ′









∑

ν⊢t ′

ν−λ horizontal strip

χν(wα)









|Cα ∩ Sµ|

|Sµ|
det(q− ρµ(wα))

=
∑

α⊢t ′

χν(rα)
|Cα ∩ Sµ|

|Sµ|
det(q− ρµ(wα)),

establishing a Starkey Rule for H(Rn).
Now we do the same thing for the upper right corner of the character table. Let λ stay in Pr, but now

let µ ∈ SPn. Shoji [18, Theorem 7.10] has a generalization of Starkey’s Rule to Ariki-Koike algebras. We
haven’t established the notation to state Shoji’s formula, so define tνµ(r;q) to be the expression so that the
right side of [18, Theorem 7.10] can be written

∑
ν∈SPn

tνµ(r;q) · χλ(wν).

16



Shoji uses a different presentation of the Hecke algebra than ours; using our presentation,

χ∗
ν(Twµ

) =
∑

γ∈SPn

tγµ · χν(wγ),

where tγµ = q1/2 · tνµ(2;q
1/2)|u1=q,u2=−q−1 .

The key point here is that tγµ is independent of ν. Using this and Corollary 5.2.4,

χ∗
λ(Tµ) =

∑

ν∈SPn













∑

α partition s.t.
ν1−α horiz strip

of size |λ|

cλα,ν2













χ∗
ν(Twµ

)

=
∑

ν∈SPn













∑

α partition s.t.
ν1−α horiz strip

of size |λ|

cλα,ν2













∑

γ∈SPn

tγµ · χν(wγ)

=
∑

γ∈SPn

tγµ













∑

ν∈SPn













∑

α partition s.t.
ν1−α horiz strip

of size |λ|

cλα,ν2













χν(wγ)













=
∑

γ∈SPn

tγµ · χλ(rγ).

Since Shoji’s formula applies to type A as well as type C, we could in theory use it in place of Starkey’s
Rule as well, but Starkey’s Rule is computationally simpler.

Therefore, we have a Starkey-Shoji formula for the entire character table of H(RSp2n). For α ∈ Qn, let
Pα denote whichever one of SPn,Pr contains α.

Theorem 6.1.1. Let λ, µ ∈ Qn. Then

χ∗
λ(Tµ) =

∑

γ∈Pµ

pγ
µ · χλ(rγ),

where

pν
µ =






δµγ, Pµ = Pγ∑
α⊢r ′

|Cα∩Sµ|

|Sµ|
det(q− ρµ(wα)), Pλ = Pr, Pµ = Pr ′ , r < r ′

tγµ, Pλ = Pr, Pµ = SPn,

0, else.

Remark 6.1.2. The reader may notice that a lot of the specifics here do not matter: any formula of the
form

χ∗
λ(Twµ

) =
∑

γ∈Pµ

pγ
µ · χλ(wµ)

becomes an exactly analogous formula for χ∗
λ(Tµ).
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6.2 Explicit Computations

Example 6.2.1. In the case R = RSp4, we obtain the following. Let Mq be the character table of H(RSp4),
and let Yq and B be the associated Y- and B- matrices.

Yq =





























1 2 1 1 1 0 0 0 0

q q− 1 −1 q −1 0 0 0 0

q2 −2q2 1 q4 q2 0 0 0 0

−1 q− 1 −1 q q 0 0 0 0

−q 0 1 q2 −q 0 0 0 0

0 0 0 0 0 1 1 0 0
0 0 0 0 0 q −1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























, B =





























1 0 0 0 0 0 1 1 0
0 1 0 0 0 1 1 1 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 1 1
0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1





























,

Mq = YqB =





























(12,0) (1,1) (0,12) (2,0) (0,2) (2) (12) (1) (0)

(12,0) 1 2 1 1 1 4 4 4 1
(1,1) q q− 1 −1 q −1 2q− 2 2q− 2 3q− 1 q

(0,12) q2 −2q2 1 q4 q2 q4 − q2 −q2 + 1 q4 − q2 q4

(2,0) −1 q− 1 −1 q q 3q− 1 q− 3 2q− 2 q

(0,2) −q 0 1 q2 −q q2 − q −q+ 1 q2 − q q2

(2) 0 0 0 0 0 1 1 2 1

(12) 0 0 0 0 0 q −1 q− 1 q
(1) 0 0 0 0 0 0 0 1 1

(0) 0 0 0 0 0 0 0 0 1





























.

