
Efficient Robust Parallel Computations*
(Extended Abstract)

Zvi M. K e d e m t K r i s h n a V. P a l e m t P a u l G. Sp i rak i s §

A b s t r a c t

A parallel computing system becomes increasingly
prone to failure as the number of processing elements
in it increases. In this paper, we describe a com-
pletely general strategy that takes an arbitrary step
of an ideal CRCW PRAM and automatically trans-
lates it to run efficiently and robustly on a PRAM
in which processors are prone to failure. The strat-
egy relies on efficient robust algorithms for solving a
core problem, the Certified Write-All Problem. This
problem characterizes the core of robustness, be-
cause, as we show, its complexity is equal to that of
any general strategy for realizing robustness in the
model. We analyze the expected parallel time and
work of various algorithms for solving this problem.
Our results are a non-trivial generalization of Brent's

*This research was partially supported by the Office of
Naval Research under contract number N00014-85-K-0046, by
the National Science Foundation under grant number CCR-
89-6949, and by the EEC ESPRIT Basic Research Actions
Project ALCOM (No 3075).

?Department of Computer Science, Courant Institute of
Mathematical Sciences, New York University, 251 Mercer St.,
New York, NY 10012-1185, (212)998-3101, kedem@nyu.edu.

IIBM Research Division, T.J. Watson Research Center, P.
O. Box 704, Yorktown Heights, NY 10598, (914) 789-7846,
kpalem~ibm.com.

~Computer Technology Institute, Patras University, pn_
tras, P. O. Box 1122, 26110 Patras, -t-30 (61) 225-073,
spirakis@graptvxl .bitnet

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distn'buted for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Lemma. We consider the case where the number of
the available processors decreases dynamically over
time, whereas Brent's Lemma is only applicable in
the case where the processor availability pattern is
static.

1 I n t r o d u c t i o n

With hardware becoming cheaper, it is expected that
"massively parallel systems" with large numbers of
processors will both increase the speed of computa-
tions and decrease their cost. Unfortunately, as the
number of processing elements grows, certain diffi-
culties need to be addressed, among them processor
faults and asynchrony. Clearly, the larger the num-
ber of processors, the greater the probability of some
processors failing or going out of synchrony. These
two problems are related, but in this paper we re-
strict ourselves to processor faults.

Much of the recent emphasis in algorithm design
for PRAMs for a variety of basic problems such as list
ranking [TV84,CV86], sorting [Co86], forest match-
ing [KP88], pattern matching [KLP89] and oth-
ers, has emphasized efficiency and optimal speedup.
These extremely efficient (ideally optimal speedup)
parallel algorithms have very little "slack" in that
every step of the algorithm is essential. Therefore,
quite often, they do not terminate correctly when
perturbed by a few processor failures.

Because of this, it is important to study the de-
sign of robust parallel algorithms, and even more
important, robust execution of arbitrary parallel pro-
grams. Obviously it is important to ensure that the
overhead incurred in realizing robustness is not exces-
sive. In this paper we present a general methodology
for implementing ideal CRCW PRAMs robustly on
faulty CRCW PRAMs. We adopt the approach of

© 1990 ACM 089791-361-2/90/0005/0138 $1.50 138

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100216.100231&domain=pdf&date_stamp=1990-04-01

"graceful degradation," so that if the processors fail-
stop during the computation, as long as at least one
processor remains operational, the PRAM program,
independent of its semantics, can continue execut-
ing correctly. In addition, we want to minimize the
performance penalty incurred in such robust imple-
mentations.

Specifically, we present a technique that takes an
arbitrary step of an ideal CRCW PRAM designed to
run on U "virtual" processors, and execute it on a
CRCW PRAM of the same type with P < U pro-
cessors that are prone to failure 1. The number of
virtual processors U, that is the parallelism width of
the ideal PRAM program being translated, can vary
from step to step. By modeling these failures proba-
bilistically, we analyze the expected work and parallel
time complexities of deterministic schemes for realiz-
ing these robust implementations. We also analyze a
probabilistic algorithm for solving the same problem.

Kanellakis and Shvartsman [KS89] were the first to
formalize this notion of robustness, in the formal con-
text of synchronous parallel computation. They de-
veloped a failure model (to be described later), which
we use here. In [KS89], they considered the Write-
All problem, and described its deterministic robust
implementation. In the Write-All problem, given an
array z[1..U] initialized to 0, set x[i] := 1 for all i.
(We will also refer to such writing of 1 as "mark-
ing.") Their algorithm, henceforth referred to as the
KS-algorithm, iteratively estimates the amount of re-
maining unwritten locations and remaining live pro-
cessors, and reschedules the processors to other lo-
cations for writing l's. (It is easy to see that their
algorithm for the Write-All problem can be used for
computing associative functions, such as max.)

Using the Write-All algorithm, Kanellakis and
Shvartsman, designed robust algorithms for funda-
mental problems such as list ranking. In [KS89] they
also analyze the deterministic worst case complexity
of the KS-algorithm. They observed various specific
complexity improvements in the case where, for the
number of initial processors P, P < U. Specifically,
they parameterized the KS-algorithm to achieve work
of O(U log U + P log 2 U). In [KS89] they observe that
this algorithm achieves robustness optimally (work
O(U)) provided P <_ U / l o g 2 U - logUloglogU).
Work improvement for the case where P = U/log U
was observed independently by Khuller [Kh89].

a That is we execute an ideal Common/Arbi t rary/Pr ior i ty
CRCW PRAM program respectively on a Common/Arbit-
rary/Priori ty faulty CRCW PRAM.

