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A b s t r a c t  

This paper presents a deterministic sorting algorithm, called Sharesort, that sorts n records on 
an n processor hypercube, shuffle-exchange or cube-connected cycles in O(log n(loglog n) 2) time 
in the worst case. The algorithm requires only a constant amount of storage at each processor. 
The fastest previous deterministic algorithm for this problem was bitonic sort [3], which runs in 
O(log 2 n) time. 

1 I n t r o d u c t i o n  

Given n records distributed uniformly over the n proces- 
sors of some fixed interconnection network, the sorting 
problem is to route the record with the i th largest as- 
sociated key to processor i, 0 < i < n. One of the 
earliest parallel sorting algorithms is Batcher 's  bitonic 
sort [3], which runs in O(log 2n) t ime on the hyper- 
cube, shuffle-exchange (SE) [14] and cube-connected cy- 
cles (CCC) [11]. More recently, Leighton [6] exhibited 
a bounded-degree, O(log n) time sorting network based 
on the O(logn)  depth sorting circuit of Ajtai, Komlhs 
aLd Szemer6di [1]. However, no efficient emulation of 
Leighton's sorting network is known for the hypercube, 
arid it has been shown that  such an emulation requires 
12Ilog 2 n) t ime on the SE or CCC [5]. Hence, for these 
networks, the problem of closing the gap between the 
trivial ~ ( logn)  lower bound and the O(log 2 n) upper  
bound remained open. A noteworthy breakthrough was 
pr~)vided by the randomized Flashsort algorithm of Reif 
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and Valiant [12], which sorts every possible input per- 
mutat ion with high probabil i ty in O( logn)  t ime on a 
CCC. In contrast,  this work is the first to narrow the 
gap in terms of worst case, deterministic complexity. 

The main result of this paper  is a deterministic sort- 
ing algorithm, called Sharesort, tha t  sorts n records in 
O(log n(log log n) 2) t ime on an n processor hypercube, 
SE or CCC. Sharesort is a stable, comparison-based 
sorting algorithm and requires only a constant  amount 
of storage at each processor. A sketch of the main ideas 
underlying this algorithm will now be given; a more for- 
mal exposition can be found in Sections 3 to 6. 

Let the routing problem refer to the special case of sort- 
ing in which the set of n keys forms a permuta t ion  of 
the integers 0 through n - 1. While one might ex- 
pect this restriction to simplify the problem consider- 
ably, the best known upper  bound for the routing prob- 
lem continues to be given by the complexity of sorting. 
This phenomenon may  arise because the most natural  
schemes for parallel sorting are based on partitioning, 
recursive sorting, and merging. Within such a frame- 
work the additional information available to a routing 
algorithm, namely the final destination of each record, 
is of no apparent  use beyond the top level of the re- 
cursion. Sharesort is an n~-way merging algorithm that  
succeeds in obtaining fast performance by reducing the 
sorting problem to shared key sorting, a special case of 
the routing problem that  can be sustained within a re- 
cursive framework. Unfortunately, this reduction comes 
at the expense of a loglog n factor, which may be inher- 
ent. 
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A formal definition of the shared key sorting problem 
may be found in Section 4. A useful alternative formu- 
lation is given by the following two-stage problem. In 
the planning stage, the algorithm is given a hypercube 
(say) of dimension t~d, where a is a constant strictly 
greater than 1, and a permutation 7r over a subcube X 
of dimension d. The algorithm is allowed to run the 
machine for time Tp. The planning stage is followed by 
the fouling stage, in which the algorithm must route 
the permutation 7r over the subcube X ,  using only the 
2 d processors o f  X .  An algorithm that can successfully 
route any permutation 7r within time Tr in the rout- 
ing stage solves the shared key sorting problem in time 
Tp +T~. 
Consider the performance obtained by applying known 
methods to this problem. Bitonic sort gives a solution 
with Tp = 0 and Tr = O(log 2 n). Using Nassimi and 
Sahni's parallel algorithm to set up the Benes permuta. 
tion network [9] yields a solution with Tp = O(log a n) 
and T~ = O(log n). It is natural to ask whether any in- 
termediate point exists between these two extremes with 
T v + Tr = o(log 2 n), and in fact, Section 4.2 presents 
a solution with Tp = Tr = O ( l o g n ( l o g l o g n ) 2 ) .  Sec- 
tion 4.3 sketches an improved version of this algorithm 
yielding Tp = T~ = O(log n log log n). A detailed de- 
scription of the improved shared key sorting algorithm 
will be provided in the full paper. 

But how is the sorting problem reduced to shared key 
sorting? Sharesort begins by recursively sorting sub- 
cubes of n 4Is (say, see Section 6) records. Thus, the 
task that remains is to merge n 1/5 sorted lists of length 
n 4/5. A crucial observation is that the ordering informa- 
tion supplied by this recursive sort is sufficient to allow 
a large number, as many as n 41s-c, of evenly-spaced se- 
lections to be performed over the entire set of n records. 
Sharesort computes n 419 such "splitters", that is, all of 
the records with ranks of the form in  s/9, 0 < i < n 4/9. 
Using these splitters, and once again taking advantage 
of the structure imposed by the recursive sort, Share- 
sort then partitions the n records into 2n 2914s blocks of 
length at most n 16145. Each of these blocks is a sorted 
list with the additional property that the ranks of all 
of its constituent records lie between the same pair of 
adjacent splitters. Viewing the data as being arranged 
in a 2n ~914s x n 16145 array with one block residing in 
each row, it becomes apparent that by first sorting all 
of the columns according to the permutation that sorts 
the first column, and then performing some appropri- 
ate compaction, every record can be brought to within 
n s19 of its correct final sorted position. The problem of 
sorting all of the columns according to the permutation 
that sorts the first column is precisely a shared key sort 
with a = 45/29. 

