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EXTERIOR AND SYMMETRIC (CO)HOMOLOGY OF GROUPS

VALERIY G. BARDAKOV, MIKHAIL V. NESHCHADIM, AND MAHENDER SINGH

Abstract. The paper investigates exterior and symmetric (co)homologies of groups. We
introduce symmetric homology of groups and compute exterior and symmetric (co)homologies
of some finite groups. We also compare the classical, exterior and symmetric (co)homologies.
Finally, we derive restriction and corestriction homomorphisms for exterior cohomology.

1. Introduction

The classical (co)homology theory of groups has its origins both in algebra and topology. We
refer to Brown [3] for an excellent historical introduction of the subject. Several (co)homology
theories of groups have been proposed ever since the subject was formalised by Eilenberg and
MacLane [4, 5]. The purpose of this paper is to investigate two of these (co)homology theories,
namely, the exterior and the symmetric (co)homologies of groups.

Motivated by the construction of a homology theory for crossed simplicial groups by
Fiedorowicz and Loday [6], Staic [10] introduced the notion of a ∆-group Γ(X) for a topolog-
ical space X. Given a group G and a G-module A, Staic defined an action of the symmetric
group Σ∗+1 on the cochain group C∗(G,A) used for the classical group cohomology and proved
it to be compatible with the corresponding coboundary maps. The subcomplex of invariant
elements {C∗(G,A)Σ∗+1} gives a new cohomology theory, denoted HS∗(G,A), and called the
symmetric cohomology. It is proved in [10] that the ∆-group Γ(X) is determined by the
action of π1(X) on π2(X), and an element of HS3

(
π1(X), π2(X)

)
. The inclusion of cochain

complexes C∗(G,A)Σ∗+1 →֒ C∗(G,A) gives a natural map

α∗ : HS∗(G,A) −→ H∗(G,A).

A continuous analogue of symmetric cohomology of topological groups, and a smooth ana-
logue for Lie groups was proposed by Singh [9]. Among other things, it was proved that the
symmetric continuous cohomology of a profinite group with coefficients in a discrete module
can be computed as the direct limit of the symmetric cohomology groups of its finite quo-
tients with appropriate coefficients. Some related questions were discussed in [1]. Developing
Staic’s work further, Todea [12] gave explicit constructions for the transfer, restriction and
conjugation maps, and showed under some mild hypotheses that the family {HS∗(H,A)}H≤G

has the structure of a Mackey functor.
Not so well-known is the interesting work [14] of Zarelua, wherein he introduced exterior

cohomology H∗
λ(G,A) and exterior homology Hλ

∗(G,A) of groups. The exterior cohomology
groups also come equipped with a natural map

β∗ : H∗
λ(G,A) −→ H∗(G,A),
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and have the property that if G is a finite group of order d, then Hi
λ(G,A) = 0 for all i ≥ d.

In [8], Pirashvili has explored in detail the connections between the maps α∗ and β∗. Among
other results, she constructed a natural map

γ∗ : H∗
λ(G,A) −→ HS∗(G,A)

which is a split monomorphism such that the diagram

H∗
λ(G,M)

β∗

��

γ∗

// HS∗(G,A)

α∗

ww♣♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

H∗(G,A)

commutes. Further, in a recent work [7], the third symmetric cohomology has been linked to
crossed modules with certain properties.

The purpose of this paper is to investigate exterior and symmetric (co)homologies of groups
which are difficult to compute due to lack of computational machinery. A symmetric homology
of groups is introduced and the same is computed for some small order groups. A major part
of the paper deals with computations of exterior (co)homology of some finite groups. We also
derive restriction and corestriction maps for exterior and symmetric cohomologies.

The paper is organised as follows. Section 2 recalls the construction of classical (co)homology
which also serves our purpose of setting up the notation. In Section 3, we recall the defini-
tion of symmetric cohomology and propose a symmetric homology of groups. In Section 4,
we recall the construction of exterior (co)homology of groups. In Section 5, we compare the
classical, exterior and symmetric (co)homologies of groups leading to new (co)homologies and
make basic observations about these (co)homologies. In Section 6, we compute symmetric ho-
mology of some small order groups. Section 7 contains computations of exterior (co)homology
of some finite groups. Finally, in Section 8, we derive restriction and corestriction maps for
exterior and symmetric cohomologies.

Throughout the paper, we use ∂n for boundary maps and δn for coboundary maps when
their definitions and underlying complexes are clear from the context. Further, following
standard terminology, modules over the integral group ring Z[G] are referred as G-modules.

2. Classical (co)homology

We begin by recalling some standard definitions and facts from [2].

2.1. Standard resolution for classical (co)homology. Let G be a group and Z[G] the
group ring of G with integer coefficients. Denote by Gn+1 the (n+ 1)-fold cartesian product
of G, that is,

Gn+1 =
{
(g0, g1, . . . , gn) | g0, g1, . . . , gn ∈ G

}
.

For each n ≥ 0, let Bn(G) := Z[Gn+1] be the free abelian group with basis Gn+1. Then G
acts on Bn(G) by the rule

h(g0, g1, . . . , gn) = (hg0, hg1, . . . , hgn),

where h, g0, g1, . . . , gn ∈ G. This action turns Bn(G) into a left G-module. Notice that Bn(G)
is a free left G-module with basis

{
(1, g1, . . . , gn) | g1, . . . , gn ∈ G

}
.
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For each n ≥ 1, the map ∂n : Bn(G) −→ Bn−1(G) of left G-modules defined by

(2.1.1) ∂n(g0, g1, . . . , gn) =

n∑

i=0

(−1)i
(
g0, . . . , ĝi, . . . , gn

)
,

where (g0, . . . , ĝi, . . . , gn) = (g0, . . . , gi−1, gi+1, . . . , gn) satisfy ∂n∂n+1 = 0. Note that B0(G) =
Z[G] and the augmentation homomorphism ε : B0(G) −→ Z is given by

ε
(∑

nigi
)
=
∑

ni,

where ni ∈ Z and gi ∈ G.
The left G-modules Bn(G), n ≥ 0, together with the boundary maps ∂n, n ≥ 1, and the

augmentation homomorphism ε forms the standard free resolution

(2.1.2) · · ·
∂n+2
−→ Bn+1(G)

∂n+1
−→ Bn(G)

∂n−→ · · · −→ B1(G)
∂1−→ B0(G)

ε
−→ Z

of the trivial G-module Z.

If A is a right G-module, then the classical homology groups Hn(G,A), n ≥ 0, are defined
as homology groups of the chain complex
(2.1.3)

· · ·
∂n+2

−→ A ⊗
G
Bn+1(G)

∂n+1

−→ A ⊗
G
Bn(G)

∂n−→ · · ·
∂2−→ A ⊗

G
B1(G)

∂1−→ A ⊗
G
B0(G)

∂0−→ 0,

where the boundary map ∂n is induced by the boundary map of (2.1.1).
If A is a left G-module, then the classical cohomology groups Hn(G,A), n ≥ 0, are defined

as the cohomology groups of the cochain complex
(2.1.4)

0 −→ HomG

(
B0(G), A

) δ0
−→ HomG

(
B1(G), A

) δ1
−→ · · ·

δn−1

−→ HomG

(
Bn(G), A

) δn
−→ · · · ,

where the coboundary map δn is induced by the boundary map of (2.1.1).

2.2. Another complex for classical cohomology. The classical group cohomology can
also be obtained using another cochain complex which we describe next. Set C−1(G,A) = 0,
and C0(G,A) = A viewed as maps from the trivial group to the group A. For each integer
n ≥ 1, let

(2.2.1) Cn(G,A) =
{
σ : Gn → A

}
.

