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Pseudofinite Difference Fields

Tingxiang Zou∗(zou@math.univ-lyon1.fr)

Abstract

We study a family of pseudofinite difference fields in this paper. Their theories
have the strict order property and TP2. But the definable sets of these structures
still have some nice properties. In particular, we show that the coarse dimension of
the definable sets is definable and integer-valued.

1 Introduction

The class of various expansions of fields is one of the key objects of study in model
theory. Examples are differentially closed fields, Henselian valued fields, algebraically
closed fields with a generic automorphism, etc. There are lots of natural examples of
such structures that are intensively investigated in other areas of mathematics, while
the model theories of them often extends well-known results to a wider context and
sometimes, model theoretic techniques can help to discover new phenomenons.

We will consider expansions of pseudofinite fields with a distinguished automorph-
ism. The model theory of pseudofinite fields has been initiated by J. Ax in [1] and
subsequently developed in [7], [6], [9]. On the other hand, the model theory of fields
with a distinguished automorphism has also been investigated. The best understood one
is possibly ACFA: the theory of algebraically closed fields with a generic automorphism,
developed notably in [4], [5]. It is the model companion of the theory of difference fields
and, interestingly, the fixed field of any model of ACFA is a pseudofinite field. Based
on these, one might expect a theory of pseudofinite difference fields which is a mixture
of PSF (the theory of pseudofinite fields) and ACFA.

M. Ryten has studied a specific class of pseudofinite difference fields with the mo-
tivation of understanding the asymptotic behaviour of Suzuki groups and Ree groups.
In [12], he showed that given any prime p and a pair of coprime numbers m,n > 1,
the class {(Fpkp·m+n ,Frobpkp ) : kp ∈ N} is a one-dimensional asymptotic class. He also
gave a recursive axiomatization of asymptotic theories of such structures: PSF(m,n,p).
In a sense, PSF(m,n,p) is a mixture of PSF and ACFA. In fact, any model of PSF(m,n,p)

can be obtained as a definable substructure of some model of ACFA1, and the one-
dimensional asymptotic class result is based on the uniform estimate of the number of
solutions of definable sets of finite σ-degree in some model of ACFA in [11].

However PSF(m,n,p) is a bit restricted in the sense that in no model of PSF(m,n,p)

there are transformally transcendental elements, elements that satisfy no non-trivial

∗This author is supported by the China Scholarship Council and partially supported by ValCoMo
(ANR-13-BS01-0006).

1See [12, Lemma 3.3.6].
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difference polynomial. Our aim in this paper is to study a class of pseudofinite difference
fields with transformally transcendental elements.

Another class of closely related structures is the class of pairs of pseudofinite fields,
as the fixed field of a pseudofinite difference field is finite or pseudofinite. As noticed
by Macintyre and Cherlin, there are pairs of pseudofinite fields whose theory is not
decidable. This wild phenomenon also occurs in the structures that we study, but
we also gain some tameness properties of definable sets, see Theorem 9. We think
it is possible to have pseudofinite difference fields with transformally transcendental
elements whose theory is still decidable. But it is not clear what kind of theories they
are.

Acknowledgement: the author wants to thank her supervisor Frank Wagner for
initiating this interesting project and contributing lots of valuables ideas. She also wants
to thank Zoé Chatzidakis for answering various questions about pseudofinite fields and
ACFA, and Dario Garcia for suggestions of corrections on the previous version of this
paper.

2 Pseudofinite coarse dimension

We begin with some preliminaries of difference fields.

Definition 1. A difference field is a field (F,+, ·, 0, 1) together with a field automorph-
ism σ which is surjective.

The language of difference rings Lσ is the language of rings augmented by a unary
function symbol σ.

Definition 2. We fix an ambient difference field L.

• Let A be a subset. We denote by Aσ to be the smallest difference subfield con-
taining A and closed under σ and σ−1.

• Let E be a difference subfield and a be a tuple. The σ-degree, degσ(a/E), is the
transcendence degree of (E, a)σ over E.

• Let E be a difference subfield. If there is no non-zero difference polynomial over
E vanishing on a, then we say a is transformally transcendental over E if a is an
element in L and a is transformally independent over E if a is a tuple in L.

• Let E be a difference subfield and a be a tuple. The transformal transcendence
degree of a over E is defined as the maximal length of a transformally independent
subtuple of a over E.

We now give the definition of pseudofinite coarse dimension.

Definition 3. Let M be a pseudofinite structure over some non-principal ultrafilter
U and R∗ be the ultrapower of R along U . Then any pseudofinite set D ⊆ Mn has a
non-standard cardinality |D| ∈ R∗. Let α ∈ R∗.

• The coarse dimension on M normalised by α, denoted δδδα, is a function from
definable sets of M to R≥0 ∪ {∞}, defined as

δδδα(A) := st(
log |A|
α

),
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for A ⊆ Mn definable. When α := log |X| for some pseudofinite set X, we also
write δδδα as δδδX .

• We say δδδα is continuous if for any ∅-definable formula φ(x, y), for any r1 < r2 ∈ R,
there is some ∅-definable set D with

{a ∈M |y| : δδδα(φ(M |x|, a)) ≤ r1} ⊆ D ⊆ {a ∈M |y| : δδδα(φ(M |x|, a)) < r2}.

• We say δδδα is definable if δδδα is continuous and the set {δδδα(φ(M |x|, a)) : a ∈M |ȳ|} is
finite for any ∅-definable formula φ(x, y). By compactness, it is equivalent to the
following: for any ∅-definable formula φ(x, y) and a ∈ M |y|, there is ξ(y) ∈ tp(a)
such that

M |= ξ(b) if and only if δδδα(φ(M |x|, b)) = δδδα(φ(M |x|, a)).

Definition 4. Let M be a pseudofinite structure and α ∈ R∗. Let a be a tuple in M
and A ⊆M . Define

δδδα(a/A) := inf
{
δδδα(ϕ(M |x|)), ϕ(x) ∈ tp(a/A)

}
.

Fact 5. [8, Lemma 2.10] If δδδα is continuous, then δδδα is additive, i.e., for any a, b, A ⊆M
we have δδδα(a, b/A) = δδδα(a/A, b) + δδδα(b/A).

Remark: There is always a way to make δδδα continuous by expanding the language
of the structure M . However, this might add new definable sets to M , which could be
an inconvenience.

The following fact is a well-known result in the class of finite fields, which gives a
uniform estimate of number of solutions of definable sets in all finite fields. Our main
result will be based on it.

Fact 6. [6] Let L be the language of rings. For every formula ϕ(x, y) ∈ L with |x| =
n, |y| = m there are a constant Cϕ > 0 and a finite set Dϕ ⊂ {0, . . . , n}×R>0 such that
the following holds:

For any finite field Fq and a ∈ (Fq)m, if ϕ((Fq)n, a) 6= ∅, then there is some (d, µ) ∈ D
such that

||ϕ((Fq)n, a)| − µ · qd| ≤ Cϕ · qd−
1
2 .

Now we start to define a special class of pseudofinite difference fields and study the
model theoretic properties of them.

Definition 7. Let Lσ be the language of difference rings. Let ϕ(x, y) be a formula
defined in Lσ without parameters. For any prime p, define ϕp(x, y) as the result of
replacing all occurrence of σ(t) by tp. Clearly, ϕp(x, y) is a formula in the language of
rings L.