With some care in the compaction step, the remain- 
ing problem of sorting within groups of n 5/9 can be 
treated as a merge of n 1/5 sorted lists of length n 16/4~ 
This merging task is performed in two stages. In the 
first stage, Sharesort merges sets of n 414~ sorted lists 
of length n 1614~. This reorganizes each group of n ~19 
records into n 119 sorted lists of length n 419, which are 
then merged in the second stage. Letting M(x,y)  de- 
note the task of merging n ~ sorted lists of length n y, 
the previous outline has reduced M(1/5, 4/5) to finding 
splitters, building shared keys, shared key sorting, com- 
paction, M(4/45,16/45) and M ( 1 / 9 , 4 / 9 ) .  Note that 
the ratio between the exponents in each of the merg- 
ing tasks is exactly 4. Thus, the same procedure can 
be applied recursively to perform the smaller merging 
tasks. 

2 P r e l i m i n a r i e s  

2.1 The  Model  of  C o m p u t a t i o n  

The time/space analysis of the algorithms presented in 
this paper assumes the following model of computation. 
For a hypercube, SE or CCC with n processors, the lo- 
cal memory of each processor is organized in O(log n)- 
bit words. Each processor has a unique integer ID in 
the range 0 to n - 1. The processors operate in a syn- 
chronous, SIMD fashion; at any one time, all of the pro- 
cessors are executing the same instruction. In a single 
time unit, a processor can either send a word of data 
to an adjacent processor and receive a word of data 
from an adjacent processor, or it can perform a single 
CPU operation on word-sized operands stored in its lo- 
cal memory. The ability to "unshuffie" data on the SE 
is assumed. 

With regard~to the particular problem of sorting, the 
objects to be sorted will be referred to as records. A 
record may have a number of associated fields, one of 
which contains a word-sized key. The ordering of the 
keys determines the sorted order of the records. The 
only operations we require on keys are copy and com- 
parison. Note that ties can be broken in a stable manner 
by adding a field to each record that contains the ID of 
the originating processor. 

2.2 Defini t ions 

Given a cube of dimension d, let any string a of length 
d over the alphabet {0, 1,*} correspond to that set of 
processors for which the ID "matches" a in the natural 
sense. It is often convenient to specify such a d-bit string 
as a tuple of the form (do : a0, . . . ,  dr-1 : a t - l ) ,  where 
r and the di's are nonnegative integers, ~0<i<r d/ = 
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d, and (~i is either * or a dl-bit integer. Such a tuple 
corresponds to the string f 0 " "  fir- 1, where f i  is the di- 
bit string corresponding to the binary representation of 
(~i if ai  ~ *, and ,d~ otherwise. 

Given a set of records S, and a record x in S, let 
Rank(S, z) denote the rank of x in the set S, that  
is, the number of records in S having a lower associ- 
ated key than x. Given an integer i, 0 g i < IS[, let 
Record(S, i) denote the record with rank i in S. 

Given nonnegative integers a, b and e such that  a _> 
b and c < 2 a-b, and a set of 2 a records S, let 
Splitters(S, b, e) denote the set of 2 b records in S with 
ranks congruent to c modulo 2 a-b. 

Let an (a, b, e)-cube be a subcube of dimension a+b+c 
~hat is viewed as consisting of 2 c levels, each of which 
is an array with 2 a rows and 2 b colunms. A set of 2 c 
Jocations that  have the same row and column values will 
be called a pile. 

2.3 Usefu l  O p e r a t i o n s  

A number of previously known operations will be used 
to define Sharesort. These algorithms will be described 
in terms of the parameter  n, a power of 2. With the 
exception of sparse enumeration sorting, all of these op- 
erations run on a hypercube, SE, or CCC with n pro- 
cessors in O(log n) time. 

Prefix operations take as input an associative binary 
cperator a and an array A = Ao,A1, . . .  ,An-x, and re- 
turn the n values a(A0, (~(As, or(A2,..., a(Ai-1, Ai)))) 
where 0 _< i < n [13]. One special type of prefix opera- 
tion is the segmented prefix operation in which the input 
array A is divided into groups of adjacent elements and 
a prefix operation is applied in parallel within each of 
tae groups. 

Monotonic routing takes as input an array with n lo- 
cations, m of which hold records, 0 < m < n. Each 
record has associated with it a destination address in 
the range 0 through n - 1, with the restriction that  the 
destination addresses form a monotonically increasing 
sequence. The monotonic routing algorithm sends each 
of the m records to its destination address within the 
array [7]. Special cases of monotonic routing include 
the concentrate, in which the m records are routed to 
the first m array locations, the inverse concentrate, in 
which the m records are originally located in the first m 
array locations, and the increment, in which each of the 
m records is moved to the next higher array location. 

Bit-Permute-Complement (BPC) routing performs a 
permutat ion of n records where the destination ad- 
dresses are calculated by permuting and complementing 
the bits of the source addresses [8]. Broadcasting copies 

a record from one processor to all n processors [7]. 

Bitonic merging is the basic operation underlying 
Batcher's bitonic sort. Given two sorted lists, each of 
length at most n, this operation merges them into a sin- 
gle sorted list. A BPC route must be used to reverse 
one of the two lists before the merge can be performed. 

Odd-even bitonic merges are used to completely sort 
a cube that  is almost sorted. Formally, suppose that  
n = 2 a and that  a cube of dimension d r , £ > d, is 
given in which every record is within n positions of its 
final sorted position. In parallel, sort each of the 2 a ' -a  
subcubes of dimension d of the form (d r - d : i, d : 
*), 0 <_ i < 2 d'-d. Next, perform two sets of bitonic 
merge operations, one between subcubes of the form 
(d r - d -  1 : i, 1 : 0, .d: . )  and (d r - d -  1 : i, 1 : 
1, d : *), 0 _< i < 2 a - a - l ,  and the other between 
s u b c u b e s o f t h e f o r m ( £ - d - ~  ,~1 " i ,  1 : 1, d : * )  anld 
( d ' - d - l  : i +  l, 1 : 0 ,  d : * ) , o <  i < 2  d - d - l - - .  
One may verify that  these operations leave the entire 
cube sorted. The pair of bitonic merges that  follow the 
sorting of the subcubes will be called odd-even bitonic 
merges. Note that  a monotonic route must be performed 
both before and after the lat ter  set of merges. The cost 
of these monotonic routes is O(dr). 

