
Deterministic Sorting in Nearly Logarithmic Time on the
Hypercube and Related Computers

Robert Cypher*
IBM Almaden Research Center

650 Harry Rd.

San Jose, CA 95120

C. Greg Plaxton t
MIT Lab for Computer Science

545 Technology Square

Cambridge, MA 02139

A b s t r a c t

This paper presents a deterministic sorting algorithm, called Sharesort, that sorts n records on
an n processor hypercube, shuffle-exchange or cube-connected cycles in O(log n(loglog n) 2) time
in the worst case. The algorithm requires only a constant amount of storage at each processor.
The fastest previous deterministic algorithm for this problem was bitonic sort [3], which runs in
O(log 2 n) time.

1 I n t r o d u c t i o n

Given n records distributed uniformly over the n proces-
sors of some fixed interconnection network, the sorting
problem is to route the record with the i th largest as-
sociated key to processor i, 0 < i < n. One of the
earliest parallel sorting algorithms is Batcher 's bitonic
sort [3], which runs in O(log 2n) t ime on the hyper-
cube, shuffle-exchange (SE) [14] and cube-connected cy-
cles (CCC) [11]. More recently, Leighton [6] exhibited
a bounded-degree, O(log n) time sorting network based
on the O(logn) depth sorting circuit of Ajtai, Komlhs
aLd Szemer6di [1]. However, no efficient emulation of
Leighton's sorting network is known for the hypercube,
arid it has been shown that such an emulation requires
12Ilog 2 n) t ime on the SE or CCC [5]. Hence, for these
networks, the problem of closing the gap between the
trivial ~ (logn) lower bound and the O(log 2 n) upper
bound remained open. A noteworthy breakthrough was
pr~)vided by the randomized Flashsort algorithm of Reif

*Supported in part by an NSF graduate fellowship
t Supported by an NSERC postdoctoral fellowship, and

DARPA contracts N00014-87-K-825 and N00014-89-J-1988.

Permission to copy without fee all or part of this material is granted pro-
~ided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
A~sociation for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

and Valiant [12], which sorts every possible input per-
mutat ion with high probabil i ty in O(logn) t ime on a
CCC. In contrast, this work is the first to narrow the
gap in terms of worst case, deterministic complexity.

The main result of this paper is a deterministic sort-
ing algorithm, called Sharesort, tha t sorts n records in
O(log n(log log n) 2) t ime on an n processor hypercube,
SE or CCC. Sharesort is a stable, comparison-based
sorting algorithm and requires only a constant amount
of storage at each processor. A sketch of the main ideas
underlying this algorithm will now be given; a more for-
mal exposition can be found in Sections 3 to 6.

Let the routing problem refer to the special case of sort-
ing in which the set of n keys forms a permuta t ion of
the integers 0 through n - 1. While one might ex-
pect this restriction to simplify the problem consider-
ably, the best known upper bound for the routing prob-
lem continues to be given by the complexity of sorting.
This phenomenon may arise because the most natural
schemes for parallel sorting are based on partitioning,
recursive sorting, and merging. Within such a frame-
work the additional information available to a routing
algorithm, namely the final destination of each record,
is of no apparent use beyond the top level of the re-
cursion. Sharesort is an n~-way merging algorithm that
succeeds in obtaining fast performance by reducing the
sorting problem to shared key sorting, a special case of
the routing problem that can be sustained within a re-
cursive framework. Unfortunately, this reduction comes
at the expense of a loglog n factor, which may be inher-
ent.

O 1990 ACM 089791-361-2/90/0005/0193 $1.50 193

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100216.100240&domain=pdf&date_stamp=1990-04-01

A formal definition of the shared key sorting problem
may be found in Section 4. A useful alternative formu-
lation is given by the following two-stage problem. In
the planning stage, the algorithm is given a hypercube
(say) of dimension t~d, where a is a constant strictly
greater than 1, and a permutation 7r over a subcube X
of dimension d. The algorithm is allowed to run the
machine for time Tp. The planning stage is followed by
the fouling stage, in which the algorithm must route
the permutation 7r over the subcube X , using only the
2 d processors o f X . An algorithm that can successfully
route any permutation 7r within time Tr in the rout-
ing stage solves the shared key sorting problem in time
Tp +T~.
Consider the performance obtained by applying known
methods to this problem. Bitonic sort gives a solution
with Tp = 0 and Tr = O(log 2 n). Using Nassimi and
Sahni's parallel algorithm to set up the Benes permuta.
tion network [9] yields a solution with Tp = O(log a n)
and T~ = O(log n). It is natural to ask whether any in-
termediate point exists between these two extremes with
T v + Tr = o(log 2 n), and in fact, Section 4.2 presents
a solution with Tp = Tr = O (l o g n (l o g l o g n) 2) . Sec-
tion 4.3 sketches an improved version of this algorithm
yielding Tp = T~ = O(log n log log n). A detailed de-
scription of the improved shared key sorting algorithm
will be provided in the full paper.

But how is the sorting problem reduced to shared key
sorting? Sharesort begins by recursively sorting sub-
cubes of n 4Is (say, see Section 6) records. Thus, the
task that remains is to merge n 1/5 sorted lists of length
n 4/5. A crucial observation is that the ordering informa-
tion supplied by this recursive sort is sufficient to allow
a large number, as many as n 41s-c, of evenly-spaced se-
lections to be performed over the entire set of n records.
Sharesort computes n 419 such "splitters", that is, all of
the records with ranks of the form in s/9, 0 < i < n 4/9.
Using these splitters, and once again taking advantage
of the structure imposed by the recursive sort, Share-
sort then partitions the n records into 2n 2914s blocks of
length at most n 16145. Each of these blocks is a sorted
list with the additional property that the ranks of all
of its constituent records lie between the same pair of
adjacent splitters. Viewing the data as being arranged
in a 2n ~914s x n 16145 array with one block residing in
each row, it becomes apparent that by first sorting all
of the columns according to the permutation that sorts
the first column, and then performing some appropri-
ate compaction, every record can be brought to within
n s19 of its correct final sorted position. The problem of
sorting all of the columns according to the permutation
that sorts the first column is precisely a shared key sort
with a = 45/29.