Subsequently to Kanellakis and Shvartsman, Mar-
tel, Park, and Subramonian [MPS89] described a
probabilistic algorithm for computing the maximum
of U elements assuming asynchronous computations,
in which the processors can fail. Their algorithm
(to which we refer to as a Multiple Coupon Col-
lector Algorithm or MCC-algorithm for short) can
be immediately used for robust computation of the
maximum as well as for solving the Certified Write-
All problem. The Certified Write-All problem is
the Write-All problem with the additional require-
ment that a global bit is set after all the loca-
tions have been written 2. A variety of an asyn-
chronous parallel model (APRAM) was described
by Cole and Zajicek [CZ89], who presented al-
gorithms for summation, graph connectivity, and
other problems on this model. Many researchers
have studied closely related issues, including robust-
ness and fault tolerance in an asynchronous setting
[Aw88,AAG87,AS88,DPPU86,Pi85,SS83].

Previous efforts at "adapting" ideal PRAM pro-
grams to cope with imperfections, such as processor
faults or asynchrony, have focussed on redesigning
algorithms for specific well-known problems such as
those listed above. We depart completely from this
approach, by providing a general strategy for simu-
lating arbitrary PRAM steps on PRAMs with faults.

Specifically, we show that the complexities of solv-
ing the Certified Wrile-All problem robustly, and im-
plementing a step of an ideal CRCW PRAM ro-
bustly are identical up to small constant multiplica-
tire time and small constant per processor additive
space overheads. We do this constructively, by show-
ing (in sections 4 and 5) how to use an arbitrary
robust Certified Write-All algorithm twice to imple-
ment an arbitrary step of the ideal PRAM. In effect
we provide a two-phase idempotent execution strat-
egy (TIES for short) that uses any robust algorithm
for solving the Certified Write-All problem z, to auto-
matically yield robust implementations of arbitrary
ideal PRAM steps. (Recently [Sh89], Shvartsman ob-
tained a technique, similar to our TIES strategy, with
the following two restrictions. He can implement a
parallel algorithm robustly provided that its work is

2The KS-algorithm, as well as the algorithm due to Martel
et al. provide such certification implicitly.

3Actually, a n y algorithra that can verify that all the the
given U instructions have been "touched" (or executed), will
suffice. The Certified Write-All problem is a special case of this
more general Certified Touch-All problem. Note for example
that the computation of conjunction, maximum, or summation
could have been used also.

139

within a polylog factor of that of the best sequen-
tial algorithm and its local memory requirements are
within a polylog factor of the problem size.)

Since we show (in section 5) the Certified Write-
All problem to be the core step in robust implemen-
tations of PRAM algorithms, solving it efficiently
is critical to realizing robust implementations with
low overhead. Towards this end, we also intro-
duce a new and extremely simple algorithm based on
pointer-doubling (the PS-algorithm where PS stands
for pointer shortcutting) for solving the Certified
Write-All problem. We analyze the expected work
as well as the expected parallel time taken by this
simple PS-algori thm algorithm, as well by the KS-
algorithm. We show that the expected behavior
of the PS-algorithm is better than that of the KS-
algorithm; detailed statements of these results are in
section 3. We also show that the expected work done
by a randomized parallel version of a Coupon Collec-
tor scheme (originally introduced in [MPS89]) is less
than that of the deterministic KS and PS algorithms.

2 M o d e l o f f a i l u r e s a n d s o m e
c o n v e n t i o n s

Although our results hold with nonessential modifi-
cations for different varieties of CRCW PRAMs, for
the purpose of this paper, we assume the Common
variant of the CRCW PRAM [FW78]. When dealing
with probabilistic algorithms, we assume that the in-
dividual processors of the PRAM are supplied with
independent random number generators.

Consider a parallel algorithm A that starts at time
0 with P available processors and in parallel t ime r
completes its computat ion on input data IA. The
availability pattern HA indicates which processors are
available or operational for the algorithm A at each
parallel t ime step. Let Pi be the number of processors
available at t ime i (0 < i < r) . Then,

D e f i n i t i o n 1 The work performed in the execution
of algorithm A on input IA, with availability pattern
II is W(A, Ia, II) = ~'~=0 Pi .4

4This not ion of work generalizes the t radi t ional processor-
t ime product definition, for the case w h e n there are n o pro-
cessor failures. I t was originally introduced as available pro-
cessor steps in [KS89]. A similar definition of work is in-
t roduced subsequently in IMPS89], a l though they define it in
the slightly different b u t essentially equivalent model of asyn-
chronous PRAMs.

As in the case of Kanellakis and Shvartsman
[KS89], we will only be interested in the fail-stop
availability patterns. In such patterns, processors ei-
ther stay available or fail and once they fail, they stay
failed for the remaining steps of the computation.

An availability pat tern II is called oblivious if it is
determined before the start of the execution of the
algorithm. It is called Byzantine if it is created (by
an adversary), adaptively, during the computation.
In such a case, the adversary determines the set of
available processors at the next time step by exam-
ining the history of the computat ion (which includes
random choices previously done) up to that time.

The average case analysis in this paper deals with
random failures where each processor may fail with
a fixed probability q < 1 in a consecutive sequence of
time steps, referred to here as an epoch; the length
of each epoch may be a function of U. In this
paper, unless stated otherwise, the epoch length is
e (logU) . If all the processors in the PRAM fail,
this condition can presumably be detected externally.
For convenience of presentation (and also to adhere
closer to the model in [KS89]), we assume that at
least one processor survives, no mat ter what are the
probabilistic failure assumptions. This, of course, is
nonessential.

3 S u m m a r y o f R e s u l t s

We now summarize our main contributions. All our
expected case results listed below hold with an ex-
tremely high probability of at least 1 - U -7 for some
7 > 1 controllable by the implementor.