Sparse enumeration sort is a useful sorting technique 
for the case when the number of records to be sorted, 
n, is much smaller than the number of processors 
available, p [10]. Sparse enumeration sort runs in 
O(log n log p~ log(p/n)) time. 

2.4 T i m e  A n a ly s i s  

When implementing Sharesort on a hypercube com- 
puter, the running time can be calculated by simply 
adding together the running times of the subroutines 
from which it is composed. When implementing Share- 
sort on the SE, the running time must also include the 
time spent shuffling and unshuffling the data  between 
calls to subroutines. This time is proportional to the 
distance between the last bit position used in one sub- 
routine and the first bit position used in the following 
subroutine. It is easily verified that  this cost does not 
change the overall complexity of the algorithm. Finally, 
when implementing Sharesort on a CCC there is an ad- 
ditional complication caused by the fact that  certain bit 
positions require more time for communication than do 
others. However, it has been shown that  this complica- 
tion can be managed in time proportional to the running 
time of the SE implementation [4]. 

The following technical lemma will be useful in analyz- 
ing the running times of several subroutines. 

L e m m a  2.1 Let a, b and e be constants where a > O, 
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b > 0  and 0 < • < 1/2. If  for each sufficiently large 
value of n, there exist real numbers z and y such that 
e < z < y <  1 - e  a n d z + y < l + l o g - Z n  and 

f (n)  <-- fC tzn]  ) + f (  [ynJ ) -I- bn log" n 

then there exists a constant k (which is a function of a, 
b and e) such that f (n)  <_ kn log "+1 n for all sufficiently 
large n. 

P r o o f :  The proof is by induction on n. The induction 
hypothesis is tha t  the lemma holds for n < m, and 
it will be shown that  this implies the lemma holds for 
n < m / ( 1 -  •). Let z -- - l o g ( l -  c). Note that  z > 0 
and log z <_ log y < - z .  

For n < m/C1 - •), 

f (n)  < kznlog"+l(zn) + kynlog"+l(yn) + bnlog" n 

< (1 + log -2 n)kn(logn - z) a+l + bnloga n 

= kn log a+l n - (a + 1)kzn log" n + bn logan 

+ O(nlog a-1 n) 
< knlog a+l n 

provided that  k > b/Ca + 1)z and that  n is sufficiently 
large. El 

3 S p l i t t e r  F i n d i n g  

This section defines the algorithm FindSplitters(a, b, c). 

Input: A set S of 2 "+b records organized as 2a sorted 
lists of length 2 b, where a and b are positive integers, 
and an integer c in the range 0 < c < b. Let Si denote 
the ith sorted list, 0 < i < 2", and let S denote the 
entire set of 2 "+b records. The records of S are stored 
in a subcube of dimension a + b, with Record(Si, j)  
stored in processor (a : i, b : j) ,  0 < i < 2", 0 < j < 2 b. 

Processors: The 2 a+b processors of the subcube contain- 
ing S. 

Output:  The set T d¢~ Splitters(S, c, 0), with 
Record(T, k) stored in processor (a + b - c : 0, c : k), 
0 < k < 2  ¢. 

Running time: O((a + b)2/(b - c)). 

Example: Given n records organized as n 1/2 sorted lists 
of length n 112, this algorithm can be used to compute 
n 114 evenly-spaced splitters in O(log n) time. 

A l g o r i t h m  FindSplitters(a, b, c) 

a. Let d = L J. Let X = U0<_i<2- Splitters(Si, b -  
d, 0). Sort t he se t  X.  Note that  [X I = 2 a+b-a. Im- 
plementation: sparse enumeration sort. Running 
time: OC(a + b)2/(b - e)). 

2. Let r(k) = Rank(S, Record(T, k)) = k2 "+b-c, L = 
Splitters(X, c, 0), and V = Splitters(X, c, 2" - 
1). Observe that  i2 a - 2 a+d + 2 a + 2 d - 1 < 
Rank(S, Record(X, i)) < i2 a. Hence, r(k)--2"+d+ 
2"- t -2  d -  1 < Rank(S, Record(L, k)) < rCk ) 
and rCk ) + 2" - 1  _< Rank(S, Record(U, k)) < 
r(k) + 2 "+d - 2 d. Mark every record z in S such 
that  Record(L, k) < z < Record(U, k) for some k, 
0 < k < 2 ¢. No record belongs to more than one 
such interval since the choice of d guarantees that  
Rank(S, Record(U, k)) < Rank(S, Record(L, k + 
1)), 0 < k < 2 ¢ -  1. Let Y denote the set of 
marked records. Note that  T C Y. Implementa- 
tion: concentrate,  broadcast, bitonic merge, prefix 
sum. Running time: OCa + b). 

3. Compute r0(k) = Rank(S, RecordCL , k)) and 
store the result in processor ( a + b - e : 0, c : k), 
0 < k < 2 ~. Implementation: concentrate,  sum. 
Running time: O(a + b). 

4. Compute rl(k) = Rank(Y, Record(L, k)) and 
store the result in processor C a + b - c : 0, e : k), 
0 < k < 2% Implementation: prefix sum, concen- 
trate,  sum. Running time: O(a + b). 

5. At processor ( a + b -  c : 0, c : k), compute 
Rank(Y, Record(T, k)) : r l (k )  + r(k) - to(k), 
0 < k < 2 ¢. Running time: O(1). 