With some care in the compaction step, the remain-
ing problem of sorting within groups of n 5/9 can be
treated as a merge of n 1/5 sorted lists of length n 16/4~
This merging task is performed in two stages. In the
first stage, Sharesort merges sets of n 414~ sorted lists
of length n 1614~. This reorganizes each group of n ~19
records into n 119 sorted lists of length n 419, which are
then merged in the second stage. Letting M(x,y) de-
note the task of merging n ~ sorted lists of length n y,
the previous outline has reduced M(1/5, 4/5) to finding
splitters, building shared keys, shared key sorting, com-
paction, M(4/45,16/45) and M (1 / 9 , 4 / 9) . Note that
the ratio between the exponents in each of the merg-
ing tasks is exactly 4. Thus, the same procedure can
be applied recursively to perform the smaller merging
tasks.

2 P r e l i m i n a r i e s

2.1 The Model of C o m p u t a t i o n

The time/space analysis of the algorithms presented in
this paper assumes the following model of computation.
For a hypercube, SE or CCC with n processors, the lo-
cal memory of each processor is organized in O(log n)-
bit words. Each processor has a unique integer ID in
the range 0 to n - 1. The processors operate in a syn-
chronous, SIMD fashion; at any one time, all of the pro-
cessors are executing the same instruction. In a single
time unit, a processor can either send a word of data
to an adjacent processor and receive a word of data
from an adjacent processor, or it can perform a single
CPU operation on word-sized operands stored in its lo-
cal memory. The ability to "unshuffie" data on the SE
is assumed.

With regard~to the particular problem of sorting, the
objects to be sorted will be referred to as records. A
record may have a number of associated fields, one of
which contains a word-sized key. The ordering of the
keys determines the sorted order of the records. The
only operations we require on keys are copy and com-
parison. Note that ties can be broken in a stable manner
by adding a field to each record that contains the ID of
the originating processor.

2.2 Defini t ions

Given a cube of dimension d, let any string a of length
d over the alphabet {0, 1,*} correspond to that set of
processors for which the ID "matches" a in the natural
sense. It is often convenient to specify such a d-bit string
as a tuple of the form (do : a0, . . . , dr-1 : a t - l) , where
r and the di's are nonnegative integers, ~0<i<r d/ =

194

d, and (~i is either * or a dl-bit integer. Such a tuple
corresponds to the string f 0 " " fir- 1, where f i is the di-
bit string corresponding to the binary representation of
(~i if ai ~ *, and ,d~ otherwise.

Given a set of records S, and a record x in S, let
Rank(S, z) denote the rank of x in the set S, that
is, the number of records in S having a lower associ-
ated key than x. Given an integer i, 0 g i < IS[, let
Record(S, i) denote the record with rank i in S.

Given nonnegative integers a, b and e such that a _>
b and c < 2 a-b, and a set of 2 a records S, let
Splitters(S, b, e) denote the set of 2 b records in S with
ranks congruent to c modulo 2 a-b.

Let an (a, b, e)-cube be a subcube of dimension a+b+c
~hat is viewed as consisting of 2 c levels, each of which
is an array with 2 a rows and 2 b colunms. A set of 2 c
Jocations that have the same row and column values will
be called a pile.

2.3 Usefu l O p e r a t i o n s

A number of previously known operations will be used
to define Sharesort. These algorithms will be described
in terms of the parameter n, a power of 2. With the
exception of sparse enumeration sorting, all of these op-
erations run on a hypercube, SE, or CCC with n pro-
cessors in O(log n) time.

Prefix operations take as input an associative binary
cperator a and an array A = Ao,A1, . . . ,An-x, and re-
turn the n values a(A0, (~(As, or(A2,..., a(Ai-1, Ai))))
where 0 _< i < n [13]. One special type of prefix opera-
tion is the segmented prefix operation in which the input
array A is divided into groups of adjacent elements and
a prefix operation is applied in parallel within each of
tae groups.

Monotonic routing takes as input an array with n lo-
cations, m of which hold records, 0 < m < n. Each
record has associated with it a destination address in
the range 0 through n - 1, with the restriction that the
destination addresses form a monotonically increasing
sequence. The monotonic routing algorithm sends each
of the m records to its destination address within the
array [7]. Special cases of monotonic routing include
the concentrate, in which the m records are routed to
the first m array locations, the inverse concentrate, in
which the m records are originally located in the first m
array locations, and the increment, in which each of the
m records is moved to the next higher array location.

Bit-Permute-Complement (BPC) routing performs a
permutat ion of n records where the destination ad-
dresses are calculated by permuting and complementing
the bits of the source addresses [8]. Broadcasting copies

a record from one processor to all n processors [7].

Bitonic merging is the basic operation underlying
Batcher's bitonic sort. Given two sorted lists, each of
length at most n, this operation merges them into a sin-
gle sorted list. A BPC route must be used to reverse
one of the two lists before the merge can be performed.

Odd-even bitonic merges are used to completely sort
a cube that is almost sorted. Formally, suppose that
n = 2 a and that a cube of dimension d r , £ > d, is
given in which every record is within n positions of its
final sorted position. In parallel, sort each of the 2 a ' -a
subcubes of dimension d of the form (d r - d : i, d :
*), 0 <_ i < 2 d'-d. Next, perform two sets of bitonic
merge operations, one between subcubes of the form
(d r - d - 1 : i, 1 : 0, .d: .) and (d r - d - 1 : i, 1 :
1, d : *), 0 _< i < 2 a - a - l , and the other between
s u b c u b e s o f t h e f o r m (£ - d - ~ ,~1 " i , 1 : 1, d : *) anld
(d ' - d - l : i + l, 1 : 0 , d : *) , o < i < 2 d - d - l - - .
One may verify that these operations leave the entire
cube sorted. The pair of bitonic merges that follow the
sorting of the subcubes will be called odd-even bitonic
merges. Note that a monotonic route must be performed
both before and after the lat ter set of merges. The cost
of these monotonic routes is O(dr).

