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A b s t r a c t  

A parallel computing system becomes increasingly 
prone to failure as the number of processing elements 
in it increases. In this paper, we describe a com- 
pletely general strategy that takes an arbitrary step 
of an ideal CRCW PRAM and automatically trans- 
lates it to run efficiently and robustly on a PRAM 
in which processors are prone to failure. The strat- 
egy relies on efficient robust algorithms for solving a 
core problem, the Certified Write-All Problem. This 
problem characterizes the core of robustness, be- 
cause, as we show, its complexity is equal to that of 
any general strategy for realizing robustness in the 
model. We analyze the expected parallel time and 
work of various algorithms for solving this problem. 
Our results are a non-trivial generalization of Brent's 
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Lemma. We consider the case where the number of 
the available processors decreases dynamically over 
time, whereas Brent's Lemma is only applicable in 
the case where the processor availability pattern is 
static. 

1 I n t r o d u c t i o n  

With hardware becoming cheaper, it is expected that 
"massively parallel systems" with large numbers of 
processors will both increase the speed of computa- 
tions and decrease their cost. Unfortunately, as the 
number of processing elements grows, certain diffi- 
culties need to be addressed, among them processor 
faults and asynchrony. Clearly, the larger the num- 
ber of processors, the greater the probability of some 
processors failing or going out of synchrony. These 
two problems are related, but in this paper we re- 
strict ourselves to processor faults. 

Much of the recent emphasis in algorithm design 
for PRAMs for a variety of basic problems such as list 
ranking [TV84,CV86], sorting [Co86], forest match- 
ing [KP88], pattern matching [KLP89] and oth- 
ers, has emphasized efficiency and optimal speedup. 
These extremely efficient (ideally optimal speedup) 
parallel algorithms have very little "slack" in that 
every step of the algorithm is essential. Therefore, 
quite often, they do not terminate correctly when 
perturbed by a few processor failures. 

Because of this, it is important to study the de- 
sign of robust parallel algorithms, and even more 
important, robust execution of arbitrary parallel pro- 
grams. Obviously it is important to ensure that the 
overhead incurred in realizing robustness is not exces- 
sive. In this paper we present a general methodology 
for implementing ideal CRCW PRAMs robustly on 
faulty CRCW PRAMs. We adopt the approach of 
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"graceful degradation," so that if the processors fail- 
stop during the computation, as long as at least one 
processor remains operational, the PRAM program, 
independent of its semantics, can continue execut- 
ing correctly. In addition, we want to minimize the 
performance penalty incurred in such robust imple- 
mentations. 

Specifically, we present a technique that takes an 
arbitrary step of an ideal CRCW PRAM designed to 
run on U "virtual" processors, and execute it on a 
CRCW PRAM of the same type with P < U pro- 
cessors that are prone to failure 1. The number of 
virtual processors U, that is the parallelism width of 
the ideal PRAM program being translated, can vary 
from step to step. By modeling these failures proba- 
bilistically, we analyze the expected work and parallel 
time complexities of deterministic schemes for realiz- 
ing these robust implementations. We also analyze a 
probabilistic algorithm for solving the same problem. 

Kanellakis and Shvartsman [KS89] were the first to 
formalize this notion of robustness, in the formal con- 
text of synchronous parallel computation. They de- 
veloped a failure model (to be described later), which 
we use here. In [KS89], they considered the Write- 
All problem, and described its deterministic robust 
implementation. In the Write-All problem, given an 
array z[1..U] initialized to 0, set x[i] := 1 for all i. 
(We will also refer to such writing of 1 as "mark- 
ing.") Their algorithm, henceforth referred to as the 
KS-algorithm, iteratively estimates the amount of re- 
maining unwritten locations and remaining live pro- 
cessors, and reschedules the processors to other lo- 
cations for writing l's. (It is easy to see that their 
algorithm for the Write-All problem can be used for 
computing associative functions, such as max.) 

Using the Write-All algorithm, Kanellakis and 
Shvartsman, designed robust algorithms for funda- 
mental problems such as list ranking. In [KS89] they 
also analyze the deterministic worst case complexity 
of the KS-algorithm. They observed various specific 
complexity improvements in the case where, for the 
number of initial processors P, P < U. Specifically, 
they parameterized the KS-algorithm to achieve work 
of O(U log U + P  log 2 U). In [KS89] they observe that 
this algorithm achieves robustness optimally (work 
O(U)) provided P <_ U / l o g 2 U -  logUloglogU). 
Work improvement for the case where P = U/log U 
was observed independently by Khuller [Kh89]. 

a That  is we execute an ideal Common/Arbi t rary/Pr ior i ty  
CRCW PRAM program respectively on a Common/Arbit-  
rary/Priori ty faulty CRCW PRAM. 

Subsequently to Kanellakis and Shvartsman, Mar- 
tel, Park, and Subramonian [MPS89] described a 
probabilistic algorithm for computing the maximum 
of U elements assuming asynchronous computations, 
in which the processors can fail. Their algorithm 
(to which we refer to as a Multiple Coupon Col- 
lector Algorithm or MCC-algorithm for short) can 
be immediately used for robust computation of the 
maximum as well as for solving the Certified Write- 
All problem. The Certified Write-All problem is 
the Write-All problem with the additional require- 
ment that a global bit is set after all the loca- 
tions have been written 2. A variety of an asyn- 
chronous parallel model (APRAM) was described 
by Cole and Zajicek [CZ89], who presented al- 
gorithms for summation, graph connectivity, and 
other problems on this model. Many researchers 
have studied closely related issues, including robust- 
ness and fault tolerance in an asynchronous setting 
[Aw88,AAG87,AS88,DPPU86,Pi85,SS83]. 

Previous efforts at "adapting" ideal PRAM pro- 
grams to cope with imperfections, such as processor 
faults or asynchrony, have focussed on redesigning 
algorithms for specific well-known problems such as 
those listed above. We depart completely from this 
approach, by providing a general strategy for simu- 
lating arbitrary PRAM steps on PRAMs with faults. 