Let P be the set of all primes. For any formula ϕ(x, y) in Lσ and p ∈ P, consider
ϕp(x, y) ∈ L. There are Cϕp and the finite set Dϕp as stated in Fact 6. Let

Eϕp :=
⋃

0≤d≤|x|

{µ : (d, µ) ∈ Dϕp}.
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Define

Np
ϕ(x,y) := max

{
µ,

1

µ
, 2 logp

2Cϕp

µ
: µ ∈ Eϕp

}
.

Let
f(`, p) := max{Np

ϕ(x,y) : |ϕ(x, y)| ≤ `}. (1)

Definition 8. Define the family S of pseudofinite difference fields as

S :=

∏
p∈P

(Fpkp ,Frobp)/U : kp ≥ f(p, p) for all p ∈ P, U a non-principal ultrafilter

 .

Theorem 9. Let (F,Frob) :=
∏
p∈P(Fpkp ,Frobp)/U ∈ S. Then δδδF , the pseudofinite

coarse dimension normalised by |F |, is integer-valued on all Lσ-definable set .

Proof. Let ϕ(x, y) be an Lσ-formula. Consider a parameter a = (ap)p∈P/U ∈ F |y|. For
any p ∈ P, we know that there are (dkp , µkp) ∈ {0, . . . , |x|}×R>0 and Cϕp ≥ 0 such that

for ap ∈ (Fpkp )|y|, we have

||ϕp((Fpkp )|x|, ap)| − µkp · p
kp·dkp | ≤ Cϕp · pkp(dkp−

1
2

).

We say that ϕp(x, ap) has dimension dkp in Fpkp . As dkp ≤ |x|, there is exactly one
d ∈ {0, . . . , |x|} with {p ∈ P : ϕp(x, ap) has dimension d in Fpkp} ∈ U . We claim that

δδδF (ϕ(F |x|, a)) = d.
Proof of the claim: Note that for any p ∈ P and c ∈ (Fpkp )|x|, we have

Fpkp |= ϕp(c, ap) if and only if (Fpkp ,Frobp) |= ϕ(c, ap).

Let I = {p ∈ P : p > |ϕ(x, y)| and ϕp(x, ap) has dimension d in Fpkp}. Clearly,
I ∈ U . Then for any p ∈ I,

||ϕp((Fpkp )|x|, ap)| − µkp · pkp·d| ≤ Cϕp · pkp(d− 1
2

),

and kp ≥ f(p, p) ≥ max{µkp , 1
µkp

, 2 logp
2Cϕp

µkp
}.

As kp ≥ 2 logp
2Cϕp

µkp
, we get

Cϕp · pkp(d− 1
2

) ≤ 1

2
µkp · pkp·d.

Therefore,
1

2
µkp · pkp·d ≤ |ϕp((Fpkp )|x|, ap)| ≤

3

2
µkp · pkp·d.

Furthermore, by the definition of kp, we have 1
kp
< µkp < kp. Hence,

1

2kp
· pkp·d ≤ |ϕp((Fpkp )|x|, ap)| ≤ 2kp · pkp·d.

This implies

d− log(2kp)

kp · log p
≤

log |ϕp((Fpkp )|x|, ap)|
log(pkp)

≤ d+
log(2kp)

kp · log p
.
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Obviously, we have

lim
p→∞, p∈I

log |ϕp((Fpkp )|x|, ap)|
log(pkp)

= d.

Therefore, δδδF (ϕ(F |x|, a)) = d.

Remark: This proof works also for pseudofinite difference fields of characteristic
p > 0, that is, for

∏
i∈I(Fpki ,Frobpti )/U provided ki >> ti for almost all i.

In the following, we will show that the coarse dimension δδδF is definable using the
field structure. To prove this, we first need a lemma.

Lemma 10. LetM be a pseudofinite structure in the language LM and X be a pseudofin-
ite subset of M . Let ϕ(x, y) be an LM -formula with |x| = m and |y| = n. Suppose
there is some r ∈ R≥0 such that for all b ∈ Mm we have δδδX(ϕ(Mn, b)) = r whenever
ϕ(Mn, b) 6= ∅. Then

δδδX(ϕ(Mn+m)) = r + δδδX(∃xϕ(x,Mm)).

Proof. Suppose (M,X) =
∏
i∈I(Mi, Xi)/U for some ultrafilter U on an index set I

and Xi ⊆ Mi finite sets. For each i ∈ I pick bmaxi and bmini in (Mi)
m such that

|ϕ((Mi)
n, bmaxi )| is maximal and |ϕ((Mi)

n, bmini )| is minimal non-zero respectively. Clearly,
we have

|ϕ((Mi)
n, bmini )| · |∃xϕ(x, (Mi)

m)| ≤ |ϕ((Mi)
n+m)| ≤ ϕ((Mi)

n, bmaxi )| · |∃xϕ(x, (Mi)
m)|.

Let bmax := (bmax
i )i∈I/U ∈ M and bmin := (bmini )i∈I/U ∈ M respectively. By assump-

tion, δδδX(ϕ(Mn, bmax)) = δδδX(ϕ(Mn, bmin)) = r. Therefore, for any ε > 0, there is some
J ∈ U such that for all i ∈ J , we have

|Xi|r−ε ≤ |ϕ((Mi)
n, bmini )| ≤ |ϕ((Mi)

n, bmaxi )| ≤ |Xi|r+ε.

Multiplying each term by |∃xϕ(x, (Mi)
m)| and combining the inequality before, we get

|Xi|r−ε · |∃xϕ(x, (Mi)
m)| ≤ ϕ((Mi)

n+m) ≤ |Xi|r+ε · |∃xϕ(x, (Mi)
m)|.

Therefore,

r − ε+
log |∃xϕ(x, (Mi)

m)|
log |Xi|

≤ log |ϕ((Mi)
n+m)|

log |Xi|
≤ r + ε+

log |∃xϕ(x, (Mi)
m)|

log |Xi|
.

By the definition of δδδX we conclude that

r + ε+ δδδX(∃xϕ(x,Mm)) ≤ δδδX(ϕ(Mn+m)) ≤ r − ε+ δδδX(∃xϕ(x,Mm)).

Since ε is arbitrary, we get the desired result.

Corollary 11. Let M be a pseudofinite structure in the language L and let X ⊆ Mn

be a pseudofinite subset. Suppose there is some r ∈ N such that for any L-formula
ϕ(x, y) with |x| = 1 over ∅ and any b ∈ M |y|, we have δδδX(ϕ(M, b)) ∈ {0, 1, . . . , r} and
for each i ≤ r, the set

{b ∈M |y| : δδδX(ϕ(M, b)) = i}
is ∅-definable. Then for any formula ψ(x, y) and any tuple c ∈M |y|, we have

δδδX(ψ(M |x|, c)) ∈ {0, . . . , |x| · r}.

Moreover, δδδX is definable.
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Proof. We use induction on the length of |x|. The case |x| = 1 is given by assumption.
Suppose the conclusion holds for |x| = n, we prove it for |x| = n + 1. Let

ψ(x0, . . . , xn, y) be a formula with |xi| = 1 for 0 ≤ i ≤ n. We know that there are
∅-definable θ`(x1, . . . , xn, y) with ` ∈ {0, 1, . . . , r} which define respectively the sets

{(x1, . . . , xn, y) ∈Mn+|y| : δδδM (ψ(M,x1, . . . , xn, y)) = ` and ψ(M,x1, . . . , xn, y) 6= ∅}.