6. Sort the set Y. Note that  ]YI < 2e( 2"+a+1 - 2" - 
2 a+l +2)  < 2 "+c+d+l. Implementation: sparse enu- 
meration sort. Running time: O((a + 5)2/(5 - c)). 

7. Use the ranks computed in Step 5 to extract  the 
desired set T from the sorted set Y. Implemen- 
tation: inverse concentrate,  concentrate.  Running 
time: O(a + b). 

4 S h a r e d  K e y  S o r t i n g  

This section defines the shared key sorting algorithm. 
The subroutine BalanceC) will be presented first and the 
main algorithm follows. 

4.1 C o l o r  B a l a n c i n g  

This section defines the color balancing subroutine 
Balance(r, c, l, k, p). 

Input/Processors:  A subcube of 2 r+~+z processors, 
which will be viewed as an (r, c, O-cube, and a set 
S of records distributed one per processor over some 
subset of the processors in the first 2 c-1 columns of 
level 0 of the cube. The parameters r, c, !, k and p are 
all nonnegative integers, where 1 > c and p is a prime, 
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2 c-1 < p < 2% Let s denote the greatest integer such 
that  IS[ _< 2 r + c - ' - l .  

Output: A subset U of S such that  I S \ UI < 
2 ~+c-~s-2, called the "balanced records", and for 
each record z in U an assignment to the fields 
Color(x), Row(x), Column(x) and Stage(z), where 
Color(x) = [2"Rank(S, x)/ISlJ, o _< Row(x) < 2 0 < 
Column(x) < p and Stage(x) = k. For any balanced 
records x and y, Row(x) = Row(y) =¢, Column(x) =~ 
Column(y) and Color(x) = Color(y) ~ Column(z) 5k 
Column(y). Furthermore, two monotonic routes that  
can be implemented entirely within level 0 are sufficient 
to move the balanced records from their original posi- 
tions to the positions given by Row(z) and Column(z). 

Running time: O(r2/(! - e) + l). 
Example: The input is a cube of 2n processors arranged 
:in nil 4 rows, 2n 114 columns and n 1/~ levels with n 5/12 
records in the first n 1/4 columns of level 0. The records 
are assigned colors in the range 0 through n 1/4 - 1. The 
algorithm balances all but nl/3/2 records in O(log n) 
;ime. 

A l g o r i t h m  Balance(r, c, l, k, p) 

1. Append a field to each record that  saves the ID of 
the processor originally holding the record. Con- 
centrate the records into the first IS[ processors and 
sort them. Compute ISI and then for each record z 
in S, compute Color(x). Implementation: concen- 
trate, sparse enumeration sort, prefix operations. 
Running time: O((r + l)2/1). 

2. Sort the records of the set S according to their 
original positions. Then return them to their orig- 
inal positions. Implementation: sparse enumer- 
ation sort, inverse concentrate. Running time: 
O((r + l)2/l). 

3. If IS[ _< 2" then every record in S has been assigned 
a different color. Let U = S, and for each record x 
in S, set Row(x) and Column(x) to the input posi- 
tion of x, set Stage(x) = k, and return. Otherwise, 
go to Step 4. Running time: O(1). 

4. Copy each record to the same row and column po- 
sition in each of the first p levels. Let Si,i be the 
pile of p records in row i and column j .  Permute 
the copies of the records in the first p levels of the 
cube as follows. In level h, 0 < h < p, move each 
record from row i and column j to row i and column 
j + ih mod p. Implementation: broadcast, mono- 
tonic routes. Running time: O(c). 

5. Define a collision to be the mapping of two records 
in the same level and with the same color to the 

. 

same column. Calculate the number of collisions in 
each of the first p levels. Note that  for any pair of 
piles, Si,i and Si,,j,, that  have the same color there 
is at most one collision between records in S / j  and 
records in Si,j, in the first p levels. Because there 
are at most 2 c - ' -1  piles with each color, the total 
number of collisions in the first p levels is less than 
22c-9'-32 r = 2 r+~c-2'-a and one of the first p lev- 
els must have fewer than 2r+2~-2"-a/p < 2 r+c-~'-~ 
collisions. Determine which level in the first p levels 
has the fewest collisions. Implementation: sparse 
enumeration sort, prefix operations. Running time: 
O(r + c + rV(! - c)). 

Let level i contain the smallest number of colli- 
sions. For each record x in level i that  is not in- 
volved in a collision with a record from a lower 
row, set Row(x) and Column(x) to the row and 
column positions to which it was permuted, and 
set Stage(x) = k. These records form the set 
of balanced records U. Note that  each collision 
prevents at most one record from becoming bal- 
anced, so at most 2 r+c-2s-2 records in level i will 
remain unbalanced. Then undo the permutation 
by sending each record back to its original loca- 
tion. Finally, each balanced record x in level i 
sends Row(z), Column(x) and Stage(x) back to 
level 0. Implementation: prefix operation, mono- 
tonic routes. Running time: O(r + c). 

4.2 S h a r e d  K e y  So r t i n g  

This section defines the shared key sorting routine 
SharedKeySort(a, b). 
Input: A set S of 2 °+b records organized as 2 a lists 
of 2 b records each, where the 2 b records in each list 
have the same key field, a and b are positive integers 
and b - a ~ 2 - -  O(a). Let Si denote the i t h l i s t  of 2 b 
records, 0 < i < 2 a, and let T - U0<i<~- Record(Si, 0). 
The records of S are stored in a su~ocube of dimension 
a-t- b, with the j t h  element of the list Si being stored in 
processor (a : i, b : j ) , 0 _ ~ i < 2  a , 0 _ < j < 2  b. 

Processors: The 2 a+b processors of the subcube contain- 
ing S. 

Output: The (stably) sorted set S. In other words, if x 
is the j t h  record in list Si, then x is moved to processor 
(a : Rank(T, x), b :j),  0 < i < 2", 0 < j < 2 b. 