Specifically, we show that the complexities of solv- 
ing the Certified Wrile-All problem robustly, and im- 
plementing a step of an ideal CRCW PRAM ro- 
bustly are identical up to small constant multiplica- 
tire time and small constant per processor additive 
space overheads. We do this constructively, by show- 
ing (in sections 4 and 5) how to use an arbitrary 
robust Certified Write-All algorithm twice to imple- 
ment an arbitrary step of the ideal PRAM. In effect 
we provide a two-phase idempotent execution strat- 
egy (TIES for short) that uses any robust algorithm 
for solving the Certified Write-All problem z, to auto- 
matically yield robust implementations of arbitrary 
ideal PRAM steps. (Recently [Sh89], Shvartsman ob- 
tained a technique, similar to our TIES strategy, with 
the following two restrictions. He can implement a 
parallel algorithm robustly provided that its work is 

2The KS-algorithm, as well as the algorithm due to Martel 
et al. provide such certification implicitly. 

3Actually, a n y  algorithra that can verify that  all the the 
given U instructions have been "touched" (or executed), will 
suffice. The Certified Write-All problem is a special case of this 
more general Certified Touch-All problem. Note for example 
that the computation of conjunction, maximum, or summation 
could have been used also. 
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within a polylog factor of that  of the best sequen- 
tial algorithm and its local memory requirements are 
within a polylog factor of the problem size.) 

Since we show (in section 5) the Certified Write- 
All problem to be the core step in robust implemen- 
tations of PRAM algorithms, solving it efficiently 
is critical to realizing robust implementations with 
low overhead. Towards this end, we also intro- 
duce a new and extremely simple algorithm based on 
pointer-doubling (the PS-algorithm where PS stands 
for pointer shortcutting) for solving the Certified 
Write-All problem. We analyze the expected work 
as well as the expected parallel time taken by this 
simple PS-algori thm algorithm, as well by the KS- 
algorithm. We show that  the expected behavior 
of the PS-algorithm is better  than that  of the KS- 
algorithm; detailed statements of these results are in 
section 3. We also show that  the expected work done 
by a randomized parallel version of a Coupon Collec- 
tor scheme (originally introduced in [MPS89]) is less 
than that  of the deterministic KS and PS algorithms. 

2 M o d e l  o f  f a i l u r e s  a n d  s o m e  
c o n v e n t i o n s  

Although our results hold with nonessential modifi- 
cations for different varieties of CRCW PRAMs, for 
the purpose of this paper, we assume the Common 
variant of the CRCW PRAM [FW78]. When dealing 
with probabilistic algorithms, we assume that  the in- 
dividual processors of the PRAM are supplied with 
independent random number generators. 

Consider a parallel algorithm A that  starts at time 
0 with P available processors and in parallel t ime r 
completes its computat ion on input data  IA. The 
availability pattern HA indicates which processors are 
available or operational for the algorithm A at each 
parallel t ime step. Let Pi be the number of processors 
available at t ime i (0 < i < r) .  Then, 

D e f i n i t i o n  1 The work performed in the execution 
of algorithm A on input IA, with availability pattern 
II is W(A,  Ia, II) = ~'~=0 Pi .4 

4This not ion of work generalizes the t radi t ional  processor-  
t ime  product  definition, for the  case w h e n  there  are n o  pro- 
cessor failures. I t  was originally introduced as available pro- 
cessor  steps in [KS89]. A similar definition of work is in- 
t roduced  subsequently in IMPS89], a l though they define it  in  
the  slightly different b u t  essentially equivalent model of asyn- 
chronous PRAMs.  

As in the case of Kanellakis and Shvartsman 
[KS89], we will only be interested in the fail-stop 
availability patterns. In such patterns,  processors ei- 
ther stay available or fail and once they fail, they stay 
failed for the remaining steps of the computation.  

An availability pat tern  II is called oblivious if it is 
determined before the start  of the execution of the 
algorithm. It is called Byzantine if it is created (by 
an adversary), adaptively, during the computation. 
In such a case, the adversary determines the set of 
available processors at the next time step by exam- 
ining the history of the computat ion (which includes 
random choices previously done) up to that  time. 

The average case analysis in this paper deals with 
random failures where each processor may fail with 
a fixed probability q < 1 in a consecutive sequence of 
time steps, referred to here as an epoch; the length 
of each epoch may be a function of U. In this 
paper, unless stated otherwise, the epoch length is 
e ( logU) .  If all the processors in the PRAM fail, 
this condition can presumably be detected externally. 
For convenience of presentation (and also to adhere 
closer to the model in [KS89]), we assume that  at 
least one processor survives, no mat ter  what are the 
probabilistic failure assumptions. This, of course, is 
nonessential. 

3 S u m m a r y  o f  R e s u l t s  

We now summarize our main contributions. All our 
expected case results listed below hold with an ex- 
tremely high probability of at least 1 - U -7 for some 
7 > 1 controllable by the implementor. 

3 . 1  T h e  two-phase  e x e c u t i o n  s t r a t -  

e g y  

1. We introduce a two-phase idempotent  execution 
strategy that ,  in conjunction with any robust 
algorithm for the Certified Write-All problem 
can be used to simulate an arbitrary step of a 
PRAM robustly. This TIES strategy can be im- 
plemented using a constant amount  of additional 
space per live processor. 

3 . 2  T h e  K S - a l g o r i t h m  

2. Average case analysis of the KS-algorithm fol 
the Certified Write-All problem. We show that: 
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(a) Its expected work is O((P + U)logU),  
where U is the array size and P is the initial 
number of processors. 

(b) When P = U and the processor failure 
rate q is small, its expected parallel time 
is O(log P log  U). 

(c) When P < AU for some constant A E 
(0, 1), its expected parallel time is @((U + 
log P)  log U). 