For any c ∈M |y|, note that ψ(Mn+1, c) is the disjoint union of

{ψ(Mn+1, c) ∧ θi(Mn, c) : i ∈ {0, 1, . . . , r}},

and Lemma 10 applies to each of the formulas. Hence,

δδδX(ψ(Mn+1, c)∧θi(Mn, c)) = i+δδδX(∃x0(ψ(x0,M
n, c)∧θi(Mn, c)) = i+δδδX(θi(M

n, c)).

By induction hypothesis, δδδX(θi(M
n, c)) ∈ {0, . . . , r · n}. Therefore,

δδδX(ψ(Mn+1, c)) = max{i+ δδδX(θi(M
n, c)) : 0 ≤ i ≤ r} ∈ {0, . . . , r · (n+ 1)}.

Again by induction hypotheses, for any k ∈ {0, . . . , r ·n} there are ∅-definable ξki (y)
with i ∈ {0, . . . , r}, which define the corresponding sets

{y ∈ F |y| : δδδX(θi(M
n, y)) = k and θi(M

n, y) 6= ∅}.

Then the formula ∨
0≤i≤r, 0≤j≤r·n, i+j=t

ξji (y)

defines the set

{y ∈Mn+1 : δδδM (ψ(Mn+1, y)) = t and ψ(Mn+1, y) 6= ∅}

for any t ∈ {0, . . . , r · (n+ 1)}.

Lemma 12. Let M = (F,+, ·, 0, 1, . . .) be a pseudofinite field with some extra struc-
tures. Let δδδF be the pseudofinite coarse dimension normalised by |F |. Suppose for
any formula ϕ(x, y) with |x| = 1 we have δδδF (ϕ(F, b)) ∈ {0, 1} for any tuple b ∈ F |y|.
Then δδδF is definable and for any formula ψ(x, y) and any tuple c ∈ F |y|, we have
δδδF (ψ(F |x|, c)) ∈ {0, . . . , |x|}.

Proof. By Corollary 11, we only need to show definability when |x| = 1.
For any ψ(x, y), let

θψ(y) := ∀z∃x1∃x2∃x3∃x4 (
∧

1≤i≤4

ψ(xi, y) ∧ x3 6= x4 ∧ z = (x1 − x2) · (x3 − x4)−1).

We claim that θψ(c) if and only if δδδF (ψ(F, c)) = 1 for all c ∈ F |y|. Suppose θψ(c) holds,
then clearly there is a surjection from (ψ(F, c))4 to F . Therefore, δδδF (ψ(F, c)) ≥ 1

4 . By
assumption, δδδF (ψ(F, c)) ∈ {0, 1}. Hence, δδδF (ψ(F, c)) = 1. On the other hand, if ¬θψ(c)
holds, there is a ∈ F such that for any x1, x2, x3, x4 ∈ ψ(F, c) we have a 6= (x1−x2)(x3−
x4)−1 whenever x3 6= x4. Let f : (ψ(F, c))2 → F be defined as f(x1, x2) := x1 + ax2.
Then f is an injection. Therefore, δδδF (ψ(F, c)) ≤ 1

2 . We conclude that δδδF (ψ(F, c)) = 0.
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Hence, the set

{c ∈ F |y| : δδδF (ψ(F, c)) = 0 and ψ(F, c) 6= ∅}

is defined by ¬θψ(y) ∧ ∃xψ(x, y). And θψ(y) defines the set

{c ∈ F |y| : δδδF (ψ(F, y)) = 1}.

Corollary 13. For any pseudofinite difference field (F,Frob) ∈ S, the coarse dimension
δδδF is definable and integer-valued for all Lσ-definable sets. Moreover, δδδF is additive in
the language Lσ.

Proof. By Theorem 9, for any Lσ-formula ψ(x, y) with |x| = 1, any b ∈ F |y| we have

δδδF (ψ(F, b)) ∈ {0, 1}.

Applying Lemma 12 we get the desired result.

Remark: In general, the coarse dimension does not have the property that a definable
set has dimension 0 if only if it is finite. Similarly, in a group, we don’t necessarily have
that a subgroup of infinite index will have smaller dimension.

Example 14. Let (F,Frob) =
∏
p∈P(Fpkp ,Frobp)/U ∈ S. Define a function f : F× →

F× as
f(x) := x−1 · Frob(x).

It is easy to see that f is a group homomorphism. Therefore, the image T := f(F×) is
a definable subgroup of F×. There is a corresponding fp : (Fpkp )× → (Fpkp )× and Tp :=

fp((Fpkp )×) for any p ∈ P. Since the kernel of fp is (Fp)×, we get [(Fpkp )× : Tp] = p− 1.

Hence, T has infinite index in F×, though δδδF (T ) = δδδF (F×).

3 Coarse dimension and transformal transcendence degree

In the following, we will try to understand whether there are some algebraic properties
of difference fields that are intrinsic to the coarse dimension δδδF .

Let us start with an observation. Given (F,Frob) = (Fpkp ,Frobp)/U ∈ S. Let

(F̃ ,Frob) :=
∏
p∈P

(F̃p,Frobp)/U ,

then (F̃ ,Frob) is a model of ACFA, which contains (F,Frob) as a substructure.
In ACFA, there is a notion of dimension which is also integer-valued, and it is

induced by SU-rank.
Let k be a saturated model of ACFA.

Definition 15. Let a be a finite tuple in k and A ⊆ k. Then SU(a/A) = ω · k + n for
some 0 ≤ k ≤ |a|. Define the rank-dimension dimrk of tp(a/A) as dimrk(a/A) := k.

7



Remark: dimrk(a/A) coincides with the transformal transcendence degree of a over
Aσ (the difference field generated by A).

Now we have two integer-valued additive dimensions on definable sets: dimrk and the
coarse dimension δδδF . Note further that dimrk(F ) = δδδF (F ) = 1 and dimrk(Fix(F )) =
δδδF (Fix(F )) = 0. It is natural to ask whether they coincide on all definable sets.

One of the inequalities is obvious.

Lemma 16. Let (F,Frob) ∈ S. For any tuple a ∈ F and subset A ⊆ F we have
δδδF (a/A) ≤ dimrk(a/A).

Proof. Note that by the additivity of both dimrk and δδδF , we only need to prove the
inequality when a is a single element. We may assume that A = Aσ. By [4], we know
that SU(a/A) = ω if and only if a is transformally transcendental over A if and only if
degσ(a/A) =∞. Therefore, we need to show that if degσ(a/A) <∞ then δδδF (a/A) = 0.

Suppose degσ(a/A) < ∞. Then there is some m and a non-trivial polynomial
f(x; y1, . . . , ym) with parameters in A, such that f(σm(a);σm−1(a), . . . , a) = 0. Take
any prime p ∈ P and let gp(x) := f(xp

m
;xp

m−1
, . . . , x). Then |gp(Fpkp ) = 0| ≤ pC·m for

some constant C depending on f . Let ϕ(x) := f(σm(x);σm−1(x), . . . , x) = 0. Then
ϕ(x) defines exactly the set gp(Fpkp ) = 0 in (Fpkp ,Frobp). Therefore, δδδF (ϕ(F )) = 0. As
a ∈ ϕ(F ), we get δδδF (a/A) = 0.