3 . 1 T h e two-phase e x e c u t i o n s t r a t -

e g y

1. We introduce a two-phase idempotent execution
strategy that , in conjunction with any robust
algorithm for the Certified Write-All problem
can be used to simulate an arbitrary step of a
PRAM robustly. This TIES strategy can be im-
plemented using a constant amount of additional
space per live processor.

3 . 2 T h e K S - a l g o r i t h m

2. Average case analysis of the KS-algorithm fol
the Certified Write-All problem. We show that:

140

(a) Its expected work is O((P + U)logU),
where U is the array size and P is the initial
number of processors.

(b) When P = U and the processor failure
rate q is small, its expected parallel time
is O(log P log U).

(c) When P < AU for some constant A E
(0, 1), its expected parallel time is @((U +
log P) log U).

(d) When P = AUI¢(U) for some A E (0,1)
and an increasing function ¢(U) < log U
and q < 1 where q is the decay rate for an
epoch of length O(¢(U) log U), its expected
parallel time is f2(U ~) for some e > O.

Note that the KS-algorithm has an interesting
threshold in its expected parallel time, which de-
grades very rapidly from O(log P log U) (case (b)
above) to essentially sequential behavior (case
(c)) even when the number of initial processors
P is O(U). In the above analysis as well as in the
average case analysis of the PS-algorithm below,
we assume a random pattern of failures as stated
in section 2, where the failures can be Byzantine
within each epoch.

3 . 3 T h e P S - a l g o r i t h m

3. We present a new and simple PS-algorithm for
the Certified Write-All problem which is based
on pointer doubling. We show that:

(a) When P = U, its expected work is
O(V log U).

(b) When P = U, its expected parallel time is
is O(log U).

(c) When AU < P < U there exists q* E (0, 1)
such that if q < q*, its expected parallel
time is O(logU).

(d) When P = AU/O(U) for some constant A
and an increasing function ¢(U) < log U
then there exists q* E (0, 1) such that if
q < q* is the failure rate for an epoch of
length @(O(U)log U), its expected parallel
time is O(¢(U) log U).

The PS-algorithm does better in its expected
parallel time behavior than the KS-algorithm.

3 . 4

4.

A r e l a t e d r e s u l t

We analyze a probabilistic algorithm for the Cer-
tified Write-All problem. In this analysis, we as-
sume worst-case oblivious availability patterns
of processors. We can prove that this Adapted
Coupon CollecLor Algorithm (or A CC-algorithm
sketched in section 8.2) does O(U log log U) work
provided P <_ U~ log U. This algorithm is a
trivial variant of the one studied by Martel et
al. [MPS89] for computing associative functions
in parallel and asynchronous situations that are
fault-prone. Therefore, its expected work im-
proves on that of the two deterministic algo-
rithms described above provided P < U~ log U.

4 Two-phase i dem pot en t exe-
cut ion s trategy

4 . 1 I n t r o d u c t o r y r e m a r k s

A naive at tempt to emulate an ideal PRAM on a
faulty PRAM based on a simple redistribution of the
live processors, will run into difficulties. Consider for
instance an ideal program written for 2 processors
whose task is to exchange the values of the variables
v[1] and v[2]. Pl and P2 in parallel read v[1] and
v[2] respectively and write the value they read into
the other location. If, say Pl fails, the value of v[1]
is irretrievably lost. We therefore will need to use
temporary storage for the values to be written, so
that the inputs for the step remain available as long
as necessary to simulate the step of the PRAM. There
are however, additional subtle points to be taken care
of.

As stated, we will use a single execution of any
Certified Write-All algorithm as the basic building
block in our strategy t o simulate a single step of the
ideal PRAM on the faulty PRAM. In general, such
algorithm assumes the the existence of some data
structure, suitably initialized. The purpose of that
structure is to monitor the progress of the algorithm,
e.g., to estimate the number of live processors, the
work done so far, etc. Thus at the end of the exe-
cution of the algorithm, in general, the data struc-
ture has a different value. If we now wish to run the
algorithm again to simulate another step, we again
need a clean, initialized copy of the data structure.
Providing a new data structure for each step of the
ideal PRAM program is clearly impractical, as this
will require a very large number of initialized data

141

structures.
The obvious approach, is to to reinitialize the orig-

inal data structure. Here, again, the simplistic ap-
proach will not be sufficient, as we have to do it
in a faulty PRAM. Assume that , for instance, that
the initialized data structure has 0s in all positions.
Then, initializing the data structure is a comple-
mentary problem to Certified Write-All. To do this,
we need another data structure, properly initialized,
etc., and we have got ourselves into a circular argu-
ment. These are the types of problems we need to
consider in our robust implementations.

4 . 2 M o d e l o f t h e i d e a l P R A M

Without loss of generality, our ideal CRCW PRAM
is a simple modification of the RAM as described in
[AHU74]. To save space, we omit many details. The
PRAM has U "virtual" processors: P l , . . . , P u with
no local registers; all memory is global and shared.
The "application memory" accessible by the proces-
sors is a shared vector M[1..las¢] of some length.
Without loss of generality, the processors execute
a single program whose instructions are listed in a
vector INST[1..I]. The instructions are as those in
[AHU74], with appropriate modifications. Thus, a
typical instruction might be: M[jl] := M[jl]+M~2].
There is also a vector PC[1..U], initialized to 1, con-
taining the program counters of the processors. In a
single step of the PRAM, each processor Pl executes
the following

Internal Program:

1. read PC[i];
2. i f PC[i] -" 0 t h e n
3. halt
4. e lse
5. b e g i n
6. read INST[PC[i]];
7. decode the instruction;
8. execute the instruction;
9. write the new value of PC[i]
10. e n d .