(d) When P = AUI¢(U) for some A E (0,1) 
and an increasing function ¢(U) < log U 
and q < 1 where q is the decay rate for an 
epoch of length O(¢(U) log U), its expected 
parallel time is f2(U ~) for some e > O. 

Note that  the KS-algorithm has an interesting 
threshold in its expected parallel time, which de- 
grades very rapidly from O(log P log U) (case (b) 
above) to essentially sequential behavior (case 
(c)) even when the number of initial processors 
P is O(U). In the above analysis as well as in the 
average case analysis of the PS-algorithm below, 
we assume a random pattern of failures as stated 
in section 2, where the failures can be Byzantine 
within each epoch. 

3 . 3  T h e  P S - a l g o r i t h m  

3. We present a new and simple PS-algorithm for 
the Certified Write-All problem which is based 
on pointer doubling. We show that: 

(a) When P = U, its expected work is 
O(V log U). 

(b) When P = U, its expected parallel time is 
is O(log U). 

(c) When AU < P < U there exists q* E (0, 1) 
such that  if q < q*, its expected parallel 
time is O(logU). 

(d) When P = AU/O(U) for some constant A 
and an increasing function ¢(U) < log U 
then there exists q* E (0, 1) such that  if 
q < q* is the failure rate for an epoch of 
length @(O(U)log U), its expected parallel 
time is O(¢(U) log U). 

The PS-algorithm does better in its expected 
parallel time behavior than the KS-algorithm. 

3 . 4  

4. 

A r e l a t e d  r e s u l t  

We analyze a probabilistic algorithm for the Cer- 
tified Write-All problem. In this analysis, we as- 
sume worst-case oblivious availability patterns 
of processors. We can prove that  this Adapted 
Coupon CollecLor Algorithm (or A CC-algorithm 
sketched in section 8.2) does O(U log log U) work 
provided P <_ U~ log U. This algorithm is a 
trivial variant of the one studied by Martel et 
al. [MPS89] for computing associative functions 
in parallel and asynchronous situations that  are 
fault-prone. Therefore, its expected work im- 
proves on that  of the two deterministic algo- 
rithms described above provided P < U~ log U. 

4 Two-phase  i dem pot en t  exe- 
cut ion s trategy  

4 . 1  I n t r o d u c t o r y  r e m a r k s  

A naive at tempt to emulate an ideal PRAM on a 
faulty PRAM based on a simple redistribution of the 
live processors, will run into difficulties. Consider for 
instance an ideal program written for 2 processors 
whose task is to exchange the values of the variables 
v[1] and v[2]. Pl and P2 in parallel read v[1] and 
v[2] respectively and write the value they read into 
the other location. If, say Pl fails, the value of v[1] 
is irretrievably lost. We therefore will need to use 
temporary storage for the values to be written, so 
that  the inputs for the step remain available as long 
as necessary to simulate the step of the PRAM. There 
are however, additional subtle points to be taken care 
of. 

As stated, we will use a single execution of any 
Certified Write-All algorithm as the basic building 
block in our strategy t o  simulate a single step of the 
ideal PRAM on the faulty PRAM. In general, such 
algorithm assumes the the existence of some data 
structure, suitably initialized. The purpose of that  
structure is to monitor the progress of the algorithm, 
e.g., to estimate the number of live processors, the 
work done so far, etc. Thus at the end of the exe- 
cution of the algorithm, in general, the data struc- 
ture has a different value. If we now wish to run the 
algorithm again to simulate another step, we again 
need a clean, initialized copy of the data  structure. 
Providing a new data  structure for each step of the 
ideal PRAM program is clearly impractical, as this 
will require a very large number of initialized data  
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structures. 
The obvious approach, is to to reinitialize the orig- 

inal data  structure. Here, again, the simplistic ap- 
proach will not be sufficient, as we have to do it 
in a faulty PRAM. Assume that ,  for instance, that  
the initialized data  structure has 0s in all positions. 
Then, initializing the data  structure is a comple- 
mentary problem to Certified Write-All. To do this, 
we need another data  structure, properly initialized, 
etc., and we have got ourselves into a circular argu- 
ment. These are the types of problems we need to 
consider in our robust implementations. 

4 . 2  M o d e l  o f  t h e  i d e a l  P R A M  

Without  loss of generality, our ideal CRCW PRAM 
is a simple modification of the RAM as described in 
[AHU74]. To save space, we omit many details. The  
PRAM has U "virtual" processors: P l , . . . , P u  with 
no local registers; all memory is global and shared. 
The "application memory" accessible by the proces- 
sors is a shared vector M[1..las¢] of some length. 
Without  loss of generality, the processors execute 
a single program whose instructions are listed in a 
vector INST[1..I]. The instructions are as those in 
[AHU74], with appropriate modifications. Thus, a 
typical instruction might be: M[jl] := M[jl]+M~2]. 
There is also a vector PC[1..U], initialized to 1, con- 
taining the program counters of the processors. In a 
single step of the PRAM, each processor Pl executes 
the following 

Internal Program: 

1. read PC[i]; 
2. i f  PC[i] -" 0 t h e n  
3. halt  
4. e lse  
5. b e g i n  
6. read INST[PC[i]]; 
7. decode the instruction; 
8. execute the instruction; 
9. write the new value of PC[i] 
10. e n d .  

4 . 3  T h e  s t r a t e g y  

We assume the existence of some robust algorithm for 
the Certified Write-All problem, which given a vector 
z[1..U] initialized to 0 and an availability pat tern H, 

sets z[i] := 1 for i = 1 , . . . ,  U in r steps. It uses some 
auxiliary data  structure A UX of size O(U), appropri- 
ately initialized, all of whose locations are accessed 
during the execution of the algorithm. Furthermore, 
at the end of its execution, a bit variable DONE is 
set to TRUE. 

To save on space, our description will be somewhat 
informal, and we will not utilize the resources most 
efficiently. 