Sparse enumeration sort is a useful sorting technique
for the case when the number of records to be sorted,
n, is much smaller than the number of processors
available, p [10]. Sparse enumeration sort runs in
O(log n log p~ log(p/n)) time.

2.4 T i m e A n a ly s i s

When implementing Sharesort on a hypercube com-
puter, the running time can be calculated by simply
adding together the running times of the subroutines
from which it is composed. When implementing Share-
sort on the SE, the running time must also include the
time spent shuffling and unshuffling the data between
calls to subroutines. This time is proportional to the
distance between the last bit position used in one sub-
routine and the first bit position used in the following
subroutine. It is easily verified that this cost does not
change the overall complexity of the algorithm. Finally,
when implementing Sharesort on a CCC there is an ad-
ditional complication caused by the fact that certain bit
positions require more time for communication than do
others. However, it has been shown that this complica-
tion can be managed in time proportional to the running
time of the SE implementation [4].

The following technical lemma will be useful in analyz-
ing the running times of several subroutines.

L e m m a 2.1 Let a, b and e be constants where a > O,

195

b > 0 and 0 < • < 1/2. If for each sufficiently large
value of n, there exist real numbers z and y such that
e < z < y < 1 - e a n d z + y < l + l o g - Z n and

f (n) <-- fC tzn]) + f ([ynJ) -I- bn log" n

then there exists a constant k (which is a function of a,
b and e) such that f (n) <_ kn log "+1 n for all sufficiently
large n.

P r o o f : The proof is by induction on n. The induction
hypothesis is tha t the lemma holds for n < m, and
it will be shown that this implies the lemma holds for
n < m / (1 - •). Let z -- - l o g (l - c). Note that z > 0
and log z <_ log y < - z .

For n < m/C1 - •),

f (n) < kznlog"+l(zn) + kynlog"+l(yn) + bnlog" n

< (1 + log -2 n)kn(logn - z) a+l + bnloga n

= kn log a+l n - (a + 1)kzn log" n + bn logan

+ O(nlog a-1 n)
< knlog a+l n

provided that k > b/Ca + 1)z and that n is sufficiently
large. El

3 S p l i t t e r F i n d i n g

This section defines the algorithm FindSplitters(a, b, c).

Input: A set S of 2 "+b records organized as 2a sorted
lists of length 2 b, where a and b are positive integers,
and an integer c in the range 0 < c < b. Let Si denote
the ith sorted list, 0 < i < 2", and let S denote the
entire set of 2 "+b records. The records of S are stored
in a subcube of dimension a + b, with Record(Si, j)
stored in processor (a : i, b : j) , 0 < i < 2", 0 < j < 2 b.

Processors: The 2 a+b processors of the subcube contain-
ing S.

Output: The set T d¢~ Splitters(S, c, 0), with
Record(T, k) stored in processor (a + b - c : 0, c : k),
0 < k < 2 ¢.

Running time: O((a + b)2/(b - c)).

Example: Given n records organized as n 1/2 sorted lists
of length n 112, this algorithm can be used to compute
n 114 evenly-spaced splitters in O(log n) time.

A l g o r i t h m FindSplitters(a, b, c)

a. Let d = L J. Let X = U0<_i<2- Splitters(Si, b -
d, 0). Sort t he se t X. Note that [X I = 2 a+b-a. Im-
plementation: sparse enumeration sort. Running
time: OC(a + b)2/(b - e)).

2. Let r(k) = Rank(S, Record(T, k)) = k2 "+b-c, L =
Splitters(X, c, 0), and V = Splitters(X, c, 2" -
1). Observe that i2 a - 2 a+d + 2 a + 2 d - 1 <
Rank(S, Record(X, i)) < i2 a. Hence, r(k)--2"+d+
2"- t -2 d - 1 < Rank(S, Record(L, k)) < rCk)
and rCk) + 2" - 1 _< Rank(S, Record(U, k)) <
r(k) + 2 "+d - 2 d. Mark every record z in S such
that Record(L, k) < z < Record(U, k) for some k,
0 < k < 2 ¢. No record belongs to more than one
such interval since the choice of d guarantees that
Rank(S, Record(U, k)) < Rank(S, Record(L, k +
1)), 0 < k < 2 ¢ - 1. Let Y denote the set of
marked records. Note that T C Y. Implementa-
tion: concentrate, broadcast, bitonic merge, prefix
sum. Running time: OCa + b).

3. Compute r0(k) = Rank(S, RecordCL , k)) and
store the result in processor (a + b - e : 0, c : k),
0 < k < 2 ~. Implementation: concentrate, sum.
Running time: O(a + b).

4. Compute rl(k) = Rank(Y, Record(L, k)) and
store the result in processor C a + b - c : 0, e : k),
0 < k < 2% Implementation: prefix sum, concen-
trate, sum. Running time: O(a + b).

5. At processor (a + b - c : 0, c : k), compute
Rank(Y, Record(T, k)) : r l (k) + r(k) - to(k),
0 < k < 2 ¢. Running time: O(1).

6. Sort the set Y. Note that]YI < 2e(2"+a+1 - 2" -
2 a+l +2) < 2 "+c+d+l. Implementation: sparse enu-
meration sort. Running time: O((a + 5)2/(5 - c)).

7. Use the ranks computed in Step 5 to extract the
desired set T from the sorted set Y. Implemen-
tation: inverse concentrate, concentrate. Running
time: O(a + b).

4 S h a r e d K e y S o r t i n g

This section defines the shared key sorting algorithm.
The subroutine BalanceC) will be presented first and the
main algorithm follows.