4 . 3 T h e s t r a t e g y

We assume the existence of some robust algorithm for
the Certified Write-All problem, which given a vector
z[1..U] initialized to 0 and an availability pat tern H,

sets z[i] := 1 for i = 1 , . . . , U in r steps. It uses some
auxiliary data structure A UX of size O(U), appropri-
ately initialized, all of whose locations are accessed
during the execution of the algorithm. Furthermore,
at the end of its execution, a bit variable DONE is
set to TRUE.

To save on space, our description will be somewhat
informal, and we will not utilize the resources most
efficiently.

Our (faulty) CRCW PRAM, will contain struc-
tures required both by the original application prob-
lem and by the robust interpreter. Thus we will have:

• M, INST, and PC of the original application
program.

• Two versions of z, AUX, and DONE, re-
ferred to as z.old, x.new, A UX.old, A UX.new,
DONE.old, DONE.new.

• Three new vectors LOC[1..U], VAL[1..U], and
NEXT[1..U].

• The interpreter (based on the given Certified
Write-All algorithm), its program counters etc.

We now sketch, very briefly, the simulation of one
step of the ideal PRAM while omitt ing many im-
portant technical details. By informal induction we
ass u me:

The values of M, INST, PC in the faulty PRAM
are the same as those of M, INST, PC in the
ideal PRAM.

The value of A UX.old at the beginning of the
simulation is the same as that of A UX at the
beginning of the execution of the robust algo-
r i thm for Certified Write-All, z.old is initialized
to 0s, and DONE.old is FALSE.

The interpreter proceeds in two phases, each based
on a single execution of the robust Certified Write-
All algorithm. By the algorithm, the (live) processors
are synchronized between the phases. The behavior
of the interpreter is reminiscent of the deferred write
approach in the redo/no-undo recovery protocol in
database operating systems. Phase 1, in effect, cre-
ates the deferred writes, phase 2 installs them. It is
important that the phases are idempotent, as proces-
sors may fail after doing some work, and the various
structures may become inconsistent. We describe the
two phases (not in complete detail) in turn.

142

4.3.1 P h a s e 1

The first phase of the interpreter is a modification
of the Certified Write-All algorithm. However, in-
stead of addressing x, A UX, and DONE it addresses
x.old, A UX.old, and DONE.old. Furthermore, in
order to prepare clean structure for the next phase:
before it accesses some location of x.old, it initial-
izes (to 0) the corresponding location of x.new; be-
fore it accesses some location of A UX.old, it ini-
tializes the corresponding location of A UX.new; be-
fore it accesses DONE.old, it initializes (to FALSE)
DONE.new. There are other book-keeping activities
to be done, resetting the program counters of the
interpreter at the end of the phase, etc.

We now describe the modifications done to the
Certified Write-All algorithm to allow the simula-
tion of the application program. Run the underly-
ing robust Certified Write-All algorithm. Just be-
fore the point where Pk executes x[i] := 1, simu-
late the execution of INST[PC.old[i]]. However, if
INST[PC.old[i]] assigns v to U[l], instead execute
iOC[i] := l, VAL[i] := v; if the instruction does not
write, set LOC[i] := O. PC[i] is not overwritten, its
new value is stored in NEXT[i].

4.3.2 P h a s e 2

This phase starts after DONE.old becomes TRUE.
The second phase too is a modification of the Cer-
tified Write-All algorithm. However instead of ad-
dressing x, A UX, and DONE it addresses x.new,
A UX.new, and DONE.new. Furthermore, in order
to prepare clean structure for the next phase: before
it accesses some location of x.new, it initializes (to 0)
the corresponding location of x.old; before it accesses
some A UX.new, it initializes the corresponding lo-
cation of A UX.old; before it accesses DONE.new, it
initializes (to FALSE) DONE.old.

Again, using the robust Certified Write-All algo-
rithm, values computed in phase are copied into cor-
rect locations: if LOC[i] ~ 0 then M[LOC[i]] :=
VAL[i]. Furthermore, PC[i] := NEXT[i] is executed
This is done for the index i before the instruction
x.new[i] :-- 1 is executed.

available number of processors on step i be Hi. In
Brent's case[B74], this sequence of available proces-
sors is determined completely and deterministically
at the beginning of the computat ion (and was gen-
erally a constant). Therefore, we can apply his the-
orem at any step i immediately, by dividing up the
Ui wide parallel step into pieces of size (Ui /Hi) , and
distributing them among the available processors 5.
(Of course, even in this simple case, a "two-phase"
strategy is needed for applying Brent 's Lemma to
PRAMs, first by using temporary storage to store
the values being computed, and then copying them
back into the original positions. For a trivial exam-
ple, consider cyclic shift on an array of length Ui,
similar to the example in section 4.1.)

The situation in this paper constitutes a non-
trivial generalization of this problem since the avail-
ability patterns change with time, and we do not
know exactly how these changes occur. Therefore,
processors need to be dynamically rescheduled to
ensure that all the instructions have been executed
and in addition, this condition needs to be detected
(certification) 6. Furthermore, since this process of re-
peatedly rescheduling and certification is done on the
same faulty PRAM, this algorithm for the Certified
Write-All problem has to be robustly implemented as
well. The TIES strategy does this as characterized
in the theorem below.

T h e o r e m 1 Assume that we are given a robust Cer-
tified Write-All algorithm A for writing ls in an ar-
ray x[1..U]. Let it be stored in t¢ locations of the
P R A M M and use auxiliary storage of size (r(U), all
of which locations are accessed during the execution.
Furthermore, for any failure pattern 7r, the execution
time is some r(~r).