Our (faulty) CRCW PRAM, will contain struc- 
tures required both  by the original application prob- 
lem and by the robust interpreter. Thus we will have: 

• M, INST, and PC of the original application 
program. 

• Two versions of z, AUX, and DONE, re- 
ferred to as z.old, x.new, A UX.old, A UX.new, 
DONE.old, DONE.new. 

• Three new vectors LOC[1..U], VAL[1..U], and 
NEXT[1..U]. 

• The interpreter (based on the given Certified 
Write-All algorithm), its program counters etc. 

We now sketch, very briefly, the simulation of one 
step of the ideal PRAM while omitt ing many im- 
portant  technical details. By informal induction we 
ass u me: 

The values of M, INST, PC in the faulty PRAM 
are the same as those of M, INST, PC in the 
ideal PRAM. 

The value of A UX.old at the beginning of the 
simulation is the same as that  of A UX at the 
beginning of the execution of the robust algo- 
r i thm for Certified Write-All, z.old is initialized 
to 0s, and DONE.old is FALSE. 

The interpreter proceeds in two phases, each based 
on a single execution of the robust Certified Write- 
All algorithm. By the algorithm, the (live) processors 
are synchronized between the phases. The behavior 
of the interpreter is reminiscent of the deferred write 
approach in the redo/no-undo recovery protocol in 
database operating systems. Phase 1, in effect, cre- 
ates the deferred writes, phase 2 installs them. It is 
important  that  the phases are idempotent,  as proces- 
sors may fail after doing some work, and the various 
structures may become inconsistent. We describe the 
two phases (not in complete detail) in turn. 
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4.3.1 P h a s e  1 

The first phase of the interpreter is a modification 
of the Certified Write-All algorithm. However, in- 
stead of addressing x, A UX, and DONE it addresses 
x.old, A UX.old, and DONE.old. Furthermore, in 
order to prepare clean structure for the next phase: 
before it accesses some location of x.old, it initial- 
izes (to 0) the corresponding location of x.new; be- 
fore it accesses some location of A UX.old, it ini- 
tializes the corresponding location of A UX.new; be- 
fore it accesses DONE.old, it initializes (to FALSE) 
DONE.new. There are other book-keeping activities 
to be done, resetting the program counters of the 
interpreter at the end of the phase, etc. 

We now describe the modifications done to the 
Certified Write-All algorithm to allow the simula- 
tion of the application program. Run the underly- 
ing robust Certified Write-All algorithm. Just be- 
fore the point where Pk executes x[i] := 1, simu- 
late the execution of INST[PC.old[i]]. However, if 
INST[PC.old[i]] assigns v to U[l], instead execute 
iOC[i] := l, VAL[i] := v; if the instruction does not 
write, set LOC[i] := O. PC[i] is not overwritten, its 
new value is stored in NEXT[i]. 

4.3.2 P h a s e  2 

This phase starts after DONE.old becomes TRUE. 
The second phase too is a modification of the Cer- 
tified Write-All algorithm. However instead of ad- 
dressing x, A UX, and DONE it addresses x.new, 
A UX.new, and DONE.new. Furthermore, in order 
to prepare clean structure for the next phase: before 
it accesses some location of x.new, it initializes (to 0) 
the corresponding location of x.old; before it accesses 
some A UX.new, it initializes the corresponding lo- 
cation of A UX.old; before it accesses DONE.new, it 
initializes (to FALSE) DONE.old. 

Again, using the robust Certified Write-All algo- 
rithm, values computed in phase are copied into cor- 
rect locations: if LOC[i] ~ 0 then M[LOC[i]] := 
VAL[i]. Furthermore, PC[i] := NEXT[i] is executed 
This is done for the index i before the instruction 
x.new[i] :-- 1 is executed. 

available number of processors on step i be Hi. In 
Brent's case[B74], this sequence of available proces- 
sors is determined completely and deterministically 
at the beginning of the computat ion (and was gen- 
erally a constant). Therefore, we can apply his the- 
orem at any step i immediately, by dividing up the 
Ui wide parallel step into pieces of size (Ui /Hi ) ,  and 
distributing them among the available processors 5. 
(Of course, even in this simple case, a "two-phase" 
strategy is needed for applying Brent 's  Lemma to 
PRAMs, first by using temporary storage to store 
the values being computed, and then copying them 
back into the original positions. For a trivial exam- 
ple, consider cyclic shift on an array of length Ui, 
similar to the example in section 4.1.) 

The situation in this paper constitutes a non- 
trivial generalization of this problem since the avail- 
ability patterns change with time, and we do not 
know exactly how these changes occur. Therefore, 
processors need to be dynamically rescheduled to 
ensure that all the instructions have been executed 
and in addition, this condition needs to be detected 
(certification) 6. Furthermore, since this process of re- 
peatedly rescheduling and certification is done on the 
same faulty PRAM, this algorithm for the Certified 
Write-All problem has to be robustly implemented as 
well. The TIES strategy does this as characterized 
in the theorem below. 

T h e o r e m  1 Assume that we are given a robust Cer- 
tified Write-All algorithm A for writing ls  in an ar- 
ray x[1..U]. Let it be stored in t¢ locations of the 
P R A M  M and use auxiliary storage of size (r(U), all 
of which locations are accessed during the execution. 
Furthermore, for any failure pattern 7r, the execution 
time is some r(~r). 

Then, given an arbitrary ideal P R A M  program us- 
ing U (virtual) processors running in T steps, and 
failure patterns zq , zr2, . . . , ~rt (zci is the failure in step 
i), it is possible to execute the program robustly on M 
in time E,~_I r (~ , )  using O ( x + a ( g ) + u )  additional 
storage. 