Running time: O(alog2a). This is improved to 
O(a log a) in Section 4.3. 

Example: Given n records organized as n 1/2 lists of 
length n 1/~, and assuming that  records belonging to the 
same list have the same key value, this algorithm sorts 
the n records in O(log n(log log n) 2) time. 
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The operation SharedKeySort(a, b) is performed by cal l  
ing SharedKeySort'(a, b, 0), defined below. The third 
parameter keeps track of the depth of recursion. 

A l g o r i t h m  SharedKeySort'(a, b, depth) 

1. If a < depth, then perform a bitonic sort of the 
2 a+b records, and return. Running time: O(a 2) if 
a < depth, O(1) otherwise. 

2. Let r = t - / 2 j ,  c = f . / 21  and a = f logc]  + 
2. The processors will be viewed as forming an 
(r, e, b)-eube. For each record z in S, let Level(z) 
denote the level of the processor in which z was 
originally located. Let p be the smallest prime be- 
tween 2 e and 2 c+1. Note that  p is guaranteed to 
exist [2]. Calculate p by comparing each integer 
between 2 c and 2 e+l with all smaller positive in- 
tegers and testing for divisibility. Implementation: 
broadcast, divide, prefix operations. Running time: 
o(.). 

3. For i = 0 to d, do the following. Simulating a 
machine with 2 a+b+l processors arranged as an 
(r, c + 1, b)-cube, call Balance(r, c q-1, b, i, p) 
on the set of unbalanced records in T. Return each 
balanced record to its original row and column and 
broadcast its stage, color, row and column values 
to the 2 b - 1 other records in its pile. At most 
2 a-2~ piles remain unbalanced after the ith stage. 
Let Ui = {z I S t a g e ( z ) = i } ,  O< i <  d. Running 
time: O(a log a). 

4. For i = 0 to d, do the following. First, simulat- 
ing a machine with 2 a+b+l processors, move the 
records in Ui to their balanced positions. In other 
words, for each record z in Ui, send z to proces- 
sor ( r :  Row(z), e+  1 : Column(z), b: Level(z)). 
Next, map the array of balanced records from row- 
major to column-major storage. This moves each 
record z in Ui to processor (c-t- 1 : Column(z), r : 
Row(z), b : Level(z)). Then concentrate the set of 
records Ui in the new column-major order, and if 
i > 0 then route the concentrated records so that  
they are stored immediately following the records 
in Ui-l. In other words, store the records of Ui in 
the lull consecutive processors beginning with pro- 

i - - I  cessor number ~-~j=0 lull. At this point, each list 
St is stored in 2 b consecutive processors and any 
set of (at most 2 r) lists Si that  share the same 
stage and column numbers is stored in a set of 
(at most 2 r+b) consecutive processors. Implemen- 
tation: monotonic route, BPC route, concentrate, 
monotonic route. Running time: O(a log a). 

5. When the records in each set Ui are moved to 
their balanced positions (given by their row and 
column fields), they can be sorted by first sort- 
ing the columns, then monotonically routing within 
columns to the rows given by their color fields, and 
then sorting within rows. Steps 5a through 5g sort 
the columns of each set Ui. 

(a) Permute the data  so that  the record that  was 
stored in processor (c : W, r : X, b - r  : 
Y, r : Z) is sent to processor (c : W, b -  r : 
Y, r : X, r : Z). Implementation: BPC route. 
Running time: O(a). 

(b) Note that  the 2 r records residing in any sub- 
cube of the form ( a + b - r  : X, r : . )  share the 
same key, stage, color and column values. For 
each such subcube, save these four vMues in 
additional fields associated with the record in 
processor (a + b - r : X, r : depth). Running 
time: O(1). 

(c) Sort the level 0 records, resolving comparisons 
by stage first, column second and color third. 
Replace the key field of each level 0 record by 
the rank that  it achieves in this sort, undo the 
sort, and copy the new key value throughout 
each pile. Implementation: sparse enumera~ 
tion sort (twice), broadcast. Running time: 
o ( a ) .  

(d) Divide the records into groups of 2 2r 
consecutive records and recursively call 
SharedKeySort'(r, r, depth q- 1) to sort each 
group. 

(e) The key, stage, color and column fields cor- 
responding to this level of the recursion have 
been overwritten. Restore these fields from 
the copies saved in Step 5b. Implementation: 
broadcast. Running time: O(a). 

(f) Perform odd-even bitonic merges of sorted 
lists of length 2 2r, resolving comparisons as 
in Step 5c. Running time: O(a). 

(g) Permute the data  so that  the record that  was 
stored in processor (c : W, b - r : Y, r : X, r : 
Z) is sent to processor (c : W, r : X, b -  
r : Y, r : Z). Implementation: BPC route. 
Running time: O(a). 

6. For i = 0 to d, do the following. First, simulat- 
ing a machine with 2 a+b+1 processors, move each 
record z in Ui to processor (c + 1 : Column(z), r : 
Color(z), b : Level(z)). Next, map the array of 
balanced records from column-major to row-major 
storage. This moves each record z in Ui to proces- 
sor (r : Color(z), c + 1: Column(x), b : Level(z)). 
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Then concentrate the set of records Ui in the new 
row-major order, and if i > 0 then route the con- 
centrated records so that they are stored imme- 
diately following the records in Ui-1. In other 
words, store the records of Ui in the IUil con- 
secutive ~)rocessors beginning with processor num- 
ber ~-'~-0 ]Uil. Implementation: monotonic route, 
BPC route, concentrate, monotonic route. Run- 
ning time: O(a log a). 

7. At this point, each set Ui is sorted by color. 
Steps 7a through 7g complete the sorting of each 
set Ui by sorting within color groups. 

(a) Permute the data so that the record that was 
stored in processor (r - 1 : W, c + 1 : X, b - 
e - 1 : Y, c + 1 : Z) is sent to processor (r - 1 : 
W, b - c - 1  : Y, c + l  : X, c + l  : Z). 
Implementation: BPC route. Running time: 
O(a). 