Then, given an arbitrary ideal P R A M program us-
ing U (virtual) processors running in T steps, and
failure patterns zq , zr2, . . . , ~rt (zci is the failure in step
i), it is possible to execute the program robustly on M
in time E,~_I r (~ ,) using O (x + a (g) + u) additional
storage.

5 T I E S as a g e n e r a l i z a t i o n o f
B r e n t ' s L e m m a

To understand the full generality of TIES, consider
parallel computation that takes H steps. Let the

5 W i t h o u t loss of general i ty , we a s s u m e t h a t Ui is a mu l t ip l e
of Hi .

6If M is a n a s y n c h r o n o u s P R A M r a t h e r t h a n o n e p r o n e t o

processor fa i lures , t h e n cer t i f ica t ion is sufficient a n d p r o c e s s o r

reschedu l ing is no t neces sa ry

143

6 Average-case analysis of the
KS-algorithm

For the description of this algorithm, please see
[KS89].

Let j0, j l , - . , be the time instants at which proces-
sors actually write into the array x; these steps will
be referred to as writing epochs or epochs. We use
Uj to denote the number of unwritten locations at
the beginning of step j. Our availability patterns II
are random in the sense that each processor, which
is operational at the end of writing epoch j~, may
fail with fixed probability q < 1 between the epochs
j~ and J~+l. II is byzantine otherwise. Let P0 = P
be the number of processors initially available, and
let U0 = U. We will first prove the following useful
technical theorem.

T h e o r e m 2 There are constants el, ~2 E (0, 1), and
a > 1 that depend on q, such that, as long as Pi~ >-
alogP, the inequality el < Pi~+~/Pj~ <_ e2 holds for
all such epochs Jx with probability at least 1 - p - 7
for some 7 > 2.

P r o o f Given an epoch j~: such that the number of
operational processors in the beginning ofj~ is Pj= >
alogP, and any fl E (0, 1), we have from Chernoff
bounds [Ch52] that if E~ is the event "the number of
failed processors is in the interval (1-4-/3)qPj~ ," then

Prob{Ex} >__ 1 - exp(-~-~2~ qPj~). Choose any a >

and let 7 = ~P~q2 - 1 (7 > 2). Then, Prob{Ex} _>
1 - p-(-~+1).

Now, let E be the event that E~ holds for all
epochs j~ such that Pj~ _> a logP. Then, if E is
the event "there is a j~ such that E is violated," we
get Prob{/~} < ~ Prob{/~} over all j~ for which
Pj, > a logP, i.e. Prob{E} g U0P -('y+I) < P-~.
Hence, Prob{E} >_ 1 - P-v . This completes the
proof of the Theorem with constants el = 1-(l+f l)q ,
e2= 1 - (1 - f l) q . []

For convenient analysis, we will view the execu-
tion of algorithm KS as being split into two phases.
The first phase contains all epochs jx such that
Pj, >__ a l o g P and the second phase is the rest of
the algorithm's execution.

6 .1 A n a l y s i s o f t h e f i r s t p h a s e

For the first phase we have:

L e m m a 3 Conditioned on event E, the number of
epochs of the first phase is O(log P).

P r o o f We have Pj,+~ < e2Pj. for all the epochs of
the first phase. If the number of such epochs is el,
then Pj.I+~ < a logP , i.e. Pe~ el+D <: a logP, i.e.
el = O(logP). []

Corol lary 4 Conditioned on event E, the amount
of work for the first phase is W1 = O(P log U).

Corol lary 5 Conditioned on event E, the number
of parallel steps of algorithm KS for the first phase is
T1 = O(log P log U).

6 .2 A n a l y s i s o f t h e s e c o n d p h a s e

To analyze the second phase of algorithm KS we need
the following result of [KS89]:

Fact 1 Let Pi and Ui respectively denote the number
of operating processors and the number of unwritten
positions at the beginning of epoch i. Then, the work
from this epoch is O((Pi + Ui + Pi log Ui) log U).

By using this fact and Theorem 2, we get:

L e m m a 6 Conditioned on event E, the work in the
second phase of algorithm KS is W2 = O((alog P +
U + a log P log U) log U).

Having estimated the work during the second
phase, we now analyze its expected parallel time.
To do this, we need to calculate the number of un-
written positions Uj,~ at the end of the first phase.
Again, conditioning on the event E we get that
Uj, 1 > U - 1 Re • We distinguish two cases depending
on the valueo~ P:

6.2.1 Case 1: P = U a n d q < 1/3

L e m m a 7 Conditioned on event E, for any epoch
j~ of the first phase Uj~ < Pj~.

p .

P r o o f Conditioned on event E, we have ~ > el

P_Aa. By an inequality of (where Pie = P0). Let rl -- Pie"
[KS89] we have Uj, < Uj0(1-r~). Thus, Ujl < U(1-
~) . Also, Pjl >-- elP > elU. Thus, Uj~ < Pj, when
1 - ~ > el i.e. whenel > 2 / 3 , i.e. w h e n q < 1/3.
By repeating the above argument (for q < 1/3) the
Lemma is proved, o
By Lemma 7 and given the event E, we get Uj,~ -
O(logP), for which we have:

144

L e m m a 8 I f U <_ P and q < 1/3, then with proba-
bility at least 1 - p - 7 for some 7 > 2, the number
of parallel steps of the second phase of algorithm KS
is T2 = O(log P log U) and hence its parallel time is
O(log P log U) with the same probability.