5 T I E S  as a g e n e r a l i z a t i o n  o f  
B r e n t ' s  L e m m a  

To understand the full generality of TIES, consider 
parallel computation that  takes H steps. Let the 

5 W i t h o u t  loss of  general i ty ,  we a s s u m e  t h a t  Ui is a mu l t ip l e  
of  Hi .  

6If  M is a n  a s y n c h r o n o u s  P R A M  r a t h e r  t h a n  o n e  p r o n e  t o  

processor  fa i lures ,  t h e n  cer t i f ica t ion  is sufficient  a n d  p r o c e s s o r  

reschedu l ing  is no t  neces sa ry  
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6 Average-case analysis of the 
KS-algorithm 

For the description of this algorithm, please see 
[KS89]. 

Let j0, j l , - . ,  be the time instants at which proces- 
sors actually write into the array x; these steps will 
be referred to as writing epochs or epochs. We use 
Uj to denote the number of unwritten locations at 
the beginning of step j.  Our availability patterns II 
are random in the sense that each processor, which 
is operational at the end of writing epoch j~, may 
fail with fixed probability q < 1 between the epochs 
j~ and J~+l. II is byzantine otherwise. Let P0 = P 
be the number of processors initially available, and 
let U0 = U. We will first prove the following useful 
technical theorem. 

T h e o r e m  2 There are constants el, ~2 E (0, 1), and 
a > 1 that depend on q, such that, as long as Pi~ >- 
alogP,  the inequality el < Pi~+~/Pj~ <_ e2 holds for 
all such epochs Jx with probability at least 1 - p - 7  
for some 7 > 2. 

P r o o f  Given an epoch j~: such that the number of 
operational processors in the beginning ofj~ is Pj= > 
alogP,  and any fl E (0, 1), we have from Chernoff 
bounds [Ch52] that if E~ is the event "the number of 
failed processors is in the interval (1-4-/3)qPj~ ," then 

Prob{Ex} >__ 1 - exp(-~-~2~ qPj~). Choose any a > 

and let 7 = ~P~q2 - 1 (7 > 2). Then, Prob{Ex} _> 
1 - p-(-~+1). 

Now, let E be the event that E~ holds for all 
epochs j~ such that Pj~ _> a logP.  Then, if E is 
the event "there is a j~ such that E is violated," we 
get Prob{/~} < ~ Prob{/~} over all j~ for which 
Pj, > a logP,  i.e. Prob{E} g U0P -('y+I) < P-~.  
Hence, Prob{E} >_ 1 -  P-v .  This completes the 
proof of the Theorem with constants el = 1-( l+f l )q ,  
e2= 1 - ( 1 - f l ) q .  [] 

For convenient analysis, we will view the execu- 
tion of algorithm KS as being split into two phases. 
The first phase contains all epochs jx such that 
Pj, >__ a l o g P  and the second phase is the rest of 
the algorithm's execution. 

6 .1  A n a l y s i s  o f  t h e  f i r s t  p h a s e  

For the first phase we have: 

L e m m a  3 Conditioned on event E, the number of 
epochs of the first phase is O(log P). 

P r o o f  We have Pj,+~ < e2Pj. for all the epochs of 
the first phase. If the number of such epochs is el, 
then Pj.I+~ < a logP ,  i.e. Pe~ el+D <: a logP,  i.e. 
el = O(logP). [] 

Corol lary  4 Conditioned on event E, the amount 
of work for the first phase is W1 = O(P log U). 

Corol lary  5 Conditioned on event E, the number 
of parallel steps of algorithm KS for the first phase is 
T1 = O(log P log U). 

6 .2  A n a l y s i s  o f  t h e  s e c o n d  p h a s e  

To analyze the second phase of algorithm KS we need 
the following result of [KS89]: 

Fact 1 Let Pi and Ui respectively denote the number 
of operating processors and the number of unwritten 
positions at the beginning of epoch i. Then, the work 
from this epoch is O((Pi + Ui + Pi log Ui) log U). 

By using this fact and Theorem 2, we get: 

L e m m a  6 Conditioned on event E, the work in the 
second phase of algorithm KS is W2 = O((alog P + 
U + a log P log U) log U). 

Having estimated the work during the second 
phase, we now analyze its expected parallel time. 
To do this, we need to calculate the number of un- 
written positions Uj,~ at the end of the first phase. 
Again, conditioning on the event E we get that 
Uj, 1 > U -  1 Re • We distinguish two cases depending 
on the valueo~ P: 

6.2.1 Case 1: P = U  a n d q <  1/3 

L e m m a  7 Conditioned on event E, for any epoch 
j~ of the first phase Uj~ < Pj~. 

p .  

P r o o f  Conditioned on event E, we have ~ > el 

P_Aa. By an inequality of (where Pie = P0). Let rl -- Pie" 
[KS89] we have Uj, < Uj0(1-r~). Thus, Ujl < U(1-  
~) .  Also, Pjl >-- elP > elU. Thus, Uj~ < Pj, when 
1 -  ~ > el i.e. whenel  > 2 / 3 ,  i.e. w h e n q <  1/3. 
By repeating the above argument (for q < 1/3) the 
Lemma is proved, o 
By Lemma 7 and given the event E, we get Uj,~ - 
O(logP), for which we have: 
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L e m m a  8 I f  U <_ P and q < 1/3, then with proba- 
bility at least 1 - p - 7  for some 7 > 2, the number 
of parallel steps of the second phase of algorithm KS 
is T2 = O(log P log  U) and hence its parallel time is 
O(log P log U) with the same probability. 

6.3 P < U  

We consider two cases: 

1. 1-5~ < AU, A e (0, 1) 

Then, given that  E holds, we get Uj~, _> (1-A)U 
and PJ°x+l < a log P. In this case, the number 
of epochs of the second phase is O(U) since the 
processors are very few and the number of un- 
written positions is very large. Thus 

L e m m a  9 I f  there is a constant A E (0, 1) such 
that P < A(1 - e u ) U  (e2 as in Theorem 2) 
then, with probability at least 1 - p - 7  for some 
7 > 2, the parallel time of the KS-algorithm is 
o(v log v). 