4.1 C o l o r B a l a n c i n g

This section defines the color balancing subroutine
Balance(r, c, l, k, p).

Input/Processors: A subcube of 2 r+~+z processors,
which will be viewed as an (r, c, O-cube, and a set
S of records distributed one per processor over some
subset of the processors in the first 2 c-1 columns of
level 0 of the cube. The parameters r, c, !, k and p are
all nonnegative integers, where 1 > c and p is a prime,

196

2 c-1 < p < 2% Let s denote the greatest integer such
that IS[_< 2 r + c - ' - l .

Output: A subset U of S such that I S \ UI <
2 ~+c-~s-2, called the "balanced records", and for
each record z in U an assignment to the fields
Color(x), Row(x), Column(x) and Stage(z), where
Color(x) = [2"Rank(S, x)/ISlJ, o _< Row(x) < 2 0 <
Column(x) < p and Stage(x) = k. For any balanced
records x and y, Row(x) = Row(y) =¢, Column(x) =~
Column(y) and Color(x) = Color(y) ~ Column(z) 5k
Column(y). Furthermore, two monotonic routes that
can be implemented entirely within level 0 are sufficient
to move the balanced records from their original posi-
tions to the positions given by Row(z) and Column(z).

Running time: O(r2/(! - e) + l).
Example: The input is a cube of 2n processors arranged
:in nil 4 rows, 2n 114 columns and n 1/~ levels with n 5/12
records in the first n 1/4 columns of level 0. The records
are assigned colors in the range 0 through n 1/4 - 1. The
algorithm balances all but nl/3/2 records in O(log n)
;ime.

A l g o r i t h m Balance(r, c, l, k, p)

1. Append a field to each record that saves the ID of
the processor originally holding the record. Con-
centrate the records into the first IS[processors and
sort them. Compute ISI and then for each record z
in S, compute Color(x). Implementation: concen-
trate, sparse enumeration sort, prefix operations.
Running time: O((r + l)2/1).

2. Sort the records of the set S according to their
original positions. Then return them to their orig-
inal positions. Implementation: sparse enumer-
ation sort, inverse concentrate. Running time:
O((r + l)2/l).

3. If IS[_< 2" then every record in S has been assigned
a different color. Let U = S, and for each record x
in S, set Row(x) and Column(x) to the input posi-
tion of x, set Stage(x) = k, and return. Otherwise,
go to Step 4. Running time: O(1).

4. Copy each record to the same row and column po-
sition in each of the first p levels. Let Si,i be the
pile of p records in row i and column j . Permute
the copies of the records in the first p levels of the
cube as follows. In level h, 0 < h < p, move each
record from row i and column j to row i and column
j + ih mod p. Implementation: broadcast, mono-
tonic routes. Running time: O(c).

5. Define a collision to be the mapping of two records
in the same level and with the same color to the

.

same column. Calculate the number of collisions in
each of the first p levels. Note that for any pair of
piles, Si,i and Si,,j,, that have the same color there
is at most one collision between records in S / j and
records in Si,j, in the first p levels. Because there
are at most 2 c - ' -1 piles with each color, the total
number of collisions in the first p levels is less than
22c-9'-32 r = 2 r+~c-2'-a and one of the first p lev-
els must have fewer than 2r+2~-2"-a/p < 2 r+c-~'-~
collisions. Determine which level in the first p levels
has the fewest collisions. Implementation: sparse
enumeration sort, prefix operations. Running time:
O(r + c + rV(! - c)).

Let level i contain the smallest number of colli-
sions. For each record x in level i that is not in-
volved in a collision with a record from a lower
row, set Row(x) and Column(x) to the row and
column positions to which it was permuted, and
set Stage(x) = k. These records form the set
of balanced records U. Note that each collision
prevents at most one record from becoming bal-
anced, so at most 2 r+c-2s-2 records in level i will
remain unbalanced. Then undo the permutation
by sending each record back to its original loca-
tion. Finally, each balanced record x in level i
sends Row(z), Column(x) and Stage(x) back to
level 0. Implementation: prefix operation, mono-
tonic routes. Running time: O(r + c).

4.2 S h a r e d K e y So r t i n g

This section defines the shared key sorting routine
SharedKeySort(a, b).
Input: A set S of 2 °+b records organized as 2 a lists
of 2 b records each, where the 2 b records in each list
have the same key field, a and b are positive integers
and b - a ~ 2 - - O(a). Let Si denote the i t h l i s t of 2 b
records, 0 < i < 2 a, and let T - U0<i<~- Record(Si, 0).
The records of S are stored in a su~ocube of dimension
a-t- b, with the j t h element of the list Si being stored in
processor (a : i, b : j) , 0 _ ~ i < 2 a , 0 _ < j < 2 b.

Processors: The 2 a+b processors of the subcube contain-
ing S.

Output: The (stably) sorted set S. In other words, if x
is the j t h record in list Si, then x is moved to processor
(a : Rank(T, x), b :j), 0 < i < 2", 0 < j < 2 b.

Running time: O(alog2a). This is improved to
O(a log a) in Section 4.3.

Example: Given n records organized as n 1/2 lists of
length n 1/~, and assuming that records belonging to the
same list have the same key value, this algorithm sorts
the n records in O(log n(log log n) 2) time.

197

The operation SharedKeySort(a, b) is performed by cal l
ing SharedKeySort'(a, b, 0), defined below. The third
parameter keeps track of the depth of recursion.

A l g o r i t h m SharedKeySort'(a, b, depth)

1. If a < depth, then perform a bitonic sort of the
2 a+b records, and return. Running time: O(a 2) if
a < depth, O(1) otherwise.