6.3 P < U

We consider two cases:

1. 1-5~ < AU, A e (0, 1)

Then, given that E holds, we get Uj~, _> (1-A)U
and PJ°x+l < a log P. In this case, the number
of epochs of the second phase is O(U) since the
processors are very few and the number of un-
written positions is very large. Thus

L e m m a 9 I f there is a constant A E (0, 1) such
that P < A(1 - e u) U (e2 as in Theorem 2)
then, with probability at least 1 - p - 7 for some
7 > 2, the parallel time of the KS-algorithm is
o(v log v).

2. P = AU/¢(U), A G (0, 1), increasing ¢(U) <
log U

Here q is the decay rate in an epoch of length
O(¢(U) log U). Then,

L e m m a 10 I f there is a constant A E (0, 1) and
an increasing function ¢(U) <_ log U such that
P = AU/¢(U), then for every failure rate q < 1
on an epoch of length ®(¢(U)log U), with prob-
ability at least 1 - U -7 for some 7 > 2, the
parallel time of the KS-algorithm is T = f~(U')
for some e > O.

6.4 The expected work and parallel
time of the KS-~ilgorithm

From Corollary 5 and Lemma 6, the claimed re-
sult 2(a) follows. From Corollary 4, Lemma 7, and
Lemma 8, the claimed result 2(b) follows. From
Lemma 9, the claimed result 2(c) follows. From
Lemma 10 the claimed result 2(d) follows.

7 T h e P S - a l g o r i t h m a n d i ts
a v e r a g e c a s e a n a l y s i s

7.1 The algorithm

We propose a simple algorithm for Certified Write-
All with certification that exhibits stable expected

parallel time behavior, and has low expected work
complexity. The PS-algorithm is based on a triv-
ial modification of the well-known straightforward
pointer-doubling algorithm. Our auxiliary data
structure A UX is an array c[1..U]. Initially, c[i] =
0 for all i. Furthermore, DONE is initialized to
FALSE. It will be convenient, to define addition in
the set {1 , . . . , n} with 1 following n. We denote such
addition by 4, thus a~-b = (a + b - 1 mod n) + 1.

A l g o r i t h m Po i n t e r - S h o r t c u t r ing:

• Processor assignment: For each k (1 <__ k < P)
processor k is assigned to array position ik =

• Each processor k executes the following loop:

1. whi le n o t DONE do
2. b e g i n
3. i f c[ik+c[ik]] = 0 t h e n
4. b e g i n
5. x[ik3rc[ik]] := 1;
6. c[ik] := c[ik] + 1
7. e n d
8. else c[ik] := c[ik] + c[i~+c[i~]];
9. i f c[ik] > n t h e n
10. DONE := T RU E
11. end .

L e m m a 11 (Correctness) I f at least one processor
survives, all of x[1..U] will be set to 1. n

7 . 2 A v e r a g e c a s e a n a l y s i s

In the sequel we will assume that the initial num-
ber of processors is P > U/ log U. We will assume
an availability pattern H that is random. As before,
we split the parallel time into consecutive epochs.
Each processor which is operational at the beginning
of an epoch has a fixed probability q < 1 of failing
at some step during it, independently of other pro-
cessors. Notice that the availability pattern assumed
here is equivalent to that assumed in the average case
analysis of the KS-algorithm in the sense that the
processor "decay rate" is constant, measured over an
epoch. Patterns with more frequent failure (faster
decay rates) than H are unacceptable because they
tend to exhaust the available processors before any
useful work can be done. We analyze the complexity
of the PS-algorithm by considering several cases.

145

Assuming that the choice of the step in it fails is
random, we can assume that for each live processor
the probability f of failing in the next step is equal
to q divided by epoch length. In fact, this value of f
is a nonessential approximation.

7.2.1 P = U

To give a more presentable analysis, we look at a
variant of the PS algorithm. Let c[1..2U] be a vector
initialized by c[k] = k + l for k < 2U and c[2U] = 2U.
There are 2U processors, one per location and each
processor k executes the loop:

1. wh i l e c[k] < 2U do
2. c[k] : = c[c[k]]
3. e nd .

For the purpose of the analysis, it is therefore
enough to estimate the t ime when for at least one
k, 1 < k < U, c[]¢] -- 2U, so that a consecutive seg-
ment of length U at least has been "shortcut."

Observe that any stage of the algorithm, for each
k there is a path starting with k and ending with 2U,
defined by the sequence: k, c[k], c[c[k]], The algo-
r i thm starts with a path k, k + l ,]¢+2, . . . , 2U for each
k. (.In fact, we have a single path 1, 2 , . . . , 2U, which
we choose to consider as 2U overlapping paths.) Dur-
ing the execution, because of shortcutting, the paths
may split. In effect, the algori thm at tempts to per-
form tree path compression starting with a tree con-
sisting of a single long path from the leaf (1) to the
root (2U).

Let Lj [k] be the path from k to 2U after j steps of
the algorithm. Let lj [k] denote its length and aj [k]
the number of live processors on it. Of course, lj [k] _<
lj_l[k]. Without loss of generality, we assume that
the processors fail between PRAM steps, and not
in the middle of a step. The numbers above refer
to values immediately after the step was executed.
Also, without loss of generality, we can assume that
the two processors at locations 2 U - 1 and 2U are
dead before the start of the execution, and that once
c[k] = 2U, the processor pk dies, for each k.