Note that when we send q 7→ 1 in Mq, we obtain the character table M of RSp4.

Example 6.2.2. We demonstrate a computation of character values of a nonstandard element of H(RSp2n).
Take the element Tr ∈ H(RSp4), where

r =









0 0 0 0
0 0 0 0

0 1 0 0

0 0 0 0









.

Notice that r is nilpotent but nonzero, so Tr is not a standard element. We can write S = {s, t}, Λ = {0, e, f, I}
where

s =









1
1

1

1









, t =









1
1

1

1









, e =









1
0

0

0









, f =









1
1

0

0









.

Then r = stes is a minimal expression for r. Therefore, the computations in Section 3.2 yield

Tr = TsTtTeTs ≡ Te(Ts)
2Tt = Te((q− 1)Ts + qT1)Tt = (q− 1)Test + qTet.

Now,
Test ≡ ql(est)−l(este)Teste = qT0 and Tet ≡ ql(et)−l(ete)Tete = qT0,

so
Tr ≡ (2q2 − q)T0.

Therefore, χ∅(Tr) = 2q2 − q, and χλ(Tr) = 0 for all other λ ∈ Qn.
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Example 6.2.3. The following is the character table of H(R2).

Mq =









1 1 2 1
q −1 q− 1 q

0 0 1 1

0 0 0 1









.

Under the decomposition Mq = AqYq, we get

Aq =









1 0 2 1

0 1 q− 1 q
0 0 1 1

0 0 0 1









,

so Aq depends on q. It is not clear how to compute the A-matrix directly, which is the reason our Hecke
algebra computations used the B-matrix instead of the A-matrix.

7 Further Questions

To our knowledge, there is no combinatorial formula for the A- or B-matrix of a Renner monoid of types
other than A and C (in particular, in type D). This seems like a tractable problem, and would allow nice
formulas for the Hecke algebra character tables of other types as well.

Godelle’s definition of the generic Hecke algebra is a generalization of the single-parameter generic Hecke
algebra for a finite Weyl group. However, types C, F, and G have two-parameter generic Weyl group Hecke
algebras. A generalization of Godelle’s definition to the two-parameter case would perhaps allow us to port
our computations wholesale, and compute the character table of those Hecke algebras.

Another possible generalization would be to the monoid equivalent of Ariki-Koike algebras, which are
the Hecke algebras of the complex reflection groups (Z/kZ) ≀ Sn. The set of n× n monomial matrices with
at most one entry in each row and column, and nonzero entries equaling k-th roots of unity form an inverse
monoid with unit group (Z/kZ) ≀ Sn, so it may be possible to define an associated Hecke algebra, and to
extend our Starkey-Shoji formula to these algebras.

In addition, we exploited the conception of the B-matrix in terms of multiplicities to calculate Hecke
algebra character tables of Renner monoids. The picture is not so simple using the A-matrix: the entries
in the Hecke algebra case depend on q. However, the A-matrix is combinatorially interesting for Renner
monoids of (at least) types A and C; perhaps the Hecke algebra A-matrix will turn out to be a nice q-
analogue. The interested reader may also note that the computation of the Hecke algebra A-matrix is
implicit in our computations of the character table: just multiply by Y−1

q on the right. A nice formula for
the A-matrix of H(RSp2n) could potentially lead to a Murnaghan-Nakayama formula (which has been done
for H(Rn) by Dieng, Halverson, and Poladian in Theorem 3.4 of [3]).
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8 Appendix

8.1 Character Table for RSp6

Let R = RSp6. We compute the Renner monoid character table. Using our formulas, (Theorem 4.2.4,
Corollary 5.2.4), we can calculate the A- and B-matrices:

A =





























































rµ\χλ 13,0 12,1 1,12 0,13 21,0 1,2 2,1 0,21 3,0 0,3 (13) (21) (3) (12) (2) (1) (0)

13,∅ 1 0 0 0 0 0 0 0 0 0 8 0 0 12 0 6 1
12,1 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 4 1

1,12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1

∅,13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
21,∅ 0 0 0 0 1 0 0 0 0 0 0 4 0 0 2 2 1

1,2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1

2,1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 1
∅,21 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

3,∅ 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 1
∅,3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

(13) 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 3 1

(21) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
(3) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1

(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





























































,

B =





























































rµ\χλ 13,0 12,1 1,12 0,13 21,0 1,2 2,1 0,21 3,0 0,3 (13) (21) (3) (12) (2) (1) (0)

13,∅ 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
12,1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0

1,12 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0
∅,13 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

21,∅ 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0

1,2 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0
2,1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0

∅,21 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

3,∅ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
∅,3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

(13) 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
(21) 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

(3) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





























































.

One can also compute:
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Y =





























































rµ\χλ 13,0 12,1 1,12 0,13 21,0 1,2 2,1 0,21 3,0 0,3 (13) (21) (3) (12) (2) (1) (0)

13,∅ 1 3 3 1 2 3 3 2 1 2 0 0 0 0 0 0 0
12,1 1 1 −1 −1 2 −1 1 −2 1 −1 0 0 0 0 0 0 0

1,12 1 −1 −1 1 2 −1 −1 2 1 1 0 0 0 0 0 0 0

∅,13 1 −3 3 −1 2 3 −3 −2 1 −1 0 0 0 0 0 0 0
21,∅ −1 −1 −1 −1 0 1 1 0 1 1 0 0 0 0 0 0 0

1,2 −1 −1 1 1 0 −1 1 0 1 −1 0 0 0 0 0 0 0

2,1 −1 1 −1 1 0 1 −1 0 1 −1 0 0 0 0 0 0 0
∅,21 −1 1 1 −1 0 −1 −1 0 1 1 0 0 0 0 0 0 0

3,∅ 1 0 0 1 −1 0 0 −1 1 1 0 0 0 0 0 0 0

∅,3 1 0 0 −1 −1 0 0 1 1 −1 0 0 0 0 0 0 0
(13) 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0

(21) 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0
(3) 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 0

(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





























































.

Therefore, we have:

M(RSp6) = AY = YB =





























































rµ\χλ 13,0 12,1 1,12 0,13 21,0 1,2 2,1 0,21 3,0 0,3 (13) (21) (3) (12) (2) (1) (0)

13,∅ 1 3 3 1 2 3 3 2 1 2 8 16 8 12 12 6 1
12,1 1 1 −1 −1 2 −1 1 −2 1 −1 0 0 0 4 4 4 1

1,12 1 −1 −1 1 2 −1 −1 2 1 1 0 0 0 0 0 2 1

∅,13 1 −3 3 −1 2 3 −3 −2 1 −1 0 0 0 0 0 0 1
21,∅ −1 −1 −1 −1 0 1 1 0 1 1 −4 0 4 −2 2 2 1

1,2 −1 −1 1 1 0 −1 1 0 1 −1 0 0 0 0 0 2 1
2,1 −1 1 −1 1 0 1 −1 0 1 −1 0 0 0 −2 2 0 1

∅,21 −1 1 1 −1 0 −1 −1 0 1 1 0 0 0 0 0 0 1

3,∅ 1 0 0 1 −1 0 0 −1 1 1 2 −2 2 0 0 0 1
∅,3 1 0 0 −1 −1 0 0 1 1 −1 0 0 0 0 0 0 1

(13) 0 0 0 0 0 0 0 0 0 0 1 2 1 3 3 3 1

(21) 0 0 0 0 0 0 0 0 0 0 −1 0 1 −1 1 1 1
(3) 0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0 1

(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1
(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 1

(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





























































,

which matches the character table as calculated via the method of Li, Li, and Cao [8].
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