(b) Note that the 2 e+l records residing in any sub- 
cube of the form ( a + b - c - 1  : X, e+ l  : , )  have 
the same key and stage values. For each such 
subcube, save these two values in additional 
fields associated with the record in processor 
( a + b - r  : X,  r : depth). Running time: O(1). 

(c) Sort the level 0 records, resolving compar- 
isons by stage first and key second. Replace 
the key field of each level 0 record by the 
rank that it achieves in this sort, undo the 
sort, and copy the new key value throughout 
each pile. Implementation: sparse enumera- 
tion sort (twice), broadcast. Running time: 
o(a). 

(d) Divide the records into groups of 2 2e+2 con- 
secutive records and call SharedKeySort~(c + 
1, c + 1, depth + 1) to sort each group. 

(e) The key and stage fields corresponding to this 
level of the recursion have been overwritten. 
Restore these fields from the copies saved in 
Step 7b. Implementation: broadcast. Run- 
ning time: O(a). 

(f) Perform odd-even bitonic merges of sorted 
lists of length 2 ~¢+2, resolving comparisons as 
in Step 7c. Running time: O(a). 

(g) Permute the data so that the record that was 
stored in processor ( r -  1 : W, b - c - 1  : 
Y, e +  1 : X, e +  1 : Z) is sent to processor 
( r - 1  : W, e + l  : X, b - c - 1  : Y, c +  
1 : Z). At this point, the records within each 
stage are sorted correctly. All that remains 
is to merge the records from different stages. 
Implementation: BPC route. Running time: 
o(,0. 

8. Sort the records in level 0 to determine their final 
sorted position. Broadcast the final sorted position 
of each record in level 0 to the remaining records in 
its pile. This gives the final sorted position of each 
record. Implementation: sparse enumeration sort, 
broadcast. Running time: O(a). 

9. For i = 0 to d, move the records in Ui to their 
final sorted positions. Implementation: monotonic 
route. Running time: O(a log a). 

Space analysis: Each record contains a key, stage, color 
and column field. The row and level fields have been 
introduced for expository purposes only. Note that for 
i > 0, the level i records remain within the set of level i 
processors at all times. Certain records make use of four 
additional fields in order to save the values of the key, 
stage, color and column fields computed at a particular 
depth ofrecursion. This is performed by Step 5b, before 
the first recursive call, and by Step 7b, before the sec- 
ond recursive call (in the latter case, only the key and 
stage fields are saved). No processor saves more than a 
single set of fields, since the stack-like storage scheme 
ensures that each level is used by at most one depth 
of the recursion. Finally, there are never more than 2 
records located at a processor. Hence, the algorithm 
requires only a constant number of memory words per 
p r o  cessor .  

Time analysis: Let SKS(a, b, d) denote the running time 
of SharedKeySort'(a, b, d). If a _< d then SKS(a, b, d) = 
O(d 2) and if a > d then 

SKS(a,b,d) = O(aloga) + SKS(r,r,d + 1) 
+ SKS(e+ 1 ,c+  1 ,d+  1), 

where r = La/2] and c = [a/2]. Thus, a top-level call 
to SharedKeySort'(a, b, 0) generates only recursive calls 
of the form SKS(a I, a I, d) where 

a ' < ~  H 1+ . 
O<i<d a 

The logarithm of the product term is easily seen to be 
O(1) for d < log a. Hence, a' = O(a/2 d) for d < log a, 
and the maximum depth of recursion is log a - log  log a+  
O(1). This bound on the maximum depth of recursion 
implies that the cost of all of the bitonic sorts performed 
in Step 1 is O(a log a). Now consider the total amount of 
time spent at some depth of recursion d that is less than 
the maximum depth. Lemma 2.1 shows that this time 
is also bounded by O(a log a). Therefore, SKS(a, b, O) = 
O(a log s a). 
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4.3 Improved  Shared Key  Sor t ing 

This section sketches the main ideas underlying 
a somewhat more complicated implementation of 
SharedKeySort(a, b) running in O(aloga)  time. The 
new version also requires only a constant amount of 
storage at each processor. A complete description of the 
improved shared key sorting routine will be provided in 
the full paper. 

The new algorithm is similar to that described in Sec- 
tion 4.2, except that the record coloring and balancing 
operations have been separated from the record mov- 
ing operations. The record coloring and balancing is 
performed by a subroutine called PlanRoute 0 and the 
record motion is performed by subroutine DoRoute 0.  
As before, the shared key sort can be viewed as a tree 
of recursive calls to smaller shared key sorts. The sub- 
routine PlanRoute 0 performs the coloring and balanc- 
ing for all levels of the recursion, and the subroutine 
DoRoute 0 performs the record motions for all levels 
of the recursion. Thus the coloring and balancing of 
records at all levels of the recursion is performed before 
any records are moved. The coloring and balancing in- 
formation needed by DoRoute 0 is provided by records, 
called routing records, that are created by PlanRoute 0.  
Each routing record consists of a constant number of 
words of data, and at most one routing record will be 
stored at any single processor. 

The separation of record coloring and balancing from 
record motion permits a more efficient algorithm. 
Specifically, the sparsity of the input to PlanRoute 0 al- 
lows the recursive calls to be performed in parallel in 
different subcubes. Unfortunately, each of the recursive 
calls generated by DoRoute 0 must handle one record 
per processor, and so the same technique cannot be ap- 
plied. Rather, the complexity of subroutine DoRoute 0 
is reduced by moving the records from all of the differ- 
ent stages in parallel. For instance, DoRoute 0 performs 
the data movement of Step 4 of the algorithm of Sec- 
tion 4.2 in O(log n) time as opposed to O(log n log log n). 
There are two main modifications to the algorithm that 
make such an improvement possible. First, a simple 
subroutine is defined that allows n records belonging 
to k stages to be separated (by stage) in O(log n) time 
using nk processors. Second, a more powerful balanc- 
ing suboutine is defined that can balance all but a very 
small fraction of the records in a single stage. The idea 
behind this balancing routine i8 to reduce the number of 
colors by a log log n factor and allow a corresponding in- 
crease in the number of records of a given color that can 
be mapped to the same column in a single stage. This 
has the effect of increasing the size of the recursive calls 
over the rows by a factor of loglogn, but Lemma 2.1 

can be used to show that this increase has no effect on 
the asymptotic complexity of the algorithm. 