L e m m a 12 Let k < 2U, and let cl[k], c2[k],...,cz[k]
be a sequence such that aj[k] >_ cj[k]b[k] for j = 1,

Z 2, . . . , k. Th n < 10/YI,-=0(1 +

P r o o f We first show that for any j , lj [k] + aj [k] =
lj_l[k]. Let i be a node in Lj[k], which therefore
was also in Lj_l[k]. If i was dead during step j ,

then c[i] did not change during step j . If i was alive
during step j , then before step j , c[i] = l for some l,
and after step j , c[i] = c[l]; thus l was removed from
Lj_l[k] while creating Lj[k]. The equation follows
from considering all nodes in Lj [k], and the lemma
follows immediately from the equation. []

To prove the desired complexity bound, it is essen-
tially enough to show that for at least one k, such
that 1 _< k _< U, /j[k] becomes 2 after O(logV)
steps. The proof will consider two phases for each
path. The first phase when the path is still at least
12(log U) long, the second phase, when it is shorter.
(Of course, all derivations will be done under high
probability assumptions.)

L e m m a 13 There exist constants (, ~? > 0 such that
l¢logv[k] < ~/logU with probability at least 1 - U -~
for some 7 > 2, for k = 1 , 2 , . . . , U.

P r o o f We will prove the claim for all values of k,
so we fix some k, and do not list it in the variables.
Thus we write Lj for Lj [k], etc.

Consider any step j > 1. Let zcj be the proba-
bility that a random node on Lj is alive. It is pos-
sible to show that 7rj = (1 - q/logU)Jlro. Tech-
nically, ~r0 >_ 1 - 2/U, but we will write 7r0 = 1.
Then 7rj = (1 - q / logU) j. Let cj = 7rj/2. Define
the event Ej by "aj >_ cjlj ." Then from Chernoff
bounds, Prob{Ej} >_ 1 - exp(-zr j l j /8) .

Using elementary analysis it easy to show that
there exists (such that l-]~]=°lg u(1 + cj) > 2U/ logU,
and therefore from Lemma 12, l¢logU <_ logU. We
now have to show that for some 71 > 0, l¢logU <_
~/log U holds with high probability.

Let r/ = 2 4 / e x p (- q () . Consider the event E de-
fined by: "as long as j < (l o g U and lj _> T/logU:

log U aj > cjlj." Prob{E} ~)'-~j=l exp(-rc j l j /8) ~_
(log U . e x p (- (1 - q / l o g U) ¢ ~ogV~ log U/8) < (log U.
U- exp(-qi),/s = (log U - U -a. []

We have shown that l¢ log u[k] < ~ log U with prob-
ability 1 - U -~ at least. We observe that for a con-
stant fraction of locations k the processor pk will stay
alive for ((+ rt)log U steps. Then as for such k,
lj+a[k] < l)[k] as long as lj[k] > 2, the algorithm will
terminate in at most ((+ ~/) log U steps.

T h e o r e m 14 The expected parallel time of the PS-
algorithm, with U processors initially is O(logU).
The probability that the actual parallel time exceeds
O(log U) is less than U -v , for some 7 > 2.

146

7 .2 .2 P < U

We modify the algorithm so that the processors are
placed ~ U / P locations apart.

L e m m a 15 I f there is a constant A E (0,1)
such that AU <_ P < U, then there exists
q* E (0 ,1)such that if q < q* (and f =
q / logU) , then with some probability at least
1 - p7 for some 7 > 2, the parallel time of the
PS-algorithm is O(log U).

2. P -- AU/¢(U), A E (0,1), increasing ¢(U) _<
log U

Here q is the decay rate in an epoch of length
O(¢(U) log V). Then,

L e m m a 16 I f there is a constant)~ E (0, 1) and
an increasing function ¢(U) _< log U such that
P = then there exists q* e (0, 1) such
that for every failure rate q < q* on an epoch of
length ®(¢(U) log U) (f = q/¢(U) logU), with
probability at least 1 - U -7 for some 7 > 2
the parallel time of the PS-algorilhm is T =
o(¢(u) log v).

P r o o f (Sketch.) Informally, we consider the al-
gorithm to have two phases. During the first
phase, the (live processors) are attempting to
"hook-up," during the second phase the stan-
dard PS-algorithm for the case P = U is run-
ning. Of course, there is no such rigid division;
some processors may be attempting to hook-up,
while other may already be shortcutting.

Let c~ be a constant to be fixed later. The
probability of a particular processor staying
alive for a¢(U)logU steps is s = (1 -
q/¢(U) log U) a¢(v)l°gv > exp(-q~). The prob-
ability that a consecutive sequence of aAlog U
processors has died by step a¢(U)logU is <
U a~l°g(1-~). Thus the probability that at time
he(U) log U there exist two live processors sep-
arated by more than he(U)log U cells occupied
by dead processors or empty is ~ U l+~'l°g(1-~).
This holds uniformly throughout the array. (We
ignore some small initial and final segments of
the array.) Then it is easy to fix a such that
1 + c~A log(1 - s) < -2. r7

7 .3 T h e e x p e c t e d w o r k a n d p a r a l l e l
t i m e o f t h e P S - a l g o r i t h m

From Theorem 14, the claimed results 3(a) and 3(5)
follow. From Lemma 15, the claimed result 3(c) fol-
lows. From Lemma 16, the claimed result 3(d) fol-
lows.

8 T h e b e n e f i t o f r a n d o m i z a -

t i o n

Both the MCC algorithm and its extension, the ACC
algorithm are essentially those described by Martel
et al. in [MPS89]. We consider them here since the
ACC algorithm does less expected work than any of
the other algorithms considered in the earlier sec-
tions for the Certified Write-All problem, and it is
extremely simple and clean to implement.