We conjecture that in general the two dimensions coinside. But at the moment,
we can only prove the case for existential formulas. To prove this, we will use the
estimation of the number of solutions of formulas in ACFA, which is given in [11] based
on Hrushovski’s twisted Lang-Weil estimate.

Definition 17. Let ϕ(x) be a difference formula with parameters A. We define

degσ(ϕ(x)) := max{degσ(a/Aσ) : ϕ(a) holds}.

Remark: Given a formula ϕ(x, y), seen as a family of definable sets parametrised by
the variable y, by [4, Section 7], the set {y : degσ(ϕ(x, y)) = d} is definable.

Fact 18. [11, Theorem 1.1] and [12, Theorem 2.1.1] Let Kq := (F̃p,Φq : x 7→ xq) where q
is a power of the prime number p. Let ϕ(x, y) be a formula in the language of difference
rings, with x = (x1, . . . , xn) and y = (y1, . . . , ym). Then there is a positive constant C
and a finite set D of pairs (d, µ) with D ⊆ Z and µ ∈ Q+, such that in each field Kq

and each y0 ∈ Km
q , one of the following happens:

1. There are some (d, µ) ∈ D such that degσ(ϕ(x, y0)) = d, and we have the estimate

||ϕ(Kn
q , y0)| − µqd| ≤ Cqd−

1
2 .

2. degσ(ϕ(x, y0)) =∞ and |ϕ(Kn
q , y0)| =∞.

Lemma 19. Let a be a tuple in F and A ⊆ F . Suppose the coarse dimension δδδF (a/A)
is witnessed by an existential formula, that is, there is some formula ∃yψ(x, y) with
ψ(x, y) quantifier-free (possibly with parameters), such that δδδF (∃yψ(F |x|, y)) = δδδF (a/A)
and ∃yψ(x, y) ∈ tp(a/A). Then δδδF (a/A) = dimrk(a/A).
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Proof. We can write a = a1a2 where δδδF (a/A) = δδδF (a1/A) = |a1|. Suppose that
(F,Frob) |= ϕ(a1, a2, a

′) with a′ ⊆ A witnesses the coarse dimension of a over A and
that ϕ(x1, x2, y) := ∃zψ(x1, x2, y, z), where ψ(x1, x2, y, z) is quantifier-free. We claim
that δδδF (ϕ(a1, F

|x2|, a′)) = 0. If not, then let b ∈ F |x2| such that (F,Frob) |= ϕ(a1, b, a
′)

and δδδF (b/a′, a1) = δδδF (ϕ(a1, F
|x2|, a′)) > 0. Then

δδδF (a1, b/a
′) = δδδF (a1/a

′) + δδδF (b/a′, a1) > δδδF (a1/a
′) = δδδF (a/a′).

Since (F,Frob) |= ϕ(a1, b, a
′), we get δδδF (ϕ(F |x1x2|, a′)) ≥ δδδF (a1, b/a

′) > δδδF (a/a′). This
contradicts our assumption that ϕ(x1, x2, a

′) witnesses δδδF (a/a′).
By Lemma 16, we have

|a1| = δδδF (a1/a
′) ≤ dimrk(a1/a

′) ≤ |a1|.

Therefore, dimrk(a1/a
′) = δδδF (a1/a

′) = δδδF (a/a′). To show that dimrk(a/a
′) = δδδF (a/a′),

we only need to show that dimrk(a2/a
′, a1) = 0. Therefore, we need to prove the

following claim:
Let ϕ(x, b) (with b ∈ F a tuple) be an existential formula in the language of diffence

rings such that δδδF (ϕ(x, b)) = 0. Then for any tuple a ∈ F with (F,Frob) |= ϕ(a, b), we
have degσ(a/b) <∞.

Suppose a = (ap)p∈P/U and b = (bp)p∈P/U . Let ϕp(x, y) be defined as in Definition
7. As δδδF (a/A) = 0, by our construction, there is some V in the ultrafilter U which has
the following property: for all p ∈ V , there is a constant Cp such that for all k with
bp ∈ Fpk , we have |ϕp(Fpk , bp)| ≤ Cp.

We claim that |ϕp(F̃p, bp)| ≤ Cp. Suppose not, then take {a0, a1, . . . , adCpe} ⊆
ϕp((F̃p)|x|, bp). As ϕ(x, y) is existential, so is ϕp(x, y). We may suppose ϕp(x, y) =
∃zψp(x, y, z). For each ai, pick some ei ∈ (F̃p)|z| such that F̃p |= ψp(ai, bp, ei). Let Fpk
be a large finite field contains all the points {a0, . . . , adCpe, e0, . . . , edCpe, bp}, then we
have

card(ϕp(Fpk , bp)) ≥ dCpe+ 1 > Cp,

contradiction.
Let Kp := (F̃p,Φp : x 7→ xp). Note that ϕp(F̃p, bp) is exactly the set ϕ(Kp, bp). Then

by Fact 18 and that |ϕ(Kp, bp)| = |ϕp(F̃p, bp)| <∞ for each bp, we get a finite set D of
pairs (d, µ) ∈ N × Q+ such that for any bp, there is some (d, µ) ∈ D and the following
holds:

||ϕ(Kp, bp)| − µpd| ≤ Cpd−
1
2 .

Therefore, there is some J ∈ U and one particular pair (d, µ) ∈ D such that for any p ∈
J , we have |card(ϕ(Kp, bp))−µpd| ≤ Cpd−

1
2 . By Fact 18 we know that degσ(ϕ(x, bp)) = d

for any bp ∈ J . By the subsequent remark, we know there is some formula ϕd(y), such
that ϕd(y) holds if and only if degσ(ϕ(x, y)) = d in a difference field. Therefore, ϕd(bp)
holds in each Kp with p ∈ J , hence ϕd(b) holds in (F̃ ,Frob). As ϕ(x, y) is an existential
formula, (F,Frob) |= ϕ(a, b) implies (F̃ ,Frob) |= ϕ(a, b). We conclude that

degσ(a/b) ≤ degσ(ϕ(x, b)) = d.

The previous Lemma says essentially that if a set is definable by a pure existential
formula, then all the elements of maximal coarse dimension, the “generic elements”, can
be controlled by their quantifier-free type. It would be nice to also have some control
over those “non-generic” elements. It turned out that this can be done.
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Lemma 20. Let ϕ(x) := ∃yψ(x, y) be an Lσ-formula such that ψ(x, y) is quantifier-free
with parameters in the finite set A ⊆ F . Then for any a ∈ F |x| with (F,Frob) |= ϕ(a),
we have dimrk(a/A) ≤ δδδF (ϕ(F |x|)).

Proof. Let n be the length of the tuple x in ϕ(x). Suppose a ∈ Fn and (F,Frob) |= ϕ(a).

Denote the set of complete quantifier-free n-types over A as Sqfn (A). Hence, there is

some p ∈ Sqfn (A) such that (F,Frob) |= ϕ(a) ∧ p(a). Clearly,

t := δδδF ({ϕ} ∪ p) := min{δδδF (ψ(Fn) ∧ ϕ(Fn)) : ψ ∈ p} ≤ δδδF (ϕ(Fn)).