5 M e r g i n g  

This section defines the algorithm ShareMerge(a, b). 
Let the skew of a call to either ShareMerge(a, b) or 
SharedKeySort(a, b) denote the value of the ratio b/a. 

Input: A set S of 2 a+b records organized as 2 a sorted 
lists of length 2 b, where a and b are positive integers 
such that the b/a - ½(3 + x/T'if) = O(1). Let Si denote 
the ith sorted list, 0 < i < 2 a, and let S denote the 
entire set of 2 a+b records. The records of S are stored 
in a subcube of dimension a + b, with Record(Si, j)  
stored in processor (a : i, b : j) ,  0 < i < 2 a, 0 < j < 2 b. 
It will be helpful to view these 2 a+b processors as being 
arranged in a two-dimensional array with 2 a rows and 
2 b columns. 

Processors: The 2 a+b processors of the subcube contain- 
ing S. 

Output: The sorted set S, that is, processor (a + b : i) 
contains a copy of Record(S, i), 0 < i < 2 a+b. 

Running time: O(a log s a). 

Example: Given n records organized as ni l  s sorted lists 
of length n 415, this algorithm produces a single sorted 
list of length n in O(log n(log log n) ~) time. 

A lgor i thm 

1. 

. 

. 

. 

ShareMerge(a, b) 

If a _< 7-, where 7- is a positive integer to be spec- 
ified below, then perform the entire merging task 
with a sequence of a bitonic merges, and return. 
Otherwise, go to Step 2. Running time: O(7-a). 

Let c = Lb~/(a + 2b)J. Compute Splitters(S, b - 
c, 0)by calling FindSplitters(a, b, b - c ) .  Note that 
b - c = O(b). Running time: O(a). 

Broadcast the sorted list Splitters(S, b - c, 0) to 
each row. Running time: O(a). 

For each record z in S, define the color of z to be 
LRank(S, z)/2a+cJ. Thus, there are 2 a+e records 
of color i, 0 < i < 2 b-e. The set of records of 
a given color forms a color class. Note that the 
boundaries between color classes are given by the 
splitters computed in Step 2. Steps 4a to 4c are 
performed simultaneously within each row. Intu- 
itively, the objective within row i is to partition 
the 2 b records of set Si into monochromatic sorted 
lists of length 2% This goal is generally unattain- 
able, since the number of records in Si of some color 
may not be a multiple of 2% By introducing 2 b 
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dummy records in each row, however, it is possible 
to partition Si into 2 b-c+1 monochromatic sorted 
lists of length 2% To take care of the additional 
factor of 2, each row of 2 b processors will simulate 
2 TM virtual processors. 

(a) Merge Splitters(S, b - c ,  0) with Si, and com- 
pute a j ,  the number of records of color j in 
Si, 0 < j < 2 b-c. Implementation: bitonic 
merge, segmented sum, concentrate. Running 
time: O(a). 

(b) Compute flj = )-~0<k<j(--ak mod 2c). Broad- 
cast flj to every re~ord of color j .  Implemen- 
tation: prefix sum, inverse concentrate, seg- 
mented prefix operation. Running time: O(a). 

(c) Simulating 2 TM virtual processors in each 
row, route Record(Si, k), which has some 
color j ,  to processor (a : i, b+ 1 : k+~j ) .  Note 
that  k+~i < 2b-- l+(2b-c--  1)(2¢--1) < 2 TM. 
Every virtual processor that  does not receive 
a record creates a dummy record with color 
+oo. Implementation: inverse concentrate. 
Running time: O(a). 

5. The preceding operations have organized the set S 
into 2 a+b-¢+l monochromatic (with respect to the 
non-dummy records) sorted lists of length 2 c, which 
will be referred to as blocks. Simulating 2 a+b+l pro- 
cessors, call SharedKeySort(a + b - c + 1, c) to sep- 
arate the color classes. Running time: O(a log a) 
(see the discussion below). 

6. Steps 6a to 6c eliminate the dummy records along 
with the associated factor of 2 simulation overhead. 
This is done in order to prevent the simulation over- 
head from growing exponentially with the depth of 
recursion, which would adversely affect the running 
time of the algorithm. Note that  a straightforward 
compaction of the non-dummy records (prefix sum, 
concentrate) is inappropriate because it would not 
preserve the sortedness of the blocks in the sense 
required by Step 7. 

(a) A block that  contains at least one dummy 
record will be referred to as uuderpopulated. 
A block that  is not underpopulated is over- 
populated. Note that  there are at most 2 aun -  
derpopulated blocks of any particular color. 
Route the ith underpopulated block of color j 
t o s u b c u b e ( b - c : j ,  a : i ,  e : * ) , 0 _ < i < 2  a, 
0 < j < 2 b-¢. Implementation: prefix sum, 
monotonic route. Running time: O(a). 

(b) Mark every processor that  did not receive a 
record in the previous step. Compute the 
rank of each marked processor, that  is, the 

number of marked processors with lower IDs. 
Mark every non-dummy record that  did not 
get routed in the previous step. Compute the 
rank of each marked record, that  is, the num- 
ber of marked records in virtual processors 
with lower IDs. Route the ith marked record 
to the ith marked processor. Implementation: 
prefix sums, monotonic route. Running time: 
O(a). 