Then the coboundary map (same notation being used)

δn : Cn(G,A) −→ Cn+1(G,A)

given by

δn(σ)(g1, . . . , gn+1)(2.2.2)

= g1σ(g2, . . . , gn+1) +
n∑

k=1

(−1)kσ(g1, . . . , gkgk+1, . . . , gn+1) + (−1)n+1σ(g1, . . . , gn)

for σ ∈ Cn(G,A) and (g1, . . . , gn+1) ∈ Gn+1, turns {C∗(G,A), δ∗} into a cochain complex.
Observe that, for each n ≥ 0,

HomG

(
Bn(G), A

)
= HomG

(
Z[Gn+1], A

)

=
{
f : Gn+1 → A | f(gg0, gg1, . . . , ggn) = gf(g0, g1, . . . , gn)

}
.
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Then the map

(2.2.3) ψn : HomG

(
Bn(G), A

)
−→ Cn(G,A)

defined by

ψn(f)(g1, . . . , gn) = f(1, g1, g1g2, . . . , g1g2 . . . gn)

induces an isomorphism of cochain complexes

ψ∗ : HomG

(
B∗(G), A

)
−→ C∗(G,A).

Thus, the cochain complex {C∗(G,A), δ∗} also gives the classical group cohomology defined
earlier. This fact will be used in Section 8 where we define (co)restriction homomorphisms
for exterior and symmetric cohomologies.

3. Symmetric (co)homology

3.1. Symmetric cohomology. We recall the definition of symmetric cohomology originally
introduced by Staic [10]. Let G be a group and A a G-module. Let Cn(G,A) = {σ : Gn → A}
and δn : Cn(G,A) −→ Cn+1(G,A) be as in (2.2.2). Define dj : Cn(G,A) −→ Cn+1(G,A) by

d0(σ)(g1, . . . , gn+1) = g1σ(g2, . . . , gn+1),

dj(σ)(g1, . . . , gn+1) = σ(g1, . . . , gjgj+1, . . . , gn+1) for 1 ≤ j ≤ n,

dn+1(σ)(g1, . . . , gn+1) = σ(g1, . . . , gn+1).

Then we notice that

δn =
n+1∑

j=0

(−1)jdj.

Staic constructed an action of the symmetric group Σn+1 on Cn(G,A) which is compatible
with the coboundary maps δn. If τi denote the transposition (i, i + 1) for 1 ≤ i ≤ n and
σ ∈ Cn(G,A), then

(τ1σ)(g1, g2, g3, . . . , gn) = −g1σ(g
−1
1 , g1g2, g3, . . . , gn+1),

(τiσ)(g1, g2, g3, . . . , gn) = −σ(g1, . . . , gi−2, gi−1gi, g
−1
i , . . . , gn) for 1 < i < n,

(τnσ)(g1, g2, g3, . . . , gn) = −σ(g1, g2, g3, . . . , gn−1gng
−1
n ).

The cohomology HSn(G,A) of the subcomplex of invariants CSn(G,A) := Cn(G,A)Σn+1 is
called the symmetric cohomology of G with coefficients in A. By [11, Lemma 3.1], the map

HS2(G,A) → H2(G,A)

induced by the inclusion CSn(G,A) →֒ Cn(G,A) of cochain complexes is injective.

Example 3.1. A very few examples of computations of symmetric cohomology are known.
By [10, Remark 5.4], HS2k(Z2,Z) = 0, HS2(Z2,Zn) = 0 and HS2(Z4,Z) = Z2. Further, it is
known due to [8, Lemma 3.10] that

HSk(Z2,Z2) =

{
Z2 if k = 0 or k ≡ 1 mod 4,
0 otherwise.
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3.2. Alternate definition of symmetric cohomology. We recall an alternate approach
to symmetric cohomology by Pirashvili [8] which shows that the symmetric cohomology of
Staic can be defined in a more natural way using the standard resolution.

Let G be a group and

Tn(G) := Z[G]⊗(n+1)

the G-module generated by the set
{
g0 ⊗ g1 ⊗ · · · ⊗ gn | gi ∈ G

}
.

Then the symmetric group Σn+1 acts on Tn(G) with the action defined on the generators by

τj(g0 ⊗ g1 ⊗ · · · ⊗ gj ⊗ gj+1 ⊗ · · · ⊗ gn) = g0 ⊗ g1 ⊗ · · · ⊗ gj+1 ⊗ gj ⊗ · · · ⊗ gn,

where τj = (j, j + 1) for 0 ≤ j ≤ n− 1. We also have homomorphisms

di : Tn(G) −→ Tn−1(G)

defined on generators by

di(g0 ⊗ g1 ⊗ · · · ⊗ gi ⊗ · · · ⊗ gn) = g0 ⊗ g1 ⊗ · · · ⊗ ĝi ⊗ · · · ⊗ gn.

It is not difficult to see that setting

∂n :=

n∑

i=0

(−1)idi

gives a chain complex
{
T∗(G), ∂∗

}
. If A is a left G-module, then applying the functor

HomG(−, A) gives the cochain complex {K∗(G,A), δ∗}, where K∗(G,A) := HomG

(
T∗(G), A

)

and δ∗ is the induced coboundary map. The action of Σn+1 on Tn(G) induces an action on
Kn(G,A) given by

τif(g0 ⊗ g1 ⊗ · · · ⊗ gi ⊗ gi+1 ⊗ · · · ⊗ gn) = f(g0 ⊗ g1 ⊗ · · · ⊗ gi+1 ⊗ gi ⊗ · · · ⊗ gn).

A function σ ∈ Kn(G,A) is called skew-symmetric if

τiσ = −σ

for each 0 ≤ i ≤ n − 1. Let KSn(G,A) be the G-submodule of Kn(G,A) consisting of skew-
symmetric functions. Since the coboundary map δn keeps KSn(G,A) invariant, we obtain a
cochain complex {KS∗(G,A), δ∗}. By [8, Lemma 3.5], the cochain complex {KS∗(G,A), δ∗}
is isomorphic to Staic’s cochain complex defining symmetric cohomology.

Lemma 3.2. The n-th cohomology group of the cochain complex {KS∗(G,A), δ∗} is isomor-
phic to the n-th symmetric cohomology HSn(G,A).

3.3. Symmetric homology. We conclude this section by introducing symmetric homology
of groups. For a group G, we have Z[Gn] ∼= Z[G]⊗n as G-modules. Recall the standard free
resolution

· · ·
∂n+2

−→ Bn+1(G)
∂n+1

−→ Bn(G)
∂n−→ · · · −→ B1(G)

∂1−→ B0(G)
ε

−→ Z,

of the trivial G-module Z, where Bn(G) = Z[G]⊗(n+1) for n ≥ 0. Consider the G-submodule
BSn(G) of Bn(G) that is generated by all alternative sums of the form

∑

σ∈Σn+1

sign(σ)
(
gσ(0) ⊗ · · · ⊗ gσ(n)

)
,
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where g0, . . . , gn ∈ G. By [14, Lemma 3.2], the left G-modules BSn(G), n ≥ 0, with the
induced boundary maps forms a chain complex

(3.3.1) · · ·
∂n+2
−→ BSn+1(G)

∂n+1
−→ BSn(G)

∂n−→ · · · −→ BS1(G)
∂1−→ BS0(G)

ε
−→ Z.

If A is a right G-module, then the symmetric homology groups HSn(G,A), for n ≥ 0, are
defined as homology groups of the chain complex
(3.3.2)

. . .
∂n+2
−→ A ⊗

G
BSn+1(G)

∂n+1
−→ A ⊗

G
BSn(G)

∂n−→ · · ·
∂2−→ A ⊗

G
BS1(G)

∂1−→ A ⊗
G
BS0(G) −→ 0,

where ∂n is the induced boundary map.

4. Exterior (co)homology

4.1. Exterior (co)homology. We recall the definition of exterior (co)homology introduced
by Zarelua [14]. If V is a left R-module, where R is a ring (not necessary commutative), then
the exterior algebra Λ∗(V ) is defined as a quotient of the tensor algebra T∗(V ) by the ideal
generated by the elements

v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn,

where vk ∈ V , vi = vj for i 6= j and n ≥ 2. The ring R acts on T∗(V ) diagonally as

x(v1 ⊗ · · · ⊗ vn) = xv1 ⊗ · · · ⊗ xvn,

where x ∈ R and v1, . . . , vn ∈ V . This turns Λ∗(V ) into a left R-module. If V is a free
R-module with a basis {ei}i∈I , where I is linearly ordered, then Λn(V ) is a free R-module
with the basis {

ei1 ∧ · · · ∧ ein | i1 < · · · < in
}
.