2. Let r = t - / 2 j , c = f . / 21 and a = f logc] +
2. The processors will be viewed as forming an
(r, e, b)-eube. For each record z in S, let Level(z)
denote the level of the processor in which z was
originally located. Let p be the smallest prime be-
tween 2 e and 2 c+1. Note that p is guaranteed to
exist [2]. Calculate p by comparing each integer
between 2 c and 2 e+l with all smaller positive in-
tegers and testing for divisibility. Implementation:
broadcast, divide, prefix operations. Running time:
o(.).

3. For i = 0 to d, do the following. Simulating a
machine with 2 a+b+l processors arranged as an
(r, c + 1, b)-cube, call Balance(r, c q-1, b, i, p)
on the set of unbalanced records in T. Return each
balanced record to its original row and column and
broadcast its stage, color, row and column values
to the 2 b - 1 other records in its pile. At most
2 a-2~ piles remain unbalanced after the ith stage.
Let Ui = {z I S t a g e (z) = i } , O< i < d. Running
time: O(a log a).

4. For i = 0 to d, do the following. First, simulat-
ing a machine with 2 a+b+l processors, move the
records in Ui to their balanced positions. In other
words, for each record z in Ui, send z to proces-
sor (r : Row(z), e+ 1 : Column(z), b: Level(z)).
Next, map the array of balanced records from row-
major to column-major storage. This moves each
record z in Ui to processor (c-t- 1 : Column(z), r :
Row(z), b : Level(z)). Then concentrate the set of
records Ui in the new column-major order, and if
i > 0 then route the concentrated records so that
they are stored immediately following the records
in Ui-l. In other words, store the records of Ui in
the lull consecutive processors beginning with pro-

i - - I cessor number ~-~j=0 lull. At this point, each list
St is stored in 2 b consecutive processors and any
set of (at most 2 r) lists Si that share the same
stage and column numbers is stored in a set of
(at most 2 r+b) consecutive processors. Implemen-
tation: monotonic route, BPC route, concentrate,
monotonic route. Running time: O(a log a).

5. When the records in each set Ui are moved to
their balanced positions (given by their row and
column fields), they can be sorted by first sort-
ing the columns, then monotonically routing within
columns to the rows given by their color fields, and
then sorting within rows. Steps 5a through 5g sort
the columns of each set Ui.

(a) Permute the data so that the record that was
stored in processor (c : W, r : X, b - r :
Y, r : Z) is sent to processor (c : W, b - r :
Y, r : X, r : Z). Implementation: BPC route.
Running time: O(a).

(b) Note that the 2 r records residing in any sub-
cube of the form (a + b - r : X, r : .) share the
same key, stage, color and column values. For
each such subcube, save these four vMues in
additional fields associated with the record in
processor (a + b - r : X, r : depth). Running
time: O(1).

(c) Sort the level 0 records, resolving comparisons
by stage first, column second and color third.
Replace the key field of each level 0 record by
the rank that it achieves in this sort, undo the
sort, and copy the new key value throughout
each pile. Implementation: sparse enumera~
tion sort (twice), broadcast. Running time:
o (a) .

(d) Divide the records into groups of 2 2r
consecutive records and recursively call
SharedKeySort'(r, r, depth q- 1) to sort each
group.

(e) The key, stage, color and column fields cor-
responding to this level of the recursion have
been overwritten. Restore these fields from
the copies saved in Step 5b. Implementation:
broadcast. Running time: O(a).

(f) Perform odd-even bitonic merges of sorted
lists of length 2 2r, resolving comparisons as
in Step 5c. Running time: O(a).

(g) Permute the data so that the record that was
stored in processor (c : W, b - r : Y, r : X, r :
Z) is sent to processor (c : W, r : X, b -
r : Y, r : Z). Implementation: BPC route.
Running time: O(a).

6. For i = 0 to d, do the following. First, simulat-
ing a machine with 2 a+b+1 processors, move each
record z in Ui to processor (c + 1 : Column(z), r :
Color(z), b : Level(z)). Next, map the array of
balanced records from column-major to row-major
storage. This moves each record z in Ui to proces-
sor (r : Color(z), c + 1: Column(x), b : Level(z)).

198

Then concentrate the set of records Ui in the new
row-major order, and if i > 0 then route the con-
centrated records so that they are stored imme-
diately following the records in Ui-1. In other
words, store the records of Ui in the IUil con-
secutive ~)rocessors beginning with processor num-
ber ~-'~-0]Uil. Implementation: monotonic route,
BPC route, concentrate, monotonic route. Run-
ning time: O(a log a).

7. At this point, each set Ui is sorted by color.
Steps 7a through 7g complete the sorting of each
set Ui by sorting within color groups.

(a) Permute the data so that the record that was
stored in processor (r - 1 : W, c + 1 : X, b -
e - 1 : Y, c + 1 : Z) is sent to processor (r - 1 :
W, b - c - 1 : Y, c + l : X, c + l : Z).
Implementation: BPC route. Running time:
O(a).

(b) Note that the 2 e+l records residing in any sub-
cube of the form (a + b - c - 1 : X, e+ l : ,) have
the same key and stage values. For each such
subcube, save these two values in additional
fields associated with the record in processor
(a + b - r : X, r : depth). Running time: O(1).

(c) Sort the level 0 records, resolving compar-
isons by stage first and key second. Replace
the key field of each level 0 record by the
rank that it achieves in this sort, undo the
sort, and copy the new key value throughout
each pile. Implementation: sparse enumera-
tion sort (twice), broadcast. Running time:
o(a).

(d) Divide the records into groups of 2 2e+2 con-
secutive records and call SharedKeySort~(c +
1, c + 1, depth + 1) to sort each group.

(e) The key and stage fields corresponding to this
level of the recursion have been overwritten.
Restore these fields from the copies saved in
Step 7b. Implementation: broadcast. Run-
ning time: O(a).

(f) Perform odd-even bitonic merges of sorted
lists of length 2 ~¢+2, resolving comparisons as
in Step 7c. Running time: O(a).