(c) Now every processor contains a single record, 
and every subcube of the form (b - e : j ,  a : 
i, c : *) contains 2 c records of color j .  Such 
a subcube is not necessarily sorted because it 
may have received sorted sublists from more 
than one block during the previous two steps. 
However, it received records from at most one 
underpopulated block, and at most two over- 
populated blocks. Hence, the records in such 
a subcube represent the concatenation of at 
most three sorted lists. Sort each of these sub- 
cubes of dimension c. Implementation: incre- 
ment route, prefix sum, constant number of 
monotonic routes and bitonic merges. Run- 
ning time: O(a). 

7. The task that  remains is to merge 2 a sorted lists of 
length 2 c within each color class. These merges 
will be performed with two recursive calls. Let 
d = tab/(a + 2b)J, and partition the records of 
each color class into 2 a-d groups of 2 d sorted 
lists of length 2% The first recursive call, 
ShateMerge(d, c), sorts the records within each 
group. The second recursive call, ShareMerge(a- 
d, c + d), sorts the records within each color class. 

Analysis: Let the skew of a call to ShareMerge(a, b) be 
the ratio b/a and let M(a, b) denote the running time of 
a call to ShareMerge(a, b) with skew ~ where ~ - 1(3 + 

x / ~ )  = O(1). Thus, M(a, b) satisfies the recurrence 

M(a,b) < M(d,b')  + M(a",b") + O(aloga), 

where a' = [ab/(a + 2b)J, b' -- [b2/(a + 2b)], a" = a-a'  
and b" = a' + b', as long as the skew ~ associated with 
every recursive call satisfies ~ -  1(3 + x/ '~) = O(1). The 
motivation for defining the recursive calls in this manner 
is that,  ignoring floors, b/a = b'/a I = b"/a". 

Of course, the effect of taking floors cannot be ignored, 
but it is a straightforward exercise to prove that  both 
b'/a' and b"/a" lie in the range (b/a)(1 4- O(1/a)). The 
skew cannot grow by more than a constant factor, be- 
cause a large skew implies that  both a and b decrease 
geometrically, which implies that  the total change to 
the skew is bounded by a constant. Similarly, the skew 
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cannot become too small. For example, assume for that 
the original skew ~ is such that ~ - ½(3 + x /~)  = e for 
some positive constant • and that there is some recur- 
sire call for which the skew is less than 1 ( 3 + v / ~ ) + • / 2 .  
Let i be the depth at which such a small skew is first 
encountered. Then the skew at all depths less than i is 
greater than ½(3 + v /~) ,  which implies that both a and 
b had decreased geometrically, and the skew could not 
have drifted such a large distance unless the subprob- 
lems at depth i are of constant size. Thus, setting r to 
a sufficiently large constant will prevent the skew from 
becoming too small. 

Note that such variations in skew do not affect the 
asymptotic complexity of the operations performed 
within ShareMerge 0.  In particular, every call to 
SharedKeySort 0 generated by Step 5 can be forced to 
have skew ~ such that ~ - 1/2 = O(1), which leads 
to the stated running time. Finally, because the skew 
remains sufficiently large, both a and b decrease geo- 
metrically and Lemma 2.1 can be ,used to show that the 
recurrence solves to give M(a, b)-= O(a log 2 a). 

6 S o r t i n g  

This section defines the algorithm ShareSort(a). 

Input/Processors: A set S of 2 a records stored, one per 
processor, in a subcube of dimension a. 

Output: The sorted set S, that is, processor (a : i) 
contains a copy of Record(S, i), 0 < i < 2 a. 
Running time: O(a log 2 a). 

Algor i thm ShareSort(a) 

1. If a _< r then sort the set S using bitonic sort. 
Running time: O(r2). 

2. Let b = [~a], where ~ is a real constant satisfying 
~(1 + v /~ )  < ~ < 1. Partition the input subcube 
into 2 a-b subcubes of dimension b, where the ith 
such subcube corresponds to (a - b : i, b : *), 0 < 
i < 2 a-b. Recursively execute ShareSort(b) within 
each of these subcubes in parallel. 

3. Call ShareMerge(a-b, b) to complete the sort. Note 
that b = fl(a). Running time: O(a 1Qg 2 a). 

Analysis: Let S(a) denote the running time of 
ShareSort(a). If a < r then S(a) = O(r2), and if a > r 
then 

S(a) _< S(real) + O(a log 2 .) .  

Setting ~ and r to suitable positive constants, this re- 
currence gives S(a) = O(a log 2 a). 

7 E x t e n s i o n s  

This paper has focused on the problem of sorting n 
records on an n processor hypercube, SE or CCC. The 
full version of the paper will describe extensions and ap- 
plications of the shared key sorting technique to other 
sorting problems. The results will include: 

. A relaxation of the conditions under which the sub- 
routine Shared KeySort(a, b) runs in O(a log a) time. 
Specifically, the requirement that b -  a/2 = O(a) 
can be relaxed to a = O(b). This immediately im- 
plies that ShareMerge(a, b) runs in O(a log 2 a) time 
for a = O(b), and that the constant { defined in 
ShareSort(a) can take on an arbitrary value lying 
strictly between 0 and 1. 

. 

. 

. 

A non-constructive, non-uniform version of Share- 
sort that runs in O(log n loglogn) time with O(1) 
storage on the hypercube, SE and CCC. It is inter- 
esting to note that this deterministic algorithm is 
based upon known techniques for randomized rout- 
ing. 

An algorithm for shared key sorting that outper- 
forms the obvious generalization of Sharesort when 
the the number of records being sorted, n, exceeds 
the number of processors available, p, by a suffi- 
ciently large polylogarithmic factor. 

An O(log n log log n) time, O(1) storage sorting al- 
gorithm for sorting n/log n records on an n pro- 
cessor multibutterfly computer, as defined by Up- 
fal [15]. 
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