It is evident that if I is finite, then Λn(V ) = 0 for n > |I|.
The standard projective resolution (2.1.2) of the trivial G-module Z can be rewritten as

· · · −→ Tn(G)
∂n−→ Tn−1(G)

∂n−1

−→ · · ·
∂2−→ T1(G)

∂1−→ Z[G]
ε

−→ Z.

We set Λn(G) := Λn+1
(
Z[G]

)
. If we replace the tensor algebra by the exterior algebra, then

we again obtain a resolution which, in general, is not projective. It is easy to prove the
following result [14, Lemma 3.1].

Lemma 4.1. The boundary map ∂n : Tn(G) −→ Tn−1(G) induces a boundary map (with the
same notation)

∂n : Λn(G) −→ Λn−1(G)

given by

∂n(g0 ∧ g1 ∧ · · · ∧ gn) =

n∑

i=0

(−1)i
(
g0 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

)
.

Consider the resolution

(4.1.1) · · ·
∂n+1
−→ Λn(G)

∂n−→ Λn−1(G)
∂n−1
−→ · · ·

∂1−→ Λ0(G)
ε

−→ Z −→ 0.

Tensoring the complex by a right G-module A gives the chain complex

(4.1.2) · · ·
∂n+1
−→ A ⊗

G
Λn(G)

∂n−→ A ⊗
G
Λn−1(G)

∂n−1
−→ · · ·

∂1−→ A ⊗
G
Λ0(G)

∂0−→ 0.
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The homology groups Hλ
∗(G,A) of the preceding chain complex are called the exterior homol-

ogy groups of G with coefficients in A. If A is a left G-module, then applying the functor
HomG(−, A) on the resolution (4.1.1) yields the cochain complex
(4.1.3)

0 −→ HomG

(
Λ0(G), A

) δ0
−→ · · ·

δn−2

−→ HomG

(
Λn−1(G), A

) δn−1

−→ HomG

(
Λn(G), A

) δn
−→ · · · ,

whose cohomology groups H∗
λ(G,A) are called the exterior cohomology groups of G with

coefficients in A.

Example 4.2. Not many examples of computations of exterior (co)homology are known due
to lack of sufficient theory. By [8, p. 414], if p is a prime, then

Hk
λ(Zp, A) =

{
Hk(Zp, A) if k ≤ p− 1,
0 if k ≥ p.

4.2. Map from symmetric to exterior homology. Let G be a group, Bn(G) = Z[G]⊗(n+1)

and Λn(G) = Λn+1(Z[G]) as G-modules. For g0, g1, . . . , gn ∈ G, set

µn(g0 ⊗ g1 ⊗ · · · ⊗ gn) :=
∑

σ∈Σn+1

sign
(
σ)
(
gσ(0) ⊗ gσ(1) ⊗ · · · ⊗ gσ(n)

)
.

Let BSn(G) be the G-submodule of Bn(G) as in Subsection 3.3. The standard boundary maps
(2.1.1) induce boundary maps on the subcomplexes BS∗(G) and Λ∗(G). By [8, Lemma 3.3],
{B∗(G), ∂∗} and {Λ∗(G), ∂∗} are resolutions of the trivial G-module Z. On the other hand,
{BS∗(G), ∂∗} is not a resolution.

Let λn : Bn(G) −→ Λn(G) be the natural projection given by

λn(g0 ⊗ g1 ⊗ · · · ⊗ gn) = g0 ∧ g1 ∧ · · · ∧ gn.

The universal property of exterior product yields a map νn : Λn(G) −→ BSn(G) given by

νn(g0 ∧ g1 ∧ · · · ∧ gn) = µn(g0 ⊗ g1 ⊗ · · · ⊗ gn).

This gives the commutative diagram

Bn(G)
λn

//

µn

��

Λn(G)

νn
yyss
s
s
s
s
s
s
s
s

BSn(G).

The following identities are easy to check and will be used in computations of symmetric
homology in Section 6.

Lemma 4.3. The following holds for each n ≥ 1:

(1) λnνn = (n+ 1)!.
(2) λn−1∂n = ∂nλn.
(3) ∂nµn = (n+ 1)µn−1∂n.
(4) ∂nνn = (n+ 1)νn−1∂n.

Proposition 4.4. There exists a group homomorphism HS∗(G,A) −→ Hλ
∗(G,A).
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Proof. The surjective chain map 1⊗λ∗ : A⊗GB∗(G) −→ A⊗GΛ∗(G) gives a homomorphism
of homology groups

λ∗ : H∗(G,A) −→ Hλ
∗ (G,A).

Similarly, the inclusion BS∗(G) →֒ B∗(G) gives a chain map ι∗ : A ⊗G BS∗(G) →֒ A ⊗G

B∗(G), which further gives a homomorphism of homology groups

ι∗ : HS∗(G,A) −→ H∗(G,A).

The composite λ∗ι∗ : HS∗(G,A) −→ Hλ
∗(G,A) is the desired homomorphism. �

5. New cohomologies

We compare the classical, exterior and symmetric cohomologies using natural maps of their
defining cochain complexes. This gives new cohomologies for groups and we make some basic
observations about these cohomologies.

Let G be a group and A a G-module. In view of the isomorphism (2.2.3), the cochain
complex {K∗(G,A), δ∗}, where

Kn(G,A) = HomG

(
Z[Gn+1], A

)

=
{
σ : Z[Gn+1] → A | σ

(
g(g0, . . . , gn)

)
= gσ(g0, . . . , gn) for all g, gi ∈ G

}

and δn the standard coboundary map of (2.1.4), gives the classical cohomology H∗(G,A).
Let us define

KSn(G,A) :=
{
σ ∈ Kn(G,A) | σ(g0, . . . , gi, gi+1, . . . , gn) = −σ(g0, . . . , gi+1, gi, . . . , gn)

for all 0 ≤ i < n and g0, g1, . . . , gn ∈ G
}

and

Kn
λ(G,A) :=

{
σ ∈ KSn(G,A) | σ(g0, . . . , gi, gi, . . . , gn) = 0

for all 0 ≤ i < n and g0, g1, . . . , gn ∈ G
}
.

By Lemma 3.2, the cohomology of the cochain complex {KS∗(G,A), δ∗} is the symmetric
cohomology HS∗(G,A). Similarly, by [8, Lemma 3.5], the cohomology of the cochain complex
{K∗

λ(G,A), δ
∗} is the exterior cohomology H∗

λ(G,A).
If the groups and the modules are clear from the context, for brevity, we write the complexes

as K∗,KS∗,K∗
λ, and their cohomologies as H∗,HS∗,H∗

λ, respectively.

5.0.1. The cohomology H∗
sλ. We denote the cohomology groups of the quotient cochain com-

plex {KS∗ /K∗
λ, δ

∗
} by H∗

sλ, where δ
∗
is the induced coboundary map. We note that the

cohomology H∗
sλ was originally introduced in [8, Section 3.2] where it is denoted as H∗

δ . The
following result follows from [8, Theorem 3.9 and Proposition 3.6].

Proposition 5.1. Let G be a group and A a G-module. Then the following hold:

(1) There exists an isomorphism

HSn(G,A) ∼= Hn
λ(G,A) ⊕Hn

sλ(G,A)

for each n ≥ 0.
(2) Hn

sλ(G,A) = 0 for all 0 ≤ n ≤ 4.
(3) If A has no element of order 2, then Hn

sλ(G,A) = 0 for all n ≥ 0.
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5.0.2. The cohomology H∗
cλ. The quotient cochain complex {K∗ /K∗

λ, δ
∗
} gives cohomology

groups, which we denote by H∗
cλ. The short exact sequence of cochain complexes

0 −→ K∗
λ −→ K∗ −→ K∗ /K∗

λ −→ 0,

gives the long exact sequence of cohomology groups

(5.0.1) 0 → H0
λ → H0 → H0

cλ → H1
λ → H1 → H1

cλ → H2
λ → H2 → H2

cλ → · · · .

Proposition 5.2. Let G be a group and A a G-module. Then the following hold:

(1) H0
cλ(G,A) = 0 = H1

cλ(G,A).
(2) If G has no element of finite order, then Hn

cλ(G,A) = 0 for all n ≥ 0.