By the extension property (every partial type extents to a complete type of the same
coarse dimension) and ω-saturation of (F,Frob), there is some a′ ∈ Fn such that
δδδF (a′/A) = δδδF ({ϕ} ∪ p) = t. Hence, δδδF (a′/A) = δδδF (ϕ(Fn)∧ψ(Fn)) for some ψ(x) ∈ p.
As p is quantifier-free, by Lemma 19, we have dimrk(a

′/A) = t. Since a and a′ have the
same quantifier-free type p over A, we must have

dimrk(a/A) = dimrk(a
′/A) = t ≤ δδδF (ϕ(Fn)).

This partial connection between dimrk and δδδF already can help us to establish more
properties of (F,Frob). The strategy is the following: we start with a definable object in
(F,Frob). If we have the control over dimrk of elements in it, then we work in (F̃ ,Frob).
As it is a model of ACFA, we can use all the model theoretic tools there. In the end,
we transfer the results in (F̃ ,Frob) back to those in (F,Frob).

Fact 21. Let (k, σ) be a model of ACFA. Let G be a definable subgroup of some
algebraic group H(k). Let aclσ denote the algebraic closure in ACFA. Suppose G is
definable over E = aclσ(E). Then G is contained in a group G̃ which is quantifier-free
definable over E and has the same SU-rank as G.

Remark: This statement can be found in [3, Section 6.5].
Notation: For a difference formula ϕ(x) with parameters in A ⊆ (F̃ ,Frob). Let

d = max{n ≤ |x| : SU(a/A) = ω · n+m, for some a ∈ ϕ((F̃ )|x|)}.

We define dimrk(ϕ(x)) := d.

Lemma 22. Let (F,Frob) ∈ S. Given a ∈ Fn and A ⊆ F . Suppose dimrk(a/A) = k.
Then there is a finite set {P1(x), . . . , Pm(x)} of difference polynomials with parameters
in A such that (F,Frob) |=

∧
i≤m Pi(a) = 0 and dimrk(

∧
i≤m Pi(x) = 0) = k.

Proof. We may write a into two parts a1 and a2 where dimrk(a1/A) = |a1| = k, and
dimrk(a2/Aa1) = 0. Let (Aa1)σ be the difference field generated by A ∪ {a1}. Suppose
a2 := a1

2 · · · am2 with each |ai2| = 1. Since dimrk(a
i
2/Aa1) = 0 for each i ≤ m, we get

degσ(ai2/(Aa1)σ) < ∞. Therefore, there is a difference polynomial Pi(yi, bi) with bi ⊆
(Aa1)σ such that ai2 vanishes on it. Write bi = fi(a1) where fi is a difference polynomial
with parameters in A. We should rearrange the order of variables such that x0, . . . , x|a|−1

corresponds to the order of a. Suppose a1 = al1 · · · al|a1| and a2 = at1 · · · at|a2| where aj

is the jth digit of a. Now it is easy to see that a satisfies the formula∧
i≤m

Pi(xti , fi(xl1 , . . . , xl|a1|)) = 0,

and dimrk(
∧
i≤m Pi(xti , fi(xl1 , . . . , xl|a1|)) = 0) = k.

10



Corollary 23. Let (F,Frob) ∈ S. Suppose G is a definable (possibly with parameters
in F ) subgroup of some algebraic group H(F ) ⊆ F t. If G is defined by some existential
formula, then there is a quantifier-free definable group Ḡ ≥ G (defined with parameters
in F ), such that δδδF (Ḡ) = δδδF (G).

Proof. Suppose G is defined over the finite set A ⊆ F with the formula ϕG. Let
k := δδδF (G).

Let ΠA be the set of difference polynomials in t-variables with coefficients in A.
By Lemma 22, for any element a ∈ G, there are some {Pa,i(x) : 1 ≤ i ≤ ma} ⊂ ΠA

such that (F,Frob) |=
∧
i≤ma

Pa,i(a) = 0 and dimrk(
∧
i≤ma

Pa,i(x) = 0) = dimrk(a/A).
By Lemma 20, dimrk(a/A) ≤ δδδF (G) = k.

Therefore, ϕG(x) |=
∨
a∈G(

∧
i≤ma

Pa,i(x) = 0). (The right hand-side is a countable
disjunction, since Pa,i(x) = 0 are in Lσ ∪ {A} and A is a finite set.) By compactness,
there is some finite set a0, . . . , al such that

ϕG(x) |=
∨
j≤`

(
∧

i≤maj

Paj ,i(x) = 0).

As dimrk(
∧
i≤maj

Paj ,i(x) = 0) ≤ k for each j ≤ `, we get

dimrk(
∨
j≤`

(
∧

i≤maj

Paj ,i(x) = 0)) ≤ k.

Write the formula
∨
j≤`(

∧
i≤maj

Paj ,i(x) = 0) into the conjunctive normal form∧
u≤N

∨
v≤Mu

(Pu,v(x) = 0),

for some natural numbers N,Mu, and each Pu,v(x) ∈ {Paj ,i(x) : j ≤ `, i ≤ maj}. Hence,
for each u ≤ N , we have ϕG(x) |= (

∏
v≤Mu

Pu,v(x)) = 0.

Let GF̃ be closure of G under the σ-Zariski topology in (F̃ ,Frob), that is, if we

define IF̃ (G) = {p ∈ F̃ [x]σ : p(g) = 0 for all g ∈ G}, then

GF̃ := {h ∈ H(F̃ ) : p(h) = 0 for all p ∈ IF̃ (G)}.

As prime σ-ideals are finitely generated, GF̃ is quantifier-free definable. Note that∏
v≤Mu

Pu,v(x) ∈ IF̃ (G) for each u ≤ N . Since

dimrk(
∧
u≤N

(
∏
v≤Mu

Pu,v(x) ) = 0 ) = dimrk(
∨
j≤`

(
∧

i≤maj

Paj ,i(x) = 0) ) ≤ k,

we get dimrk(GF̃ ) ≤ k.

Take an automorphism δ of (F̃ ,Frob) fixing F . Then G = δ(G) ⊆ δ(GF̃ ). As

δ(GF̃ ) is also closed under the σ-Zariski topology in (F̃ ,Frob), we get GF̃ ⊆ δ(GF̃ )
which implies GF̃ = δ(GF̃ ). Therefore, GF̃ is invariant under automorphisms fixing F ,
hence it is definable over F . Let E = aclσ(F ) = F alg, then by Fact 21, there is GE
which contains GF̃ , has the same SU -rank as GE and is quantifier-free definable over

11



E. In fact, GE is the smallest closed set containing GF̃ in the σ-Zariski topology in
(F alg,Frob �Falg).

Suppose GE is defined by∧
0≤j≤`

Pj(x, σ(x), . . . , σm(x), aj) = 0,

where Pj are polynomials in the language of rings and aj ⊆ F alg. For any 0 ≤ j ≤ `,

let {a0
j , . . . , a

Nj

j } ⊆ (F alg)|aj | be the set of all field conjugates of aj over F . Note that
for any g ∈ G we have g, σ(g), . . . , σm(g) ⊆ F . Hence, Pj(g, σ(g), . . . , σm(g), aj) = 0 if
and only if Pj(g, σ(g), . . . , σm(g), aij) = 0 for any g ∈ G and 0 ≤ i ≤ Nj .