(g) Permute the data so that the record that was
stored in processor (r - 1 : W, b - c - 1 :
Y, e + 1 : X, e + 1 : Z) is sent to processor
(r - 1 : W, e + l : X, b - c - 1 : Y, c +
1 : Z). At this point, the records within each
stage are sorted correctly. All that remains
is to merge the records from different stages.
Implementation: BPC route. Running time:
o(,0.

8. Sort the records in level 0 to determine their final
sorted position. Broadcast the final sorted position
of each record in level 0 to the remaining records in
its pile. This gives the final sorted position of each
record. Implementation: sparse enumeration sort,
broadcast. Running time: O(a).

9. For i = 0 to d, move the records in Ui to their
final sorted positions. Implementation: monotonic
route. Running time: O(a log a).

Space analysis: Each record contains a key, stage, color
and column field. The row and level fields have been
introduced for expository purposes only. Note that for
i > 0, the level i records remain within the set of level i
processors at all times. Certain records make use of four
additional fields in order to save the values of the key,
stage, color and column fields computed at a particular
depth ofrecursion. This is performed by Step 5b, before
the first recursive call, and by Step 7b, before the sec-
ond recursive call (in the latter case, only the key and
stage fields are saved). No processor saves more than a
single set of fields, since the stack-like storage scheme
ensures that each level is used by at most one depth
of the recursion. Finally, there are never more than 2
records located at a processor. Hence, the algorithm
requires only a constant number of memory words per
p r o cessor .

Time analysis: Let SKS(a, b, d) denote the running time
of SharedKeySort'(a, b, d). If a _< d then SKS(a, b, d) =
O(d 2) and if a > d then

SKS(a,b,d) = O(aloga) + SKS(r,r,d + 1)
+ SKS(e+ 1 ,c+ 1 ,d+ 1),

where r = La/2] and c = [a/2]. Thus, a top-level call
to SharedKeySort'(a, b, 0) generates only recursive calls
of the form SKS(a I, a I, d) where

a ' < ~ H 1+ .
O<i<d a

The logarithm of the product term is easily seen to be
O(1) for d < log a. Hence, a' = O(a/2 d) for d < log a,
and the maximum depth of recursion is log a - log log a+
O(1). This bound on the maximum depth of recursion
implies that the cost of all of the bitonic sorts performed
in Step 1 is O(a log a). Now consider the total amount of
time spent at some depth of recursion d that is less than
the maximum depth. Lemma 2.1 shows that this time
is also bounded by O(a log a). Therefore, SKS(a, b, O) =
O(a log s a).

199

4.3 Improved Shared Key Sor t ing

This section sketches the main ideas underlying
a somewhat more complicated implementation of
SharedKeySort(a, b) running in O(aloga) time. The
new version also requires only a constant amount of
storage at each processor. A complete description of the
improved shared key sorting routine will be provided in
the full paper.

The new algorithm is similar to that described in Sec-
tion 4.2, except that the record coloring and balancing
operations have been separated from the record mov-
ing operations. The record coloring and balancing is
performed by a subroutine called PlanRoute 0 and the
record motion is performed by subroutine DoRoute 0.
As before, the shared key sort can be viewed as a tree
of recursive calls to smaller shared key sorts. The sub-
routine PlanRoute 0 performs the coloring and balanc-
ing for all levels of the recursion, and the subroutine
DoRoute 0 performs the record motions for all levels
of the recursion. Thus the coloring and balancing of
records at all levels of the recursion is performed before
any records are moved. The coloring and balancing in-
formation needed by DoRoute 0 is provided by records,
called routing records, that are created by PlanRoute 0.
Each routing record consists of a constant number of
words of data, and at most one routing record will be
stored at any single processor.

The separation of record coloring and balancing from
record motion permits a more efficient algorithm.
Specifically, the sparsity of the input to PlanRoute 0 al-
lows the recursive calls to be performed in parallel in
different subcubes. Unfortunately, each of the recursive
calls generated by DoRoute 0 must handle one record
per processor, and so the same technique cannot be ap-
plied. Rather, the complexity of subroutine DoRoute 0
is reduced by moving the records from all of the differ-
ent stages in parallel. For instance, DoRoute 0 performs
the data movement of Step 4 of the algorithm of Sec-
tion 4.2 in O(log n) time as opposed to O(log n log log n).
There are two main modifications to the algorithm that
make such an improvement possible. First, a simple
subroutine is defined that allows n records belonging
to k stages to be separated (by stage) in O(log n) time
using nk processors. Second, a more powerful balanc-
ing suboutine is defined that can balance all but a very
small fraction of the records in a single stage. The idea
behind this balancing routine i8 to reduce the number of
colors by a log log n factor and allow a corresponding in-
crease in the number of records of a given color that can
be mapped to the same column in a single stage. This
has the effect of increasing the size of the recursive calls
over the rows by a factor of loglogn, but Lemma 2.1

can be used to show that this increase has no effect on
the asymptotic complexity of the algorithm.

5 M e r g i n g

This section defines the algorithm ShareMerge(a, b).
Let the skew of a call to either ShareMerge(a, b) or
SharedKeySort(a, b) denote the value of the ratio b/a.

Input: A set S of 2 a+b records organized as 2 a sorted
lists of length 2 b, where a and b are positive integers
such that the b/a - ½(3 + x/T'if) = O(1). Let Si denote
the ith sorted list, 0 < i < 2 a, and let S denote the
entire set of 2 a+b records. The records of S are stored
in a subcube of dimension a + b, with Record(Si, j)
stored in processor (a : i, b : j) , 0 < i < 2 a, 0 < j < 2 b.
It will be helpful to view these 2 a+b processors as being
arranged in a two-dimensional array with 2 a rows and
2 b columns.

Processors: The 2 a+b processors of the subcube contain-
ing S.

Output: The sorted set S, that is, processor (a + b : i)
contains a copy of Record(S, i), 0 < i < 2 a+b.

Running time: O(a log s a).