Proof. By [14], H0
λ(G,A) = H0(G,A) and H1

λ(G,A) = H1(G,A). By [8, Theorem 3.9], the
homomorphism H2

λ(G,A) → HS2(G,A) is an isomorphism. But, HS2(G,A) → H2(G,A) is
an embedding. Hence the homomorphism H2

λ(G,A) → H2(G,A) is an embedding being the
composite H2

λ(G,A) → HS2(G,A) → H2(G,A). The assertion now follows from the long exact
sequence (5.0.1).

By [8, Corollary 4.4(iii)], if G has no element of finite order, then the homomorphism
Hn

λ(G,A) → Hn(G,A) is an isomorphism for all n ≥ 0, and the result again follows from
(5.0.1). �

5.0.3. The cohomology H∗
cs. As in the preceding cases, let us denote the cohomology of the

quotient complex {K∗ /KS∗, δ
∗
} by H∗

cs. The short exact sequence of cochain complexes

0 −→ KS∗ −→ K∗ −→ K∗ /KS∗ −→ 0

gives the long exact sequence

(5.0.2) 0 → HS0 → H0 → H0
cs → HS1 → H1 → H1

cs → HS2 → H2 → H2
cs → · · · .

Proposition 5.3. Let G be a group and A a G-module. Then the following hold:

(1) H0
cs(G,A) = 0 = H1

cs(G,A).
(2) If n+ 1 is not a zero divisor and the equation n!x = a has exactly one solution in A,

then there exists a short exact sequence of groups

0 −→ HSn(G,A) −→ Hn(G,A) −→ Hn
cs(G,A) −→ 0

for each n ≥ 0.

Proof. By definition of symmetric cohomology, HS0(G,A) = H0(G,A). By [12, Proposition
2.1], HS1(G,A) = H1(G,A). Further, by [11, Lemma 3.1], the homomorphism HS2(G,A) →
H2(G,A) is injective, and the result now follows from the long exact sequence (5.0.2).

By [11, Proposition 4.1], for such a group A, the homomorphism HSn(G,A) → Hn(G,A) is
injective for each n ≥ 0, and the result follows from (5.0.2). �

6. Computations of symmetric homology

6.1. Some general results. We begin with some basic but general results.

Proposition 6.1. Let G be a group and A = Z[G] viewed as a right G-module. Then the
following holds:

(1) HS0(G,A) = Z[G]/2∆(G), where ∆(G) is the augmentation ideal of Z[G].
(2) If G is of order n, then HSi(G,A) = 0 for all i ≥ n− 1.
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Proof. Notice that Λ0(G) = BS0(G) = Z[G]. In view of Lemma 4.3(4), we have the following
commutative diagram

Λ1(G)
∂1

//

ν1

��

Λ0(G)

2 id
��

ε
// Z

BS1(G)
∂1

// BS0(G)
ε

// Z.

The top row of the diagram being part of (4.1.1) is exact. It follows that

Im
(
∂1 : BS1(G) → BS0(G)

)
= 2Ker

(
ε : BS0(G) → Z

)
= 2∆(G).

Hence HS0(G,A) = Z[G]/2∆(G) which proves (1).
Let G = {g1, g2, . . . , gn}. Since BSi(G) = 0 for all i ≥ n, it follows that HSi(G,A) = 0 for

all i ≥ n. Further, we have

BSn−1(G) = modZ[G]

〈
µn−1(g1 ⊗ g2 ⊗ · · · ⊗ gn)

〉
∼= Z,

since

g µn−1(g1 ⊗ g2 ⊗ · · · ⊗ gn) = µn−1

(
gσ(1) ⊗ gσ(2) ⊗ · · · ⊗ gσ(n)

)
for some σ ∈ Σn

= µn−1

(
g1 ⊗ g2 ⊗ · · · ⊗ gn

)
.

By Lemma 4.3(3), we have

∂n−1

(
µn−1(g1 ⊗ g2 ⊗ · · · ⊗ gn)

)
= nµn−2

(
∂n−1(g1 ⊗ g2 ⊗ · · · ⊗ gn)

)

= nµn−2

( n∑

j=1

(−1)j(g1 ⊗ · · · ⊗ ĝj ⊗ · · · ⊗ gn)
)

= n
n∑

j=1

(−1)jµn−2(g1 ⊗ · · · ⊗ ĝj ⊗ · · · ⊗ gn)

6= 0,

since the summands are independent. Thus, Ker(∂n−1) = 0, and hence HSn−1(G,A) = 0,
completing the proof of assertion (2). �

Proposition 6.2. If G is a group and A a trivial right G-module, then HS0(G,A) = A.
Further, if G is of order n, then HSi(G,A) = 0 for all i ≥ n.

Proof. Recall that BS1(G) is generated by
{
µ1(g ⊗ h) | g, h ∈ G

}
. For g, h ∈ G and a ∈ A,

we have

∂1
(
a⊗ µ1(g ⊗ h)

)
= a⊗ ∂1

(
µ1(g ⊗ h)

)

= a⊗ 2∂1(g ⊗ h) by Lemma 4.3(3)

= a⊗ 2(h − g)

= 0.

Thus, Im(∂1) = 0, and hence HS0(G,A) = A⊗GBS0(G) = A. The second assertion is obvious
from the definition. �
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6.2. Groups of order 2 and 3. If G = 〈g | g2 = 1〉, then the complex (3.3.1) takes the form

0 −→ BS1(G)
∂1−→ BS0(G)

∂0−→ 0.

Taking A = Z[G] as a right G-module, by Proposition 6.1, we obtain

HSi(G,A) =

{
Z[G]/2∆(G) ∼= Z⊕ Z2 if i = 0,
0 if i ≥ 1.

If A is a trivial right G-module, then the chain complex (3.3.2) becomes

0 −→ A⊗G BS1(G)
∂1−→ A⊗G BS0(G)

∂0−→ 0.

Notice that, for a ∈ A, we have

a⊗ µ1(1⊗ g) = a⊗ (1⊗ g − g ⊗ 1)

= a⊗ (g(g ⊗ 1)− g ⊗ 1)

= 0,

and hence A⊗G BS1(G) = 0. Thus, by Proposition 6.2, we obtain

HSi(G,A) =

{
A if i = 0,
0 if i ≥ 1.

Next we consider the cyclic group G = 〈g | g3 = 1〉 of order 3, for which the chain complex
is

0 −→ BS2(G)
∂2−→ BS1(G)

∂1−→ BS0(G)
∂0−→ 0.

Take A = Z[G] as a right G-module. By Lemma 4.3(4), Im(∂2) = 3Ker(∂1). A direct
computation yields

Ker(∂1) = modZ[G]

〈
µ1(1⊗ g) + µ1(g ⊗ g2) + µ1(g

2 ⊗ 1)
〉
,

and

g
(
µ1(1⊗ g) + µ1(g ⊗ g2) + µ1(g

2 ⊗ 1)
)
= µ1(1⊗ g) + µ1(g ⊗ g2) + µ1(g

2 ⊗ 1).

Thus, Ker(∂1) ∼= Z, and hence HS1(G,A) ∼= Z3. This together with Proposition 6.1 gives

HSi(G,A) =





Z[G]/2∆(G) ∼= Z⊕ Z2 if i = 0,
Z3 if i = 1,
0 if i ≥ 2.

Finally, we consider an arbitrary trivial G-module A. Then we have the chain complex

0 −→ A⊗G BS2(G)
∂2−→ A⊗G BS1(G)

∂1−→ A⊗G BS0(G)
∂0−→ 0,

where A⊗G BSi(G) ∼= A for i = 0, 1, 2. For a ∈ A, we have

∂1
(
a⊗ µ1(1⊗ g)

)
= a⊗ 2(g − 1) = 0,

which shows that Im(∂1) = 0. Similarly, we obtain

∂2
(
a⊗ µ2(1⊗ g ⊗ g2)

)
= a⊗ 3µ1∂2(1⊗ g ⊗ g2)

= 3a⊗
(
µ1(1⊗ g) + µ1(g ⊗ g2) + µ1(g

2 ⊗ 1)
)

= 9a⊗ µ1(1⊗ g).