8 .1 T h e M C C - a l g o r i t h m

Informally, the MCC algorithm views the locations
in the array x of the Certified Write-All problem as
the U leaves of a binary tree that is log U deep. The
MCC-algorithm proceeds as follows. Initially all tree
nodes are unmarked. We start with P = U pro-
cessors. Each live processor selects a tree node at
random. If the node v is a leaf or if the children of
the node are marked, then node v is also marked.
This step is repeated by all the live processors un-
til the root is marked. Note that marking the root
is the same as certifying that all the locations of x
have been written. A simple variant of the analysis in
[MPS89] shows that this algorithm does O(U log U)
expected work.

8 .2 T h e A C C - a l g o r i t h m

We start with P < U~ log U processors and divide the
array x[1..U] to be marked into P subarrays each of
size U/P. (Without loss of generality, we will as-
sume that U and P are powers of two.) Each of
these subarrays is now treated as as a single "chunk"
and is associated with the leaf of a full binary tree
of (2P - 1) nodes. The ACC-algorithm involves run-
ning the MCC-algorithm on the new tree, where now
marking a leaf of the tree implies setting x[i] := 1 for
all positions of the corresponding subarray.

Surprisingly, this simple modification to the
MCC-algorithm only does an expected work of
O(U log log U) with as many as U~ log U processors.

147

T h e o r e m 17 The expected work done by the A CC-
algorithm to solve the Certified Write-All problem
with P < U/ log U processors is O(U log log U).

To the best of our knowledge, at the t ime of writ-
ing this paper, this is the strongest provably cor-
rect bound on the expected work done by the ACC-
algorithm.

9 A c k n o w l e d g e m e n t s

We are grateful to Samir Khuller for pointing out an
omission in the first version of the TIES, for bring-
ing reference [MPS89] to our attention, and for sev-
eral helpful discussions. We are also grateful to Paris
Kanellakis for bringing the issue of robustness in syn-
chronous parallel computing to our attention.

10

[iw88]

[AAG87]

[AAPS87]

[AHU74]

[AS88]

[B74]

[Ch52]

[Co86]

R e f e r e n c e s

B. Awerbuch, "On the effects of feedback
in dynamic network protocols," Proc. 29th
IEEE FOCS, pp. 231-242, 1988.

Y. Afek, B. Awerbuch, and E. Gafni, "Ap-
plying static network protocols to dynamic
networks," Proc. 28th IEEE FOCS, pp. 358-
370, 1987.

Y. Afek, B. Awerbuch, S. Plotkin, and M.
Saks, "Local management of a global re-
source in a communication network," Proc.
28th IEEE FOCS, pp. 347-357, 1987.

A. Aho, J. Hopcroft, and J. Ullman, "The
design and analysis of computer algorithms,"
Addison-Wesley, 1974.

B. Awerbuch and M. Sipser, "Dynamic net-
works are as fast as static networks," Proc.
29th IEEE FOCS, pp. 206-219, 1988.

R. P. Brent, "The parallel evaluation of gen-
eral arithmetic expressions," JACM, vol 21,
no. 3, pp. 201-206, 1974.

H. Chernoff, "A measure of asymptotic effi-
ciency for test of a hypothesis based on the
sum of observations," Annals of Math. Stat.,
vol. 23, pp. 493-509, 1952.

P~. Cole, "Parallel merge sort," Proc. 27th
IEEE FOCS, pp. 511-516, 1986.

[cv86]

[cz89]

[DPPU86]

[FW78]

[Kh89]

[KLP89]

[KP88]

[KS89]

[MPS89]

[Pi85]

[ss83]

[Sh89]

[TV84]

R. Cole and U. Vishkin, "Approximate and
exact parallel scheduling with application to
list, tree, and graph problems," Prac. ~Tth
IEEE FOCS, pp. 468-491, 1986.

R. Cole and O. Zajicek, "The APRAM:
incorporating asynchrony into the PRAM
model," Proc. 89'SPAA, pp. 170-178, 1989.

C. Dwork, D. Peleg, N. Pippinger, and
E. Upfal, "Fault tolerance in networks of
bounded degree," Proc. 18th ACM STOC,
pp. 370-379, 1986.

S. Fortune and J. Wyllie, "Parallelism in
random access machines," Proc. lOth ACM
STOC, pp. 114-118, 1978.

S. Khuller, private communication, June
1989.

Z. Kedem, G. Landau, and K. Palem, "Opti-
mal parallel suffix-prefix matching algorithm
and applications," Proc. 89'SPAA, pp. 388-
391, 1989.

Z. Kedem and K. Palem, " Optimal parallel
algorithms for forest and term matching," to
appear in Theoretical Computer Science.

P. Kanellalds and A. Shvartsman, "Efficient
parallel algorithms can be made robust,"
Tech. Rep. CS-89-35, Brown Univ., pp. 1-
28, October 24, 1989. (Initial version ap-
peared in Proc. 8th ACM PODC, pp. 211-
222, 1989.)

C. Martel, A. Park, and R. Subramonian,
"Fast asynchronous algorithms for shared
memory parallel computers," Tech. Rep.
CSE-89-8, Univ. of California - Davis, pp.
1-17, July 25, 1989.

N. Pippinger, "On networks of noisy gates,"
Proc. $6th IEEE FOCS, pp. 30-38, 1985.

R. Schlichting and F. Schneider, "Fall-stop
processors: an approach to designing fault-
tolerant computing systems," A CM Trans.
Comput. Syst., vol. 1, no. 3, pp. 222-238,
1983.

A. Shvartsman, "Achieving optimal CRCW
fault-tolerance," Tech. Rep. CS-89-~9,
Brown Univ., pp. 1-8, December 22, 1989,

R. Tarjan and U. Vishkin, "Finding bi-
connected components and computing tree
functions in logarithmic parallel time," Proc.
25th IEEE FOCS, pp. 12-22, 1984.

148