2. P = AU/¢(U),  A G (0, 1), increasing ¢(U) < 
log U 

Here q is the decay rate in an epoch of length 
O(¢(U) log U). Then, 

L e m m a  10 I f  there is a constant A E (0, 1) and 
an increasing function ¢(U) <_ log U such that 
P = AU/¢(U),  then for every failure rate q < 1 
on an epoch of length ®(¢(U)log U), with prob- 
ability at least 1 -  U -7 for some 7 > 2, the 
parallel time of the KS-algorithm is T = f~(U') 
for some e > O. 

6.4 The expected work and parallel 
time of the KS-~ilgorithm 

From Corollary 5 and Lemma 6, the claimed re- 
sult 2(a) follows. From Corollary 4, Lemma 7, and 
Lemma 8, the claimed result 2(b) follows. From 
Lemma 9, the claimed result 2(c) follows. From 
Lemma 10 the claimed result 2(d) follows. 

7 T h e  P S - a l g o r i t h m  a n d  i ts  
a v e r a g e  c a s e  a n a l y s i s  

7.1 The algorithm 

We propose a simple algorithm for Certified Write- 
All with certification that  exhibits stable expected 

parallel time behavior, and has low expected work 
complexity. The PS-algorithm is based on a triv- 
ial modification of the well-known straightforward 
pointer-doubling algorithm. Our auxiliary data 
structure A UX is an array c[1..U]. Initially, c[i] = 
0 for all i. Furthermore, DONE is initialized to 
FALSE.  It will be convenient, to define addition in 
the set {1 , . . . ,  n} with 1 following n. We denote such 
addition by 4,  thus a~-b = (a + b - 1 mod n) + 1. 

A l g o r i t h m  Po i n t e r -  S h o r t c u t  r ing:  

• Processor assignment: For each k (1 <__ k < P)  
processor k is assigned to array position ik = 

• Each processor k executes the following loop: 

1. whi le  n o t  DONE do  
2. b e g i n  
3. i f  c[ik+c[ik]] = 0 t h e n  
4. b e g i n  
5. x[ik3rc[ik]] := 1; 
6. c[ik] := c[ik] + 1 
7. e n d  
8. else c[ik] := c[ik] + c[i~+c[i~]]; 
9. i f  c[ik] > n t h e n  
10. DONE := T RU E 
11. end .  

L e m m a  11 (Correctness) I f  at least one processor 
survives, all of x[1..U] will be set to 1. n 

7 . 2  A v e r a g e  c a s e  a n a l y s i s  

In the sequel we will assume that  the initial num- 
ber of processors is P > U/ log  U. We will assume 
an availability pattern H that  is random. As before, 
we split the parallel time into consecutive epochs. 
Each processor which is operational at the beginning 
of an epoch has a fixed probability q < 1 of failing 
at some step during it, independently of other pro- 
cessors. Notice that  the availability pattern assumed 
here is equivalent to that  assumed in the average case 
analysis of the KS-algorithm in the sense that  the 
processor "decay rate" is constant, measured over an 
epoch. Patterns with more frequent failure (faster 
decay rates) than H are unacceptable because they 
tend to exhaust the available processors before any 
useful work can be done. We analyze the complexity 
of the PS-algorithm by considering several cases. 
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Assuming that  the choice of the step in it fails is 
random, we can assume that  for each live processor 
the probability f of failing in the next step is equal 
to q divided by epoch length. In fact, this value of f 
is a nonessential approximation. 

7.2.1 P = U 

To give a more presentable analysis, we look at a 
variant of the PS algorithm. Let c[1..2U] be a vector 
initialized by c[k] = k + l  for k < 2U and c[2U] = 2U. 
There are 2U processors, one per location and each 
processor k executes the loop: 

1. wh i l e  c[k] < 2U do  
2. c[k] : =  c[c[k]] 
3. e nd .  

For the purpose of the analysis, it is therefore 
enough to estimate the t ime when for at least one 
k, 1 < k < U, c[]¢] -- 2U, so that  a consecutive seg- 
ment of length U at least has been "shortcut." 

Observe that  any stage of the algorithm, for each 
k there is a path  starting with k and ending with 2U, 
defined by the sequence: k, c[k], c[c[k]], . . . .  The  algo- 
r i thm starts with a path k, k + l ,  ]¢+2, . . . ,  2U for each 
k. (.In fact, we have a single path 1, 2 , . . . ,  2U, which 
we choose to consider as 2U overlapping paths.) Dur- 
ing the execution, because of shortcutting, the paths 
may split. In effect, the algori thm at tempts to per- 
form tree path compression starting with a tree con- 
sisting of a single long path from the leaf (1) to the 
root (2U). 

Let Lj [k] be the path from k to 2U after j steps of 
the algorithm. Let lj [k] denote its length and aj [k] 
the number of live processors on it. Of course, lj [k] _< 
lj_l[k]. Without  loss of generality, we assume that  
the processors fail between PRAM steps, and not 
in the middle of a step. The numbers above refer 
to values immediately after the step was executed. 
Also, without loss of generality, we can assume that  
the two processors at locations 2 U -  1 and 2U are 
dead before the start  of the execution, and that  once 
c[k] = 2U, the processor pk dies, for each k. 

L e m m a  12 Let k < 2U, and let cl[k], c2[k],...,cz[k] 
be a sequence such that aj[k] >_ cj[k]b[k ] for j = 1, 

Z 2, . . . ,  k. Th n < 10/YI,-=0(1 + 

P r o o f  We first show that  for any j ,  lj [k] + aj [k] = 
lj_l[k]. Let i be a node in Lj[k], which therefore 
was also in Lj_l[k].  If i was dead during step j ,  

then c[i] did not change during step j .  If i was alive 
during step j ,  then before step j ,  c[i] = l for some l, 
and after step j ,  c[i] = c[l]; thus l was removed from 
Lj_l[k] while creating Lj[k]. The equation follows 
from considering all nodes in Lj [k], and the lemma 
follows immediately from the equation. [] 

To prove the desired complexity bound, it is essen- 
tially enough to show that  for at least one k, such 
that  1 _< k _< U, /j[k] becomes 2 after O(logV) 
steps. The proof will consider two phases for each 
path. The first phase when the path is still at least 
12(log U) long, the second phase, when it is shorter. 
(Of course, all derivations will be done under high 
probability assumptions.) 