Example: Given n records organized as ni l s sorted lists
of length n 415, this algorithm produces a single sorted
list of length n in O(log n(log log n) ~) time.

A lgor i thm

1.

.

.

.

ShareMerge(a, b)

If a _< 7-, where 7- is a positive integer to be spec-
ified below, then perform the entire merging task
with a sequence of a bitonic merges, and return.
Otherwise, go to Step 2. Running time: O(7-a).

Let c = Lb~/(a + 2b)J. Compute Splitters(S, b -
c, 0)by calling FindSplitters(a, b, b - c) . Note that
b - c = O(b). Running time: O(a).

Broadcast the sorted list Splitters(S, b - c, 0) to
each row. Running time: O(a).

For each record z in S, define the color of z to be
LRank(S, z)/2a+cJ. Thus, there are 2 a+e records
of color i, 0 < i < 2 b-e. The set of records of
a given color forms a color class. Note that the
boundaries between color classes are given by the
splitters computed in Step 2. Steps 4a to 4c are
performed simultaneously within each row. Intu-
itively, the objective within row i is to partition
the 2 b records of set Si into monochromatic sorted
lists of length 2% This goal is generally unattain-
able, since the number of records in Si of some color
may not be a multiple of 2% By introducing 2 b

200

dummy records in each row, however, it is possible
to partition Si into 2 b-c+1 monochromatic sorted
lists of length 2% To take care of the additional
factor of 2, each row of 2 b processors will simulate
2 TM virtual processors.

(a) Merge Splitters(S, b - c , 0) with Si, and com-
pute a j , the number of records of color j in
Si, 0 < j < 2 b-c. Implementation: bitonic
merge, segmented sum, concentrate. Running
time: O(a).

(b) Compute flj =)-~0<k<j(--ak mod 2c). Broad-
cast flj to every re~ord of color j . Implemen-
tation: prefix sum, inverse concentrate, seg-
mented prefix operation. Running time: O(a).

(c) Simulating 2 TM virtual processors in each
row, route Record(Si, k), which has some
color j , to processor (a : i, b+ 1 : k+~j) . Note
that k+~i < 2b-- l+(2b-c-- 1)(2¢--1) < 2 TM.
Every virtual processor that does not receive
a record creates a dummy record with color
+oo. Implementation: inverse concentrate.
Running time: O(a).

5. The preceding operations have organized the set S
into 2 a+b-¢+l monochromatic (with respect to the
non-dummy records) sorted lists of length 2 c, which
will be referred to as blocks. Simulating 2 a+b+l pro-
cessors, call SharedKeySort(a + b - c + 1, c) to sep-
arate the color classes. Running time: O(a log a)
(see the discussion below).

6. Steps 6a to 6c eliminate the dummy records along
with the associated factor of 2 simulation overhead.
This is done in order to prevent the simulation over-
head from growing exponentially with the depth of
recursion, which would adversely affect the running
time of the algorithm. Note that a straightforward
compaction of the non-dummy records (prefix sum,
concentrate) is inappropriate because it would not
preserve the sortedness of the blocks in the sense
required by Step 7.

(a) A block that contains at least one dummy
record will be referred to as uuderpopulated.
A block that is not underpopulated is over-
populated. Note that there are at most 2 aun -
derpopulated blocks of any particular color.
Route the ith underpopulated block of color j
t o s u b c u b e (b - c : j , a : i , e : *) , 0 _ < i < 2 a,
0 < j < 2 b-¢. Implementation: prefix sum,
monotonic route. Running time: O(a).

(b) Mark every processor that did not receive a
record in the previous step. Compute the
rank of each marked processor, that is, the

number of marked processors with lower IDs.
Mark every non-dummy record that did not
get routed in the previous step. Compute the
rank of each marked record, that is, the num-
ber of marked records in virtual processors
with lower IDs. Route the ith marked record
to the ith marked processor. Implementation:
prefix sums, monotonic route. Running time:
O(a).

(c) Now every processor contains a single record,
and every subcube of the form (b - e : j , a :
i, c : *) contains 2 c records of color j . Such
a subcube is not necessarily sorted because it
may have received sorted sublists from more
than one block during the previous two steps.
However, it received records from at most one
underpopulated block, and at most two over-
populated blocks. Hence, the records in such
a subcube represent the concatenation of at
most three sorted lists. Sort each of these sub-
cubes of dimension c. Implementation: incre-
ment route, prefix sum, constant number of
monotonic routes and bitonic merges. Run-
ning time: O(a).

7. The task that remains is to merge 2 a sorted lists of
length 2 c within each color class. These merges
will be performed with two recursive calls. Let
d = tab/(a + 2b)J, and partition the records of
each color class into 2 a-d groups of 2 d sorted
lists of length 2% The first recursive call,
ShateMerge(d, c), sorts the records within each
group. The second recursive call, ShareMerge(a-
d, c + d), sorts the records within each color class.

Analysis: Let the skew of a call to ShareMerge(a, b) be
the ratio b/a and let M(a, b) denote the running time of
a call to ShareMerge(a, b) with skew ~ where ~ - 1(3 +

x / ~) = O(1). Thus, M(a, b) satisfies the recurrence

M(a,b) < M(d,b') + M(a",b") + O(aloga),

where a' = [ab/(a + 2b)J, b' -- [b2/(a + 2b)], a" = a-a'
and b" = a' + b', as long as the skew ~ associated with
every recursive call satisfies ~ - 1(3 + x/ '~) = O(1). The
motivation for defining the recursive calls in this manner
is that, ignoring floors, b/a = b'/a I = b"/a".