Let Bj be the set in H(F̃ ) vanishing on {Pj(x, σ(x), . . . , σm(x), aij) : 0 ≤ i ≤ Nj}.
Then from the above argument, we know Bj ⊇ G. As Bj is closed under the σ-Zariski
topology in (F̃ ,Frob), we get Bj ⊇ GF̃ . Similarly, by Bj being closed under the σ-
Zariski topology in (F alg,Frob �Falg), we get Bj ⊇ GE .

Now consider the following formula∧
0≤j≤`

∧
0≤i≤Nj

Pj(x, . . . , σ
m(x), aij) = 0.

It defines
⋂
j≤`Bj . By the argument above, we know that

⋂
j≤`Bj ⊇ GE . Clearly, we

also have
⋂
j≤`Bj ⊆ GE . Hence, the formula above also defines GE in H(F̃ ). Now we

show that GE can be made quantifier-free definable over F .
Fix 0 ≤ j ≤ `, consider the formula∧

0≤i≤Nj

Pj(x, x1, . . . , xm, a
i
j) = 0,

where x1, . . . , xm are distinct tuples of variables all have the same length as x. For
1 ≤ k ≤ Nl + 1, let ek(t0, . . . , tNj ) be the k-elementary symmetric polynomials in
Nj + 1-variables, i.e.,

ek(t0, . . . , tNj ) :=
∑

0≤i1<···<ik≤Nj

ti1 · · · tik .

Then we have
∧

0≤i≤Nj
Pj(x, x1, . . . , xm, a

i
j) = 0 if and only if∧

1≤k≤Nj+1

ek(Pj(x, x1, . . . , xm, a
0
j ), . . . , Pj(x, x1, . . . , xm, a

Nj

j ) = 0.

For each 1 ≤ k ≤ Nj + 1, as {aij : 0 ≤ j ≤ Nj} is the set of all field conjugates of aj in

F alg over F and that ek is symmetric, we get

Qkj (x, . . . , xm, b
k
j ) := ek(Pj(x, x1, . . . , xm, a

0
j ), . . . , Pj(x, x1, . . . , xm, a

Nj

j )

is invariant under field automorphisms Gal(F alg/F ). Therefore, bkj ⊆ F (since F is
perfect).
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Let ϕH(x) be the quantifier-free formula with parameters in A that defines the
algebraic group H. Now consider

ψ(x) := ϕH(x) ∧ (
∧

0≤j≤`

∧
1≤k≤Nj+1

Qkj (x, σ(x), . . . , σm(x), bkj )).

It is easy to see that ψ(x) defines GE in (F̃ ,Frob). As ψ(x) is quantifier-free and defined
over F , we can consider Ḡ := {g ∈ F t : (F,Frob) |= ψ(g)}. As H(F ) is an algebraic
group and F is definably closed in F̃ in the language of rings, Ḡ is a quantifier-free
definable group in (F,Frob) and contains G. Note that dimrk(GE) = dimrk(GF̃ ) ≤ k.
Hence, δδδF (Ḡ) ≤ dimrk(ψ(x)) = dimrk(GE) ≤ k. On the other hand, since Ḡ ⊇ G and
δδδF (G) = k, we get δδδF (Ḡ) ≥ k. Therefore, δδδF (Ḡ) = δδδF (G) = k.

4 Non-tameness

This section investigates whether this family of difference fields is tame in terms of
Shelah’s classification. It turns out that the answer is negative.

In the following, we will prove that if a structure expands a pseudofinite field with a
“logarithmically small” definable subset, then the theory has TP2 and the strict order
property and is not decidable. This result is known among experts. As we could not
find a proof in the literature, we include it here for completeness.

The proof is based on the result that the theory of pseudofinite fields has the inde-
pendence property in [7]. The strategy is to modify Duret’s proof to show that when a
pseudofinite set is very small compared to the size of the field, then every pseudofinite
subset of it can also be coded uniformly.

Fact 24. ([7, Proposition 4.3]) Let k is a field and p a prime different from char(k)
such that k contains a pth-root of unity. Let k̃ be the algebraic closure of k. Suppose
fi ∈ k[Y1, · · · , Ym] and Fi = Xp − fi ∈ k[Y1, · · · , Ym, X] for 1 ≤ i ≤ n. If there exist
gi, hi ∈ k̃[Y1, · · · , Ym] and qi ∈ N such that:

• for all i, fi = gqii hi;

• for all i, gi is prime in k̃[Y1, · · · , Ym]

• for all i 6= j, gi 6= gj

• for all i and j, gi does not divide hj

• for all i, p does not divide qi.

Then the ideal J in k[Y1, · · · , Ym, X1, · · · , Xn] generated by {Fi(Xi) : 1 ≤ i ≤ n} is
absolutely prime, and does not contain any non-zero element in k[Y1, · · · , Ym].

Fact 25. ([2, Theorem 7.1]) Let V ⊆ (F̃q)n be an absolutely irreducible Fq-variety of
dimension r > 0 and degree δ. If q > 2(r + 1)δ2, then the following estimate holds:

||(V ∩ (Fq)n)| − qr| ≤ (δ − 1)(δ − 2)qr−
1
2 + 5δ

13
3 qr−1.
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Theorem 26. Let F =
∏
i∈I Fpini/U be a pseudofinite field and A =

∏
i∈I Ai/U a

infinite pseudofinite subset of F . Suppose there is a constant C such that |Ai| ≤ Cni
for any i ∈ I. Then all pseudofinite subsets of A are uniformly definable.

Proof. Consider the finite algebraic extension F ′ of F of degree 14C. As F is pseudofin-
ite, there is only one such extension and is definable. To see the definability, suppose
F ′ = F (α). Let f be the minimal polynomial of α over F . Then we can define F ′ as
the 14C-dimensional vector space over F with multiplication defined according to the
minimal polynomial f .

We distinguish two cases according to pi.

Suppose pi 6= 2. Since xp
14Cni
i −1 = 1 for all x ∈ F

p
14Cni
i

, the square root of unity

exists in F
p
14Cni
i

. As the multiplicative group of F
p
14Cni
i

is cyclic, take δi ∈ F
p
14Cni
i

a

generator, then δi is not a square in F
p
14Cni
i

.

Claim 27. Let ϕ(y, u) be the formula:

∃x(x2 = y + u).

Then for all i ∈ I with pi 6= 2 and for all Ci ⊆ Ai, there is yi ∈ Fp14Cni
i

such that

Ci = ϕ(yi,Fp14Cni
i

) ∩Ai.