12 V. G. BARDAKOV, M. V. NESHCHADIM, AND M. SINGH

Thus, a ⊗ µ2(1 ⊗ g ⊗ g2) ∈ Ker(∂2) if and only if 9a = 0. Hence, the homology groups of G
are as follows

HSi(G,A) =





A if i = 0,
A/9A if i = 1,
Tor9(A) if i = 2,
0 if i ≥ 3.

7. Computations of exterior (co)homology

In this section, we compute exterior homology of some finite groups.

7.1. Arbitrary finite group. Let G = {g1, g2, . . . , gn} be a finite group of order n, where
g1 = e is the identity element. Then we have

Λn−1(G) = modZ[G] 〈 g1 ∧ g2 ∧ · · · ∧ gn 〉 .

Lemma 7.1. Λn−2(G) = modZ[G] 〈 g2 ∧ g3 ∧ · · · ∧ gn 〉 .

Proof. Let G1 = {g2, . . . , gn}. We claim that giG1 6= gjG1 for i 6= j. If giG1 = gjG1,

then g−1
j giG1 = G1. Since gi 6= gj , then g−1

j gi 6= e, and hence g−1
i gj ∈ G1. The equality

G1 = g−1
j giG1 implies that e ∈ G1, which is a contradiction. Using the sets gG1, g ∈ G, one

can write uniquely up to a sign all n−1 forms g1∧· · ·∧ ĝi∧· · ·∧gn in Λn−2(G). The preceding
argument shows that all these forms can be obtained from g2 ∧ g3 ∧ · · · ∧ gn by multiplication
by some element g ∈ G. �

Let us set

α := g1 ∧ g2 ∧ · · · ∧ gn and β := g2 ∧ g3 ∧ · · · ∧ gn.

Next we derive a formula for the boundary map

∂n−1 : Λn−1(G) −→ Λn−2(G).

Let κ : G −→ Σn be the Cayley representation of G given by κ(g) = σ, where σ ∈ Σn and

σ(g1, . . . , gn) =
(
gσ(1), . . . , gσ(n)

)
.

Let π : Σn −→ Z2 be the natural projection

π(σ) = sign(σ).

A group G is called oriented if the composition π◦κ : G −→ Z2 is the trivial homomorphism. If
the composition π◦κ : G −→ Z2 is a non-trivial homomorphism, then G is called non-oriented.

Next we show that the definition does not depend on the linear order on the elements of

G. Let N =
n∑

i=1
gi be the norm element in the integral group ring Z[G] of G. Then

Theorem 7.2. The following formula holds:

∂n−1(α) =





Nβ if G is oriented,(
n∑

i=1
sign

(
κ(gi)

)
gi

)
β if G is non-oriented.
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Proof. If G is an oriented group, then for each i = 1, . . . , n, we have

α = g1 ∧ g2 ∧ · · · ∧ gn

= gi(g1 ∧ g2 ∧ · · · ∧ gn)

= (−1)i−1gi(g2 ∧ · · · ∧ gi ∧ g1 ∧ gi+1 ∧ · · · ∧ gn).

Hence, we get

g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn = (−1)i−1gi(g2 ∧ · · · ∧ gi ∧ gi+1 ∧ · · · ∧ gn)

= (−1)i−1giβ.

From this, we obtain

∂n−1(α) =
n∑

i=1

(−1)i−1g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

=

n∑

i=1

(−1)2(i−1)giβ

= Nβ.

If G is a non-oriented group, then for each i = 1, . . . , n the following equality holds

α = g1 ∧ g2 ∧ · · · ∧ gn

= sign
(
κ(gi)

)
gi(g1 ∧ g2 ∧ · · · ∧ gn)

= (−1)i−1sign
(
κ(gi)

)
gi(g2 ∧ · · · ∧ gi ∧ g1 ∧ gi+1 ∧ · · · ∧ gn).

Thus, we obtain

g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn = (−1)i−1sign
(
κ(gi)

)
gi(g2 ∧ · · · ∧ gi ∧ gi+1 ∧ · · · ∧ gn)

= (−1)i−1sign
(
κ(gi)

)
giβ.

This gives

∂n−1(α) =
n∑

i=1

(−1)i−1g1 ∧ · · · ∧ ĝi ∧ · · · ∧ gn

=

n∑

i=1

(−1)2(i−1)sign
(
κ(gi)

)
giβ

=

(
n∑

i=1

sign
(
κ(gi)

)
gi

)
β,

which is desired. �

Corollary 7.3. The following holds:

(1) A group being oriented (non-oriented) does not depend on the labelling of its elements.
(2) If the group G is non-oriented, then it has even order.

Proof. (1) Since changing the labelling of the elements of the group G only changes the signs

of the forms α, β and the sum
n∑

i=1
gi is an invariant of G, the result follows.

(2) If G is non-oriented, then there is an epimorphism of G onto the cyclic group of order
2, and hence the order of G is even. �
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To understand ∂n−1 : Λn−1(G) −→ Λn−2(G) we determine its kernel and image. Up to a
sign we can assume that

∂n−1(α) =

(
n∑

i=1

(−1)i−1gi

)
β.

Theorem 7.4. Let A be a right G-module.

(1) If G is oriented, then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
=

{
a

(
n∑

i=1

gi

)
⊗ β | a ∈ A

}
,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=

{
a⊗ α | a ∈ A, a

(
n∑

i=1

gi

)
⊗ β = 0

}
.

(2) If G is non-oriented, then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
=

{
a

(
n∑

i=1

(−1)i−1gi

)
⊗ β | a ∈ A

}
,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=

{
a⊗ α | a ∈ A, a

(
n∑

i=1

(−1)i−1gi

)
⊗ β = 0

}
.

Corollary 7.5. Let A be a trivial right G-module.

(1) If G is oriented, then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
= nA⊗ β,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=
{
a⊗ α | a ∈ A, na⊗ β = 0

}
,

(2) If G is non-oriented, then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
= 0,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

= A⊗ α.



EXTERIOR AND SYMMETRIC (CO)HOMOLOGY OF GROUPS 15

7.2. Finite cyclic group. Let G = 〈 t | tn = 1 〉 be a cyclic group of order n. Then its
exterior chain complex is

0 −→ Λn−1(G)
∂n−1

−→ Λn−2(G)
∂n−2

−→ · · ·
∂2−→ Λ1(G)

∂1−→ Λ0(G)
ε

−→ Z −→ 0,

where Λ0(G) = Z[G] and

Λk(G) = modZ[G]

〈
1 ∧ tp1 ∧ · · · ∧ tpk | 1 ≤ p1 < · · · < pk ≤ n− 1

〉

for 1 ≤ k ≤ n− 1.

Lemma 7.6. The following hold:

(1) 1 ∧ t ∧ · · · ∧ t̂p ∧ · · · ∧ tn−1 = (−1)p(n−p−1) tp+1(1 ∧ t ∧ · · · ∧ tn−2).
(2) Λn−2(G) = mod Z[G]

〈
1 ∧ t ∧ · · · ∧ tn−2

〉
.

Proof. For assertion (1), we compute

1 ∧ t ∧ · · · ∧ t̂p ∧ · · · ∧ tn−1 = tn ∧ tn+1 ∧ · · · ∧ tn+p−1 ∧ tp+1 ∧ · · · ∧ tn−1

= (−1)p(n−p−1)(tp+1 ∧ · · · ∧ tn−1 ∧ tn ∧ tn+1 ∧ · · · ∧ tn+p−1)

= (−1)p(n−p−1)tp+1(1 ∧ t ∧ · · · ∧ tn−2).

Assertion (2) follows from (1). �

Let A be a right G-module. Since Λn(G) = 0, we have

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
.

Lemma 7.7. The following formula holds

∂n−1(1 ∧ t ∧ · · · ∧ tn−1) =




n−1∑

p=0

(−1)p(n−p)tp+1


 (1 ∧ t ∧ · · · ∧ tn−2).