L e m m a  13 There exist constants (,  ~? > 0 such that 
l¢logv[k] < ~/logU with probability at least 1 - U -~ 
for some 7 > 2, for  k = 1 , 2 , . . . ,  U. 

P r o o f  We will prove the claim for all values of k, 
so we fix some k, and do not list it in the variables. 
Thus we write Lj for Lj [k], etc. 

Consider any step j > 1. Let zcj be the proba- 
bility that  a random node on Lj is alive. It is pos- 
sible to show that  7rj = (1 - q/logU)Jlro. Tech- 
nically, ~r0 >_ 1 - 2/U,  but we will write 7r0 = 1. 
Then 7rj = ( 1 -  q / logU)  j.  Let cj = 7rj/2. Define 
the event Ej by "aj >_ cjlj ." Then from Chernoff 
bounds, Prob{Ej}  >_ 1 -  exp(-zr j l j /8) .  

Using elementary analysis it easy to show that  
there exists ( such that  l-]~]=°lg u(1 + cj) > 2U/ logU,  
and therefore from Lemma 12, l¢logU <_ logU. We 
now have to show that  for some 71 > 0, l¢logU <_ 
~/log U holds with high probability. 

Let r/ = 2 4 / e x p ( - q ( ) .  Consider the event E de- 
fined by: "as long as j < ( l o g U  and lj _> T/logU: 

log U aj > cjlj." Prob{E} ~ )'-~j=l exp(-rc j l j /8)  ~_ 
( log U . e x p ( - ( 1 - q / l o g  U) ¢ ~ogV~ log U/8) < ( log U. 
U- exp(-qi),/s = ( log U - U -a.  [] 

We have shown that  l¢ log u[k] < ~ log U with prob- 
ability 1 - U -~ at least. We observe that  for a con- 
stant fraction of locations k the processor pk will stay 
alive for ( (  + rt)log U steps. Then as for such k, 
lj+a[k] < l)[k] as long as lj[k] > 2, the algorithm will 
terminate in at most ((  + ~/) log U steps. 

T h e o r e m  14 The expected parallel time of the PS- 
algorithm, with U processors initially is O(logU).  
The probability that the actual parallel time exceeds 
O(log U) is less than U -v ,  for  some 7 > 2. 
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7 .2 .2  P < U 

We modify the algorithm so that the processors are 
placed ~ U / P  locations apart. 

L e m m a  15 I f  there is a constant A E (0,1) 
such that AU <_ P < U, then there exists 
q* E (0 ,1)such that if  q < q* (and f = 
q / logU) ,  then with some probability at least 
1 - p7  for some 7 > 2, the parallel time of the 
PS-algorithm is O(log U). 

2. P -- AU/¢(U),  A E (0,1), increasing ¢(U) _< 
log U 

Here q is the decay rate in an epoch of length 
O(¢(U) log V). Then, 

L e m m a  16 I f  there is a constant )~ E (0, 1) and 
an increasing function ¢(U) _< log U such that 
P = then there exists q* e (0, 1) such 
that for every failure rate q < q* on an epoch of 
length ®(¢(U) log U) ( f  = q/¢(U)  logU), with 
probability at least 1 - U -7 for some 7 > 2 
the parallel time of the PS-algorilhm is T = 
o(¢(u) log v). 

P r o o f  (Sketch.) Informally, we consider the al- 
gorithm to have two phases. During the first 
phase, the (live processors) are attempting to 
"hook-up," during the second phase the stan- 
dard PS-algorithm for the case P = U is run- 
ning. Of course, there is no such rigid division; 
some processors may be attempting to hook-up, 
while other may already be shortcutting. 

Let c~ be a constant to be fixed later. The 
probability of a particular processor staying 
alive for a¢(U)logU steps is s = ( 1 -  
q/¢(U)  log U) a¢(v)l°gv > exp(-q~). The prob- 
ability that a consecutive sequence of aAlog U 
processors has died by step a¢(U)logU is < 
U a~l°g(1-~). Thus the probability that at time 
he(U) log U there exist two live processors sep- 
arated by more than he(U)log U cells occupied 
by dead processors or empty is ~ U l+~'l°g(1-~). 
This holds uniformly throughout the array. (We 
ignore some small initial and final segments of 
the array.) Then it is easy to fix a such that 
1 + c~A log(1 - s) < -2.  r7 

7 .3  T h e  e x p e c t e d  w o r k  a n d  p a r a l l e l  
t i m e  o f  t h e  P S - a l g o r i t h m  

From Theorem 14, the claimed results 3(a) and 3(5) 
follow. From Lemma 15, the claimed result 3(c) fol- 
lows. From Lemma 16, the claimed result 3(d) fol- 
lows. 

8 T h e  b e n e f i t  o f  r a n d o m i z a -  

t i o n  

Both the MCC algorithm and its extension, the ACC 
algorithm are essentially those described by Martel 
et al. in [MPS89]. We consider them here since the 
ACC algorithm does less expected work than any of 
the other algorithms considered in the earlier sec- 
tions for the Certified Write-All problem, and it is 
extremely simple and clean to implement. 

8 .1  T h e  M C C - a l g o r i t h m  

Informally, the MCC algorithm views the locations 
in the array x of the Certified Write-All problem as 
the U leaves of a binary tree that is log U deep. The 
MCC-algorithm proceeds as follows. Initially all tree 
nodes are unmarked. We start with P = U pro- 
cessors. Each live processor selects a tree node at 
random. If the node v is a leaf or if the children of 
the node are marked, then node v is also marked. 
This step is repeated by all the live processors un- 
til the root is marked. Note that marking the root 
is the same as certifying that all the locations of x 
have been written. A simple variant of the analysis in 
[MPS89] shows that this algorithm does O(U log U) 
expected work. 