Proof. Given i ∈ I with pi 6= 2 and Ci ⊆ Ai. Let J be the ideal in F
p
14Cni
i

[X1, · · · , Xti , Y ]

generated by

{X2
j − (Y + cj) : cj ∈ Ci} ∪ {X2

j − δi(Y + dj) : dj ∈ Ai \ Ci},

where δi is a generator of F∗
p
14Cni
i

as defined before. Let V (J) be the corresponding

F
p
14Cni
i

-variety. Then V (J) is absolutely irreducible by Fact 24,

Suppose V (J) ∩ (F
p
14Cni
i

)ti+1 6= ∅. Let (x1, · · · , xti , yi) be a solution. Then clearly

Ci ⊆ ϕ(yi,Fp14Cni
i

). On the other hand, if there is d ∈ Ai \Ci, such that ϕ(yi, d). Then

there are xj , x ∈ F
p
14Cni
i

such that:

x2
j = δi(yi + d);

x2 = yi + d;

yi − d 6= 0,

where the last inequality follows from Fact 24 since Y − d 6∈ J) Hence, δi = (xj/x)2,
contradicting that δi is not a square root. Therefore, Ci = ϕ(yi,Fp14Cni

i

) ∩Ai.
So we only need to show V (J) ∩ F

p
14Cni
i

6= ∅.
Let |Ai| = ti ≤ Cni. We calculate the dimension and the degree of V (J). It is clear

that the dimension of V (J) is 1, as all Xj are algebraic over Y . Let c1, · · · , cti be a list
of elements in Ai. And for 1 ≤ j ≤ ti, let Vj be the variety defined as the set of solutions
of X2

j − (Y + cj) if cj ∈ Ci, and of X2
j − δi(Y + cj) if cj 6∈ Ci. Then V (J) =

⋂
1≤j≤ti Vj

and each Vj has degree 2. Therefore, by the Bézout inequality, the degree of V (J) is
less than or equal to 2ti .

14



Suppose, towards a contradiction, that V (J) ∩ (F
p
14Cni
i

)ti+1 = ∅. Then by Fact 25,

p14Cni
i

≤ (2ti − 1)(2ti − 2)p7Cni
i + 5× 2

13
3
ti

≤ (2Cni − 1)(2Cni − 2)p7Cni
i + 5× 2

13
3
Cni

≤ 22Cnip7Cni
i + 28Cni

< p9Cni
i + p8Cni

i

< p14Cni
i ,

contradiction.

The case pi = 2 is similar. Since 3 divides 214Cni − 1 for each i, there exists
x ∈ F214Cni such that x3 = 1. Take δi be the generator of the multiplicative group of
F214Cni . Then there is no y ∈ F214Cni such that y3 = δi.

Claim 28. Let ψ(y, u) be the formula:

∃x(x3 = y + u).

Then for all i ∈ I and Ci ⊆ Ai, there is yi ∈ F214Cni such that Ci = ψ(yi,F214Cni ) ∩Ai.

Proof. Fix some i and Ci ⊆ Ai. Let J be the ideal in F214Cni [X1, · · · , Xti , Y ] generated
by

{X3
j − (Y + cj) : cj ∈ Ci} ∪ {X3

j − δi(Y + dj) : dj ∈ Ai \ Ci}.

As the argument before, the variety V (J) is absolutely irreducible of dimension 1
and of degree less than or equal to 3ti . To prove the claim, we only need to show that
V (J) ∩ (F214Cni )

ti+1 6= ∅. Suppose not, then by Fact 25,

214Cni ≤ (3ti − 1)(3ti − 2)27Cni + 5× 3
13
3
Cti ≤ 32Cni27Cni + 37Cni < 214Cni ,

contradiction.

Let A =
∏
i∈I Ai/U . Assume A is defined by χ(x). Define φ(x, y) := ψ(y, x) ∧ χ(x)

if the characteristic of F ′ is 2, and φ(x, y) := ϕ(y, x) ∧ χ(x) otherwise. Let C =∏
i∈I Ci/U ⊆ A be any pseudofinite subset. By the previous two claims, there is yC ∈ F ′

such that C = φ(F ′, yC) in F ′. As F ′ is definable in F , let φ′(x̄, ȳ) be the corresponding
translation of φ(x, y) in F . Remember that we regard x̄, ȳ ∈ F ′ as 14C-dimensional
vector space over F and A ⊆ F . Let θ(x, ȳ) := φ′(x, 0, . . . , 0, ȳ). We see that θ(x, ȳ)
codes uniformly all pseudofinite subsets of A.

Remark: From the proof we know that if char(F ) 6= 2 and ni ≥ 14|Ai| for all large
enough i, then we can take θ(x, ȳ) := ∃z2(z2 = x + y) ∧ χ(x) where x, y are single
variables and χ(x) is the formula defining A.

Corollary 29. Let F =
∏
i∈I Fpini/U be a pseudofinite field and B =

∏
i∈I Bi/U an

infinite pseudofinite subset of F . Suppose there is a constant C such that |Bi| ≤ Cni
for all i ∈ I. Then (F,B) interprets the structural N =

∏
i∈I(Ni,+,×)/U , where

Ni = {j ∈ N : 0 ≤ j ≤ mi} for some mi ∈ N, and +,× the addition and multiplication
truncated on Ni respectively.
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Proof. For each i ∈ I, pick Yi ⊆ Bi such that |Bi|
1
4 ≤ |Yi| ≤ |Bi|

1
3 . Let Y =

∏
i∈I Yi/U .

By Theorem 26, Y is definable and all subsets of Yi are uniformly definable by some
ψ1(y, u). For each i ∈ I, consider the set

Yi − Yi
Yi − Yi

:= {y1 − y2

y3 − y4
: y1, y2, y3, y4 ∈ Yi, y3 6= y4}.

It has size at most |Yi|4 << |Fpni
i
|. Take any a 6∈ Yi−Yi

Yi−Yi ∪ {0}. Then the set Ti :=

{y1 + ay2 : y1, y2 ∈ Yi} is in definable bijection with Yi× Yi and of size less than ni. By
Theorem 26, all subsets of Ti, hence of Yi×Yi, are uniformly definable by some ψ2(y, u).
Similarly, we can show that all subsets of Yi × Yi × Yi are uniformly definable by some
ψ3(y, u).

We may assume that all subsets of Yi (and Yi × Yi, Yi × Yi × Yi) can be defined
uniformly by parameters in Fpni

i
. For a ∈ Fpni

i
, we write S1

a ⊆ Yi for the set ψ1(a,Fpni
i

)

and S2
a ⊆ Yi × Yi, S3

a ⊆ Yi × Yi × Yi for ψ2(a,Fpni
i

), ψ3(a,Fpni
i

) respectively.

Now define a relation R+ ⊆ (Fpni
i

)3 by: R+(a, b, c) if there exist g ∈ Fpni
i

and

y 6= y′ ∈ Yi such that

• either S3
g is the graph of a bijective function from (S1

a × {y}) ∪ (S1
b × {y′}) to S1

c ;

• or S1
c = Yi and S3

g is the graph of a surjective function from (S1
a×{y})∪(S1

b×{y′})
to Yi;

Similarly, we define R× ⊆ (Fpni
i

)3 by: R×(a, b, c) if there exists g ∈ Fpni
i

such that

• either S3
g is the graph of a bijective function from S1

a × S1
b to S1

c ;

• or S1
c = Yi and S3

g is the graph of a surjective function from S1
a × S1

b to Yi;

We also define an equivalence relation E ⊆ (Fpni
i

)2 by: E(a, b) if and only if there

exists g ∈ Fpni
i

such that S2
g is the graph of a bijective function from S1

a to S1
b .

It is easy to see then that R+, R× respect the equivalence relation E and

(|Yi|,+,×) ' ((Fpni
i

)2/E,R+/E,R×/E).

Corollary 30. Let (F,Frob) ∈ S and T := Th(F,Frob). Then T has the strict order
property and TP2. Moreover, T is not decidable.

Proof. As the fixed field Fix(F ) := {x ∈ F : σ(x) = x} is definable and satisfies the
condition in Theorem 26, every pseudofinite subset of Fix(F ) can be coded uniformly
by some formula ϕ(x, t). In particular, it will code some infinite strictly increasing chain
A1 ( A2 ( A3 ( · · · of subsets of Fix(F ). Therefore, T has the strict order property.