Proof. We directly compute

∂n−1(1 ∧ t ∧ · · · ∧ tn−1) =
n−1∑

p=0

(−1)p(1 ∧ t ∧ · · · ∧ t̂p ∧ · · · ∧ tn−1)

=




n−1∑

p=0

(−1)p(−1)p(n−p−1)tp+1


 (1 ∧ t ∧ · · · ∧ · · · ∧ tn−2)

=




n−1∑

p=0

(−1)p(n−p)tp+1


 (1 ∧ t ∧ · · · ∧ tn−2).

�

Note that if n ≡ 1 (mod 2), then p(n− p) ≡ 0 (mod 2) for all p = 0, 1, . . . , n− 1. Similarly,
if n ≡ 0 (mod 2), then p(n− p) ≡ p2 ≡ p (mod 2) for all p = 0, 1, . . . , n− 1. Thus,

n−1∑

p=0

(−1)p(n−p)tp+1 =





n−1∑
k=0

tk if n ≡ 1 (mod 2),

n−1∑
k=0

(−1)k+1tk if n ≡ 1 (mod 2).
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Hence, we have

∂n−1(1 ∧ t ∧ · · · ∧ tn−1) =





(
n−1∑
k=0

tk
)
(1 ∧ t ∧ · · · ∧ tn−2) if n ≡ 1 (mod 2),

(
n−1∑
k=0

(−1)k+1tk
)
(1 ∧ t ∧ · · · ∧ tn−2) if n ≡ 1 (mod 2).

The preceding formula for the map ∂n−1 : A ⊗
G
Λn−1(G) −→ A ⊗

G
Λn−2(G) gives

Proposition 7.8. Let A be a right G-module.

(1) If n ≡ 1 (mod 2), then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
=

{(
a

n−1∑

k=0

tk

)
⊗ (1 ∧ t ∧ · · · ∧ tn−2) | a ∈ A

}
,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=

{
a⊗ (1 ∧ t ∧ · · · ∧ tn−1) | a ∈ A,

(
a

n−1∑

k=0

tk

)
⊗ (1 ∧ t ∧ · · · ∧ tn−2) = 0

}
.

(2) If n ≡ 0 (mod 2), then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
=

{(
a

n−1∑

k=0

(−1)k+1tk

)
⊗ (1 ∧ t ∧ · · · ∧ tn−2) | a ∈ A

}
,

Hλ
n−1(G,A) =

{
a⊗ (1 ∧ t ∧ · · · ∧ tn−1) | a ∈ A,

(
a

n−1∑

k=0

(−1)k+1tk

)
⊗ (1 ∧ t ∧ · · · ∧ tn−2) = 0

}
.

Proposition 7.9. Let A be a trivial G-module.

(1) If n ≡ 1 (mod 2), then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
=
{
na⊗ (1 ∧ t ∧ · · · ∧ tn−2) | a ∈ A

}
,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=
{
a⊗ (1 ∧ t ∧ · · · ∧ tn−1) | a ∈ A, na⊗ (1 ∧ t ∧ · · · ∧ tn−2) = 0

}
.

(2) If n ≡ 0 (mod 2), then

Im
(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)
= 0,

Hλ
n−1(G,A) = Ker

(
∂n−1 : A ⊗

G
Λn−1(G) → A ⊗

G
Λn−2(G)

)

=
{
a⊗ (1 ∧ t ∧ · · · ∧ tn−1) | a ∈ A, na⊗ (1 ∧ t ∧ · · · ∧ tn−2) = 0

}
.

Note that if n ≡ 0 (mod 2), then

a⊗ t(1 ∧ t ∧ · · · ∧ tn−1) = a⊗ (−1)n−1(1 ∧ t ∧ · · · ∧ tn−1) = −a⊗ (1 ∧ t ∧ · · · ∧ tn−1).

In particular, for a trivial G-module A, we have

2a⊗ t(1 ∧ t ∧ · · · ∧ tn−1) = 0.
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Hence, if A is a trivial G-module, then Hλ
n−1(G,A) is homomorphic image of the group A/2A.

Conjecture 1. Let G be a cyclic group of order n and A a trivial G-module.

(1) If n ≡ 0 (mod 2), then

Hλ
n−1(G,A)

∼= A/2A,

(2) If n ≡ 1 (mod 2), then

Hλ
n−1(G,A)

∼= Ker(ϕn : A→ A),

where ϕn(a) = na for a ∈ A.

7.3. Cyclic groups of order 3 and 4. Next we compute exterior homology of cyclic groups
of order 3 and 4.

Proposition 7.10. If G =
〈
g | g3 = 1

〉
, then

Hλ
0 (G,A)

∼= A/(A∆[G]) ∼= AG,

Hλ
1 (G,A)

∼= AG/A(1 + g + g2),

Hλ
2 (G,A) =

{
a ∈ A | a(1 + g + g2) = 0

}
.

In particular, if A is a trivial right G-module, then

Hλ
0(G,A)

∼= A,

Hλ
1(G,A)

∼= A/3A,

Hλ
2(G,A) = Tor3(A) =

{
a ∈ A | 3a = 0

}
.

Proof. The exterior chain complex for G has the form

0 −→ Λ2(G)
∂2−→ Λ1(G)

∂1−→ Λ0(G)
ε

−→ Z −→ 0,

where

Λ0(G) = Z[G], Λ1(G) = modZ[G]

〈
1 ∧ g, 1 ∧ g2

〉
, Λ2(G) = modZ[G]

〈
1 ∧ g ∧ g2

〉
.

Notice that g(1 ∧ g2) = g ∧ g3 = g ∧ 1 = −1 ∧ g. Thus, we have

Λ1(G) = modZ[G] 〈1 ∧ g〉 ,

and hence Λi(G) are cyclic modules. Moreover, Λ0(G) and Λ1(G) are free G-modules whereas
the module Λ2(G) is not free since it has the relation

g(1 ∧ g ∧ g2) = g ∧ g2 ∧ 1 = 1 ∧ g ∧ g2.

Thus, Λ2(G) ∼= Z is the trivial G-module. Further

∂1(1 ∧ g) = g − 1, ∂2(1 ∧ g ∧ g
2) = (1 + g + g2)(1 ∧ g).

For a right G-module A, we determine the homology of the chain complex

0 −→ A ⊗
G
Λ2(G) −→ A ⊗

G
Λ1(G) −→ A ⊗

G
Λ0(G) −→ 0.

An easy computation gives

A ⊗
G
Λ0(G) ∼= A, A ⊗

G
Λ1(G) ∼= A, A ⊗

G
Λ2(G) ∼= AG,
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and

Im ∂1 =
{
a(g − 1) | a ∈ A

}
,

Ker ∂1 =
{
a⊗ (1 ∧ g) | a(g − 1) = 0, a ∈ A

}
,

Im ∂2 =
{
a(1 + g + g2)⊗ (1 ∧ g) | a ∈ A

}
,

Ker ∂2 =
{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a(1 + g + g2) = 0

}
.

Thus, we obtain

Hλ
0 (G,A)

∼= A/(A∆[G]) ∼= AG,

Hλ
1 (G,A)

∼= AG/A(1 + g + g2),

Hλ
2 (G,A) =

{
a ∈ A | a(1 + g + g2) = 0

}
.

In particular, for a trivial right G-module A, we get

Hλ
0(G,A)

∼= A,

Hλ
1(G,A)

∼= A/3A,

Hλ
2(G,A) = Tor3(A) =

{
a ∈ A | 3a = 0

}
.

�

Proposition 7.11. If G =
〈
g | g4 = 1

〉
, then

Hλ
0(G,A)

∼= A/(A∆[G]) ∼= AG,

Hλ
1(G,A) = A⊗ (1 ∧ g),

Hλ
2(G,A) =

{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a⊗ (2(1 ∧ g)− (1 ∧ g2)) = 0

}
,

Hλ
3(G,A) =

{
a⊗ (1 ∧ g ∧ g2 ∧ g3) | a ∈ A

}
,

and there exists an epimorphism A/2A −→ Hλ
3 (G,A).