8 .2  T h e  A C C - a l g o r i t h m  

We start with P < U~ log U processors and divide the 
array x[1..U] to be marked into P subarrays each of 
size U/P.  (Without loss of generality, we will as- 
sume that U and P are powers of two.) Each of 
these subarrays is now treated as as a single "chunk" 
and is associated with the leaf of a full binary tree 
of (2P - 1) nodes. The ACC-algorithm involves run- 
ning the MCC-algorithm on the new tree, where now 
marking a leaf of the tree implies setting x[i] := 1 for 
all positions of the corresponding subarray. 

Surprisingly, this simple modification to the 
MCC-algorithm only does an expected work of 
O(U log log U) with as many as U~ log U processors. 
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T h e o r e m  17 The expected work done by the A CC- 
algorithm to solve the Certified Write-All problem 
with P < U/ log  U processors is O(U log log U). 

To the best of our knowledge, at the t ime of writ- 
ing this paper,  this is the strongest provably cor- 
rect bound on the expected work done by the ACC- 
algorithm. 

9 A c k n o w l e d g e m e n t s  

We are grateful to Samir Khuller for pointing out an 
omission in the first version of the TIES,  for bring- 
ing reference [MPS89] to our attention, and for sev- 
eral helpful discussions. We are also grateful to Paris 
Kanellakis for bringing the issue of robustness in syn- 
chronous parallel computing to our attention. 

10  

[iw88] 

[AAG87] 

[AAPS87] 

[AHU74] 

[AS88] 

[B74] 

[Ch52] 

[Co86] 

R e f e r e n c e s  

B. Awerbuch, "On the effects of feedback 
in dynamic network protocols," Proc. 29th 
IEEE FOCS, pp. 231-242, 1988. 

Y. Afek, B. Awerbuch, and E. Gafni, "Ap- 
plying static network protocols to dynamic 
networks," Proc. 28th IEEE FOCS, pp. 358- 
370, 1987. 

Y. Afek, B. Awerbuch, S. Plotkin, and M. 
Saks, "Local management of a global re- 
source in a communication network," Proc. 
28th IEEE FOCS, pp. 347-357, 1987. 

A. Aho, J. Hopcroft, and J. Ullman, "The 
design and analysis of computer algorithms," 
Addison-Wesley, 1974. 

B. Awerbuch and M. Sipser, "Dynamic net- 
works are as fast as static networks," Proc. 
29th IEEE FOCS, pp. 206-219, 1988. 

R. P. Brent, "The parallel evaluation of gen- 
eral arithmetic expressions," JACM, vol 21, 
no. 3, pp. 201-206, 1974. 

H. Chernoff, "A measure of asymptotic effi- 
ciency for test of a hypothesis based on the 
sum of observations," Annals of Math. Stat., 
vol. 23, pp. 493-509, 1952. 

P~. Cole, "Parallel merge sort," Proc. 27th 
IEEE FOCS, pp. 511-516, 1986. 

[cv86] 

[cz89] 

[DPPU86] 

[FW78] 

[Kh89] 

[KLP89] 

[KP88] 

[KS89] 

[MPS89] 

[Pi85] 

[ss83] 

[Sh89] 

[TV84] 

R. Cole and U. Vishkin, "Approximate and 
exact parallel scheduling with application to 
list, tree, and graph problems," Prac. ~Tth 
IEEE FOCS, pp. 468-491, 1986. 

R. Cole and O. Zajicek, "The APRAM: 
incorporating asynchrony into the PRAM 
model," Proc. 89'SPAA, pp. 170-178, 1989. 

C. Dwork, D. Peleg, N. Pippinger, and 
E. Upfal, "Fault tolerance in networks of 
bounded degree," Proc. 18th ACM STOC, 
pp. 370-379, 1986. 

S. Fortune and J. Wyllie, "Parallelism in 
random access machines," Proc. lOth ACM 
STOC, pp. 114-118, 1978. 

S. Khuller, private communication, June 
1989. 

Z. Kedem, G. Landau, and K. Palem, "Opti- 
mal parallel suffix-prefix matching algorithm 
and applications," Proc. 89'SPAA, pp. 388- 
391, 1989. 

Z. Kedem and K. Palem, " Optimal parallel 
algorithms for forest and term matching," to 
appear in Theoretical Computer Science. 

P. Kanellalds and A. Shvartsman, "Efficient 
parallel algorithms can be made robust," 
Tech. Rep. CS-89-35, Brown Univ., pp. 1- 
28, October 24, 1989. (Initial version ap- 
peared in Proc. 8th ACM PODC, pp. 211- 
222, 1989.) 

C. Martel, A. Park, and R. Subramonian, 
"Fast asynchronous algorithms for shared 
memory parallel computers," Tech. Rep. 
CSE-89-8, Univ. of California - Davis, pp. 
1-17, July 25, 1989. 

N. Pippinger, "On networks of noisy gates," 
Proc. $6th IEEE FOCS, pp. 30-38, 1985. 

R. Schlichting and F. Schneider, "Fall-stop 
processors: an approach to designing fault- 
tolerant computing systems," A CM Trans. 
Comput. Syst., vol. 1, no. 3, pp. 222-238, 
1983. 

A. Shvartsman, "Achieving optimal CRCW 
fault-tolerance," Tech. Rep. CS-89-~9, 
Brown Univ., pp. 1-8, December 22, 1989, 

R. Tarjan and U. Vishkin, "Finding bi- 
connected components and computing tree 
functions in logarithmic parallel time," Proc. 
25th IEEE FOCS, pp. 12-22, 1984. 

148 