Let ϕ(x, t) be the same formula. To see that T has TP2, by compactness, we
only need to show that given any n ∈ N, there is some (aij)1≤i,j≤n such that for any
1 ≤ i ≤ n, we have {ϕ(x, aij) : 1 ≤ j ≤ n} is 2-inconsistent and {ϕ(x, aif(i)) : 1 ≤ i ≤ n}
is consistent for any f : {1, . . . , n} → {1, . . . , n}.
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Given n ∈ N, let An ⊆ Fix(F ) be a set with nn-many elements. Fix a bijection η :
An → {1, . . . , n}{1,...,n} where {1, . . . , n}{1,...,n} is the set of all functions from {1, . . . , n}
to itself. Let (aij)1≤i,j≤n be such that ϕ(x, aij) codes the set

Bij := {a ∈ An : η(a)(i) = j} ⊆ An.

For any 1 ≤ i ≤ n, as Bi1, . . . , Bin form a complete partition of An, we get {ϕ(x, aij) :
1 ≤ j ≤ n} is 2-inconsistent. On the other hand, for any f : {1, . . . , n} → {1, . . . , n}
the element η−1(f) ∈ An witnesses that {ϕ(x, aif(i)) : 1 ≤ i ≤ n} is consistent.

As (F,Frob) interprets ultraproducts of initial segments of natural numbers with
truncated addition and multiplication by Corollary 30, the undecidability follows from
[10, Section 4].

The following part concerns the algebraic closure in (F,Frob) ∈ S. Let F be a
pseudofinite field and F alg be the smallest algebraically closed field containing F . Take
a tuple a ∈ F . Then the algebraic closure in the pseudofinite field aclF (a) is simply the
algebraic closure in F alg intersected with F , i.e., aclF (a) = aclFalg(a) ∩ F .

As ACFA is the model companion of the theory of difference fields, we can embed
(F,Frob) into some (K,σ) |= ACFA. We might wonder if similarly, the algebraic closure
in the theory of (F,Frob) is the same as the algebraic closure in (K,σ) intersected with
F . But the answer is negative. In fact, we have the following.

Lemma 31. For any n > 0, there is some (F,Frob) ∈ S and element an ∈ F such that
an is in the definable closure of tuple bn in (F,Frob), but degσ(an/bn) = n.

We need a small lemma first.

Lemma 32. Let

ϕ(x; y1, · · · , yn) := ∃z(z2 = x+ y1) ∧
∧

2≤i≤n
∀z¬(z2 = x+ yi).

There is Cn ∈ R such that for any Fq with char(Fq) 6= 2 and b1, · · · , bn distinct n-
elements in Fq, we have

||ϕ(Fq, b1, · · · , bn)| − q

2n
| ≤ Cn · q

1
2 .

Proof. Given distinct elements b1, · · · , bn ∈ Fq. Take an element a ∈ Fq such that b is
not a square. Let J be the ideal in Fq[X,X1, · · · , Xn] generated by

{X2
1 − (X + b1)} ∪ {X2

i − a(X + bi) : 2 ≤ i ≤ n}.

By Fact 24, J is absolutely prime, whence V (J) is an absolutely irreducible variety. By
the Lang-weil estimate

||V (J) ∩ (Fq)n+1 − q| ≤ Nn · q
1
2 ,

where Nn is a constant only depends on the degree and dimension of the variety, which
in our case is independent with b1, · · · , bn, a and Fq and only depends on n. Let

π : V (J) ∩ (Fq)n+1 → Fq
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be the projection on the the first coordinate. Clearly, π is a 2n-to-one function. There-
fore,

|ϕ(Fq, b1, · · · , bn)| = |π(V (J) ∩ (Fq)n+1)| = 1

2n
· |V (J) ∩ (Fq)n+1|.

Let Cn := Nn
2n . We conclude that

||ϕ(Fq, b1, · · · , bn)| − q

2n
| ≤ Cn · q

1
2 .

Now we prove Lemma 31.

Proof. Given n ∈ N, for each p ∈ P, let kp ∈ N be such that

• kp > max{f(p, p), 14pn} where f(p, p) is given by Equation 1;

• n! divides kp;

• pkp

2pn
> 2Cpn · p

kp
2 .

Let (F,Frob) :=
∏
p∈P(Fpkp ,Frobp)/U where U is a non-principal ultrafilter on P.

Clearly, (F,Frob) ∈ S and Fix(σn) := {x ∈ F : σn(x) = x} 6= Fix(σk) for any k < n.
Take an element an ∈ Fix(σn) such that degσ(an) = n. Let

ξ(x, an) := ∃z(z2 = an + x) ∧ ∀y(σn(y) = y ∧ (y 6= an → ¬∃z(z2 = y + x))).

As p > 14pn for each p ∈ N, by Theorem 26 and the subsequent remark, we know
that Yn := ξ((F,Frob), an) 6= ∅. We claim that δδδF (Yn) = 1. Suppose an = (ap)p∈P/U .
For each p ∈ P, let ap, b1, · · · , bpn−1 be a list of all elements in Fpn ⊆ Fpkp . Let

ϕ(x, y1, · · · , ypn) := ∃z(z2 = x+ y1) ∧
∧

2≤i≤pn
∀z¬(z2 = x+ yi).

Note that for any b ∈ Fpkp we have

ξ((Fpkp ,Frobp), ap) = ϕ(Fpk+p , ap, b1, · · · , bpn−1).

By Lemma 32,

||ϕ(Fpk+p , ap, b1, · · · , bpn−1)| − pkp

2pn
| ≤ Cpn · p

pkp

2 ,

for all p > 2. Therefore,

|Yn| ≥
pkp

2pn
− Cpn · p

pkp

2 >
1

2
· p

kp

2pn
.

Since

lim
p→∞

log(pkp/2 · 2pn)

log pkp
= 1,

we get δδδF (Yn) = 1.
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Take an element bn ∈ Yn such that δδδF (bn) > 0. Note that an ∈ dcl(bn) and
δδδF (an) = 0. Thus,

δδδF (bn/an) = δδδF (an, bn)− δδδF (an) = δδδF (bn) + δδδF (an/bn)− δδδF (an) = δδδF (bn) > 0.

Therefore, SUACFA(bn/an) = ω. By our choice, we also have SUACFA(bn) = ω.
Hence, an is independent with bn in (F̃ ,Frob). Again, by our choice, degσ(an) = n. But
if degσ(an/bn) < n, then an and bn will not be independent in (F̃ ,Frob) in the theory of
ACFA. We conclude that degσ(an/bn) = n and an is in the definable closure of bn.
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[5] Zoé Chatzidakis, Ehud Hrushovski, and Ya’acov Peterzil. Model theory of difference
fields, ii: Periodic ideals and the trichotomy in all characteristics. Proceedings of
the London Mathematical Society, 85(2):257–311, 2002.
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[11] Mark Ryten and Ivan Tomašić. Acfa and measurability. Selecta Mathematica, New
Series, 11(3):523–537, 2006.

[12] Mark Jonathan Ryten. Model theory of finite difference fields and simple groups.
PhD thesis, Citeseer, 2007.

19


	Introduction
	Pseudofinite coarse dimension
	Coarse dimension and transformal transcendence degree
	Non-tameness