Of course, the effect of taking floors cannot be ignored,
but it is a straightforward exercise to prove that both
b'/a' and b"/a" lie in the range (b/a)(1 4- O(1/a)). The
skew cannot grow by more than a constant factor, be-
cause a large skew implies that both a and b decrease
geometrically, which implies that the total change to
the skew is bounded by a constant. Similarly, the skew

201

cannot become too small. For example, assume for that
the original skew ~ is such that ~ - ½(3 + x /~) = e for
some positive constant • and that there is some recur-
sire call for which the skew is less than 1 (3 + v / ~) + • / 2 .
Let i be the depth at which such a small skew is first
encountered. Then the skew at all depths less than i is
greater than ½(3 + v /~) , which implies that both a and
b had decreased geometrically, and the skew could not
have drifted such a large distance unless the subprob-
lems at depth i are of constant size. Thus, setting r to
a sufficiently large constant will prevent the skew from
becoming too small.

Note that such variations in skew do not affect the
asymptotic complexity of the operations performed
within ShareMerge 0. In particular, every call to
SharedKeySort 0 generated by Step 5 can be forced to
have skew ~ such that ~ - 1/2 = O(1), which leads
to the stated running time. Finally, because the skew
remains sufficiently large, both a and b decrease geo-
metrically and Lemma 2.1 can be ,used to show that the
recurrence solves to give M(a, b)-= O(a log 2 a).

6 S o r t i n g

This section defines the algorithm ShareSort(a).

Input/Processors: A set S of 2 a records stored, one per
processor, in a subcube of dimension a.

Output: The sorted set S, that is, processor (a : i)
contains a copy of Record(S, i), 0 < i < 2 a.
Running time: O(a log 2 a).

Algor i thm ShareSort(a)

1. If a _< r then sort the set S using bitonic sort.
Running time: O(r2).

2. Let b = [~a], where ~ is a real constant satisfying
~(1 + v /~) < ~ < 1. Partition the input subcube
into 2 a-b subcubes of dimension b, where the ith
such subcube corresponds to (a - b : i, b : *), 0 <
i < 2 a-b. Recursively execute ShareSort(b) within
each of these subcubes in parallel.

3. Call ShareMerge(a-b, b) to complete the sort. Note
that b = fl(a). Running time: O(a 1Qg 2 a).

Analysis: Let S(a) denote the running time of
ShareSort(a). If a < r then S(a) = O(r2), and if a > r
then

S(a) _< S(real) + O(a log 2 .) .

Setting ~ and r to suitable positive constants, this re-
currence gives S(a) = O(a log 2 a).

7 E x t e n s i o n s

This paper has focused on the problem of sorting n
records on an n processor hypercube, SE or CCC. The
full version of the paper will describe extensions and ap-
plications of the shared key sorting technique to other
sorting problems. The results will include:

. A relaxation of the conditions under which the sub-
routine Shared KeySort(a, b) runs in O(a log a) time.
Specifically, the requirement that b - a/2 = O(a)
can be relaxed to a = O(b). This immediately im-
plies that ShareMerge(a, b) runs in O(a log 2 a) time
for a = O(b), and that the constant { defined in
ShareSort(a) can take on an arbitrary value lying
strictly between 0 and 1.

.

.

.

A non-constructive, non-uniform version of Share-
sort that runs in O(log n loglogn) time with O(1)
storage on the hypercube, SE and CCC. It is inter-
esting to note that this deterministic algorithm is
based upon known techniques for randomized rout-
ing.

An algorithm for shared key sorting that outper-
forms the obvious generalization of Sharesort when
the the number of records being sorted, n, exceeds
the number of processors available, p, by a suffi-
ciently large polylogarithmic factor.

An O(log n log log n) time, O(1) storage sorting al-
gorithm for sorting n/log n records on an n pro-
cessor multibutterfly computer, as defined by Up-
fal [15].

R e f e r e n c e s

[1] M. Ajtai, J. Koml6s, and E. Szemerddi. An
O(n log n) sorting network. Combinatorica, 3:1-19,
1983.

[2] A. D. Aleksandrov, A. N. Kolmogorov, and M. A.
Lavrent'ev. Mathematics: Its Content, Methods
and Meaning. MIT Press, Cambridge, MA, 1963.

[3] K. E. Batcher. Sorting networks and their ap-
plications. In Proceedings of the AFIPS Spring
Joint Computer Conference, vol. 32, pages 307-
314, 1968.

[4] R. E. Cypher. EJyicient Communication in Mas-
sively Parallel Computers. PhD thesis, University
of Washington, Department of Computer Science,
August 1989.

202

[5] R. E. Cypher. Theoretical aspects of VLSI pin
limitations. Technical Report 89-02-01, University
of Washington, Department of Computer Science,
February 1989.

[6] F. T. Leighton. Tight bounds on the complexity of
parallel sorting. IEEE Transactions on Computers,
C-34:344-354, 1985.

[7] D. Nassimi and S. Sahni. Data broadcasting in
SIMD computers. IEEE Transactions on Comput-
ers, C-30:101-107, 1981.

(8] D. Nassimi and S. Sahni. A self-routing Benes net-
work and parallel permutation algorithms. IEEE
Transactions on Computers, C-30:332-340, 1981.

[9] D. Nassimi and S. Sahni. Parallel algorithms to set
up the Benes permutation network. IEEE Trans-
actions on Computers, C-31:148-154, 1982.

[10] D. Nassimi and S. Sahni. Parallel permutation and
sorting algorithms and a new generalized connec-
tion network. JA CM, 29:642-667, 1982.

[lt] F. P. Preparata and J. Vuillemin. The cube-
connected cycles: A versatile network for parallel
computation. CACM, 24:300-309, 1981.

[12] J. H. Reif and L. G. Valiant. A logarithmic time
sort for linear size networks. JACM, 34:60-76,
1987.

[13] J. T. Schwartz. Ultracomputers. A CM Trans-
actions on Programming Languages and Systems,
2:484-521, 1980.

[14] H. S. Stone. Parallel processing with the per-
fect shuffle. IEEE Transactions on Computers, C-
20:153-161, 1971.

[15] E. Upfal. An O(log n) deterministic packet routing
scheme. In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pages 241-
250, 1989.

203