In particular, if A is a trivial G-module, then

Hλ
0(G,A)

∼= A/(A∆[G]) ∼= A,

Hλ
1(G,A) = A⊗ (1 ∧ g),

Hλ
2(G,A) =

{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a⊗ (2(1 ∧ g)− (1 ∧ g2)) = 0

}
,

Hλ
3(G,A) =

{
a⊗ (1 ∧ g ∧ g2 ∧ g3) | a ∈ A

}
.

Further, there exists an epimorphism A −→ Hλ
3(G,A) given by a 7→ a⊗ (1∧ g ∧ g2 ∧ g3) such

that its kernel contains the submodule 2A.

Proof. The exterior chain complex for G has the form

0 −→ Λ3(G) −→ Λ2(G) −→ Λ1(G) −→ Λ0(G) −→ Z −→ 0,

where

Λ0(G) = Z[G],

Λ1(G) = modZ[G]

〈
1 ∧ g, 1 ∧ g2, 1 ∧ g3, g ∧ g2, g ∧ g3, g2 ∧ g3

〉
,

Λ2(G) = modZ[G]

〈
g ∧ g2 ∧ g3, 1 ∧ g2 ∧ g3, 1 ∧ g ∧ g3, 1 ∧ g ∧ g2

〉
,

Λ3(G) = modZ[G]

〈
1 ∧ g ∧ g2 ∧ g3

〉
.
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Since we have the identities

1 ∧ g3 = g4 ∧ g3 = −g3(1 ∧ g),

g ∧ g2 = g(1 ∧ g),

g ∧ g3 = g(1 ∧ g2),

g2 ∧ g3 = g2(1 ∧ g),

g ∧ g2 ∧ g3 = g(1 ∧ g ∧ g2),

1 ∧ g2 ∧ g3 = g4 ∧ g2 ∧ g3 = g2(1 ∧ g ∧ g2),

1 ∧ g ∧ g3 = g4 ∧ g5 ∧ g3 = g3(1 ∧ g ∧ g2),

it follows that

Λ1(G) = modZ[G]

〈
1 ∧ g, 1 ∧ g2

〉
,

Λ2(G) = modZ[G]

〈
1 ∧ g ∧ g2

〉
.

Note that the module Λ1(G) is not free since it has the relation g
2(1∧g2) = g2∧1 = −(1∧g2).

Next we compute the boundary maps

∂1(1 ∧ g) = g − 1,

∂1(1 ∧ g
2) = g2 − 1,

∂2(1 ∧ g ∧ g
2) = (1 + g)(1 ∧ g)− 1 ∧ g2,

∂3(1 ∧ g ∧ g
2 ∧ g3) = (−1 + g − g2 + g3)(1 ∧ g ∧ g2).

For a right G-module A, we now compute the homology of the chain complex

0 −→ A ⊗
G
Λ3(G) −→ A ⊗

G
Λ2(G) −→ A ⊗

G
Λ1(G) −→ A ⊗

G
Λ0(G) −→ 0.

A direct check shows that A ⊗
G
Λ0(G) ∼= A and

Im ∂1 = {a(g − 1) | a ∈ A} ,

Ker ∂1 =
{
a⊗ (1 ∧ g) + b⊗ (1 ∧ g2) | a(g − 1) + b(g2 − 1) = 0, a, b ∈ A

}
,

Im ∂2 =
{
a⊗ ((1 + g)(1 ∧ g)− (1 ∧ g2)) | a ∈ A

}
,

Ker ∂2 =
{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a⊗ ((1 + g)(1 ∧ g)− (1 ∧ g2)) = 0

}
,

Im ∂3 =
{
a(−1 + g − g2 + g3)⊗ (1 ∧ g ∧ g2) | a ∈ A

}
,

Ker ∂3 =
{
a⊗ (1 ∧ g ∧ g2 ∧ g3) | a ∈ A, a(−1 + g − g2 + g3)⊗ (1 ∧ g ∧ g2) = 0

}
.

This gives

Hλ
0(G,A)

∼= A/(A∆[G]) ∼= AG,

Hλ
1(G,A) =

{
a⊗ (1 ∧ g) + b⊗ (1 ∧ g2) | a(g − 1) + b(g2 − 1) = 0, a, b ∈ A

}

{a⊗ ((1 + g)(1 ∧ g)− (1 ∧ g2)) | a ∈ A}
,

Hλ
2(G,A) =

{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a⊗ ((1 + g)(1 ∧ g)− (1 ∧ g2)) = 0

}

{a(g2 + 1)(g − 1)⊗ (1 ∧ g ∧ g2) | a ∈ A}
,

Hλ
3(G,A) =

{
a⊗ (1 ∧ g ∧ g2 ∧ g3) | a ∈ A, a(g2 + 1)(g − 1)⊗ (1 ∧ g ∧ g2) = 0

}
.

Finally, suppose that A is a trivial G-module. Since

a⊗ (1 ∧ g) + b⊗ (1 ∧ g2) + b⊗ (2(1 ∧ g)− (1 ∧ g2)) = (a+ 2b)⊗ (1 ∧ g)
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and a+ 2b is an arbitrary element of A, we obtain

Hλ
1(G,A) = A⊗ (1 ∧ g),

Hλ
2(G,A) =

{
a⊗ (1 ∧ g ∧ g2) | a ∈ A, a⊗ (2(1 ∧ g)− (1 ∧ g2)) = 0

}
,

Hλ
3(G,A) =

{
a⊗ (1 ∧ g ∧ g2 ∧ g3) | a ∈ A

}
.

Further, since
g(1 ∧ g ∧ g2 ∧ g3) = −(1 ∧ g ∧ g2 ∧ g3),

we have
2a⊗ (1 ∧ g ∧ g2 ∧ g3) = 0.

Hence, there exists an epimorphism A/2A −→ Hλ
3(G,A). �

We conclude this section with some results on exterior cohomology. Let G be a finite
group of order n and A a left G-module. Applying HomG(−, A) functor on the exterior chain
complex

0 −→ Λn−1(G)
∂n−1
−→ Λn−2(G)

∂n−2
−→ · · ·

∂2−→ Λ1(G)
∂1−→ Λ0(G)

ε
−→ Z −→ 0,

gives the cochain complex

0 −→ HomG

(
Λ0(G), A

) δ0
−→ HomG

(
Λ1(G), A

) δ1
−→ · · ·

· · ·
δn−3

−→ HomG

(
Λn−2(G), A

) δn−2

−→ HomG

(
Λn−1(G), A

)
−→ 0,

where the coboundary map δk is induced by the boundary map ∂k+1. This gives

Hn−1
λ (G,A) = HomG

(
Λn−1(G), A

)
/ Im(δn−2).

If f ∈ HomG

(
Λn−2(G), A

)
, then

δn−2f(ω) = f
(
∂n−1(ω)

)

where ω ∈ Λn−1(G). Since Λn−1(G) = modZ[G] 〈α〉, using the formula for ∂n−1(α), we get

δn−2f(gα) =





gNf(β) if G is oriented,

g

(
n∑

i=1
sign

(
κ(gi)

)
gi

)
f(β) if G is non-oriented.

If N =
∑

g∈G g is the norm element, then gN = N for each g ∈ G. If G is non-oriented, then

g

(
n∑

i=1

sign
(
κ(gi)

)
gi

)
= sign

(
κ(g)

)
(

n∑

i=1

sign
(
κ(gi)

)
gi

)

for all g ∈ G, and hence

δn−2f(gα) =





Nf(β) if G is oriented,

sign
(
κ(g)

) ( n∑
i=1

sign
(
κ(gi)

)
gi

)
f(β) if G is non-oriented.

If A is a trivial left G-module, then

δn−2f(gα) =

{
nf(β) if G is oriented ,
0 if G is non-oriented.

Thus, we obtain the following result.
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Theorem 7.12. If f ∈ HomG

(
Λn−2(G), A

)
, then

δn−2f(gα) =





Nf(β) if G is oriented,

sign
(
κ(g)

) ( n∑
i=1

sign
(
κ(gi)

)
gi

)
f(β) if G is non-oriented.

In particular, if A is a trivial right G-module, then

δn−2f(gα) =

{
nf(β) if G is oriented,
0 if G is non-oriented.

As a consequence of the preceding result, we have

Corollary 7.13. If G is a non-oriented group and A a trivial G-module, then

Hn−1
λ (G,A) = HomG

(
Λn−1(G), A

)
.

8. (Co)restriction homomorphisms in cohomology

In this final section, we investigate restriction and corestriction homomorphisms for sym-
metric and exterior cohomologies of groups. Throughout the section, H is a subgroup of a
group G and A is a right G-module. In what follows, the cochain complex {C∗(G,A), δ∗} is
as in Subsection 2.2.

8.1. (Co)restriction homomorphism in classical cohomology. Since A is a G-module,
it can be viewed as an H-module. A projective resolution C∗ → Z of the trivial G-module
Z can be viewed as a projective resolution of the trivial H-module Z. Hence the natural
homomorphism of cochain complexes

HomG(C∗, A) −→ HomH(C∗, A)

gives a homomorphism of cohomology groups

resGH : Hn(G,A) −→ Hn(H,A),

for each n ≥ 0, called the restriction homomorphism.

Suppose that H is a subgroup of G of finite index k. Let {c1, c2, . . . , ck} be a fixed set of

representatives of left cosets of H in G. Then G =
⋃k

i=1 ciH. By convention if cH = H,
then c = 1. For an element g ∈ G, let ḡ denote the unique coset representative ci such that
ciH = gH. If g1, . . . , gn ∈ G, we set the notations

x1 = g1 . . . gn, x2 = g2 . . . gn, . . . , xn = gn.

It is well-known [13, Proposition 2.5.1] that there is a natural homomorphism of cochain
complexes

tr∗ : C∗(H,A) −→ C∗(G,A),

which for each n ≥ 0 is given by

(8.1.1) trn(σ)(g1, . . . , gn) =

k∑

i=1

x1ci σ
(
x1ci

−1g1x2ci, x2ci
−1g2x3ci, . . . , xnci

−1gnci
)

for g1, . . . , gn ∈ G and σ ∈ Cn(H,A). This yields the corestriction homomorphism

coresGH : H∗(H,A) −→ H∗(G,A)

given by
coresGH

(
[σ]
)
=
[
trn(σ)

]
,
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where σ ∈ Zn(H,A), the group of n-cocycles. Notice that xicj
−1gixi+1cj ∈ H and xncj

−1gncj ∈
H for each i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , k}.

Remark 8.1. The restriction and the corestriction homomorphisms for the classical coho-
mology of groups can also be defined using the Eckman-Shapiro [2, Proposition 6.2], which
crucially depends on the fact that the resolutions are free. However, this approach does not
work for our purpose since the resolutions used for defining exterior and symmetric cohomol-
ogy need not be free in general.

Remark 8.2. We can interpret the preceding explicit construction of the corestriction ho-
momorphism for the cochain complex (2.1.4). This will be useful in defining corestriction
homomorphism for symmetric and exterior cohomology. Recall the isomorphism (2.2.3)

ψn : HomG

(
Z[Gn+1], A

)
−→ Cn(G,A).

For each n ≥ 0, define

Trn : HomH

(
Z[Hn+1], A

)
−→ HomG

(
Z[Gn+1], A

)

as
Trn = (ψn)−1 ◦ trn ◦ψn.

More precisely, for g0, g1, . . . , gn ∈ G and σ ∈ HomH

(
Z[Hn+1], A

)
, we have

(8.1.2)

Trn(σ)(g0, g1, . . . , gn)

= (ψn)−1 ◦ trn ◦ψn(σ)(g0, g1, . . . , gn)

= g0. tr
n ◦ψn(σ)(g−1

0
g1, g

−1

1
g2, . . . , g

−1

n−1
gn)

= g0.
k∑

i=1

g−1

0
gnci ψ

n(σ)
(
g−1

0
gnci

−1

(g−1

0
g1)g

−1

1
gnci, g

−1

1
gnci

−1

(g−1

1
g2)g

−1

2
gnci, . . . , g

−1

n−1
gnci

−1

(g−1

n−1
gn)ci

)

= g0.
k∑

i=1

g−1

0
gnci σ

(
1, g−1

0
gnci

−1

(g−1

0
g1)g

−1

1
gnci, g

−1

0
gnci

−1

(g−1

0
g2)g

−1

2
gnci, . . . , g

−1

0
gnci

−1

(g−1

0
gn)ci

)
,

where g−1
0 gnci

−1
(g−1

0 gt)g
−1
2 gnci, g

−1
0 gnci

−1
(g−1

0 gn)ci ∈ H for each 1 ≤ t ≤ n and 1 ≤ i ≤ k.

8.2. (Co)restriction homomorphism in symmetric cohomology. Recall that, by Lemma
3.2, the cohomology of the cochain complex {KS∗(G,A), δ∗} is the symmetric cohomology
HS∗(G,A). The natural homomorphism of cochain complexes

KS∗(G,A) −→ KS∗(H,A)

gives the restriction homomorphism of symmetric cohomology groups

s-resGH : HS∗(G,A) −→ HS∗(H,A).

See also [9, Corollary 5.2] for an alternate description. The direct construction of corestriction
homomorphism for classical cohomology in Subsection 8.1 was used by Todea [12] to define a
corestriction homomorphism for symmetric cohomology.

Proposition 8.3. Let H be a finite index subgroup of a group G and A a G-module. Then
there is a corestriction homomorphism

s-coresGH : HSn(H,A) −→ HSn(G,A).
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Proof. For n ≥ 0 and σ ∈ KSn(H,A), it follows that Trn(σ) ∈ KSn(G,A). Further, as in [12,
Lemma 3.1], the following diagram commutes

KSn(H,A)
σ 7→Trn(σ)

//

δn

��

KSn(G,A)

δn

��

KSn+1(H,A)
σ 7→Trn+1(σ)

// KSn+1(G,A).

We define
s-coresGH : HSn(H,A) −→ HSn(G,A)

by setting
s-coresGH

(
[σ]
)
=
[
Trn(σ)

]
,

where σ ∈ KSn(H,A) is a symmetric n-cocycle. Thus, s-coresGH is the desired corestriction
homomorphism. �

8.3. (Co)restriction homomorphism in exterior cohomology. Recall that the coho-
mology of the cochain complex {K∗

λ(G,A), δ
∗} is the exterior cohomology H∗

λ(G,A). The
natural homomorphism of cochain complexes

K∗
λ(G,A) −→ K∗

λ(H,A)

gives the restriction homomorphism of exterior cohomology groups

λ-resGH : H∗
λ(G,A) −→ H∗

λ(H,A).

Proposition 8.4. Let H be a finite index subgroup of a group G and A a G-module. Then
there is a corestriction homomorphism

λ-coresGH : Hn
λ(H,A) −→ Hn

λ(G,A).

Proof. Let n ≥ 0 and σ ∈ Kn
λ(H,A). Then σ(h0, . . . , hi, hi, . . . , hn) = 0 for all 0 ≤ i < n

and h0, h1, . . . , hn ∈ H. It follows from the last equality in (8.1.2) that if g0, g1, . . . , gn ∈ G
with gj = gj+1 for some 0 ≤ j < n, then Trn(σ)(g0, . . . , gj , gj , . . . , gn) = 0, and hence
Trn(σ) ∈ Kn

λ(G,A). In addition, as in Proposition 8.3, the following diagram commutes

Kn
λ(H,A)

σ 7→Trn(σ)
//

δn

��

Kn
λ(G,A)

δn

��

Kn+1
λ (H,A)

σ 7→Trn+1(σ)
// Kn+1

λ (G,A).

Thus, we can define the corestriction homomorphism

λ-coresGH : Hn
λ(H,A) −→ Hn

λ(G,A)

by setting
λ-coresGH

(
[σ]
)
=
[
Trn(σ)

]
,

where σ ∈ Kn
λ(H,A) is an exterior n-cocycle. �

Questions. We conclude with the following questions:

(1) How are the groups H2(G,Z), Hλ
2 (G,Z) and HS2(G,Z) related, where Z is a trivial

G-module? In particular, is there a Hopf type formula for the second exterior and
symmetric homologies?

(2) Do there exist restriction-corestriction formulas for exterior and symmetric (co)homologies?
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(3) What can we say about the homomorphism λ∗ι∗?
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