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A b s t r a c t  

In this paper we consider the one-way function 
fg,N(X) = gX (modN) ,  where N is a Blum inte- 
ger. We prove that  under the commonly assumed 
intractabili ty of factoring Blum integers, almost all 
its bits are individually hard, and half of them are 
simultaneously hard. As a result, fg,N can be used in 
efficient pseudo-random bit generators and multi-bit  
commitment  schemes, where messages can be drawn 
according to arbi trary probabil i ty distributions. 

1 I n t r o d u c t i o n  

A function f(x) is one-way if it is easy to com- 
pute but hard to invert. One-way functions have 
numerous cryptographic applications in public-key 
cryptosystems, pseudo-random bit generation, com- 
mitment  schemes and so on. Several explicit con- 
structions of one-way functions have been suggested 
under some plausible number-theoretic assumptions. 
One such candidate is the exponentiation function 
fg,p(X) = gX (modP) ,  where P is a prime and g is 
a generator of Z~, (IBM]). Its inverse is the discrete 
logarithm function, for which no efficient algorithms 
have been found. Another problem that  is considered 
to be highly intractable is that  of factoring a number 
which is the product  of two large primes. Among 
the one-way functions that  are based on the difficulty 
of factoring are the RSA / Rabin functions ([RSA], 
[Ra]), as well as the quardratic residuosity problem 
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and its related root extracting function ([BBS]). 

An interesting property of one-way functions is the 
existence of hard bits in the argument  which can- 
not be computed by any family of polynomial-size 
Boolean circuits with 1/2-t-1/poly probabil i ty of suc- 
cess. This notion was extensively investigated in the 
early 1980's, culminating in proofs that  some specific 
bits in these number theoretic functions (usually the 
most  significant or the least significant O(log n) bits 
of the n-bit argument)  are individually hard ([BM], 
[ACGS], [BBS]), and that  those O(log n) bits are also 
simultaneously hard ([LW], [ACGS], [VV]). All the 
subsequent efforts to extend the techniques to prove 
the individual or simultaneous security of O(n) bits 
in these number  theoretic functions failed. 

Goldreich and Levin [GL] have shown that  every 
one-way function has at least a logarithmic number of 
hard bits. Extending their result to prove that  more 
bits are hard without imposing any assumptions on 
the one-way function is conjectured to be impossible, 
since a function may be one-way and still depend only 
on a small fraction of its bits. Explicit constructions 
of one-way functions for which all the bits are secure 
do exist, but they rely on the composition of hard 
bits from many one-way flmctions (rather than on a 
single application of a natural  function, e.g. in the 
probabilistic encryption functions of [GM], [BG]). 

Besides its theoretical significance, proving a one- 
way function to have many  simultaneously hard bits 
can improve the efficiency of many  cryptographic 
schemes. Very recently Impagliazzo and Naor ([IN]) 
have introduced an efficient pseudo-random bit gener- 
ator based on the combinatorial  one-way function cor- 
responding to the subset sum problem. Their novel 
construction makes it possible to obtain O(n) pseudo- 
random output bits from each application of the func- 
tion on random inputs, but does not necessarily im- 
ply that  the input bits of the function are individu- 
ally or simultaneously hard, leaving the problem of 
constructing a natural  function with O(n) secure bits 
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open. 
In this paper we consider the well known one-way 

function fg,g(X) = gX ( m o d g ) ,  where N is a Blum 
integer. We prove that  under the sole assumption 
that  factoring Blum integers is difficult, almost all its 
bits are individually hard, and the lower half of them 
are simultaneously hard. As a result, fg,N can be 
used in efficient pseudo-random bit generators with 
O(n)-bi t  output  per stage and in mult i-bi t  commit- 
ment  schemes, in which the messages can be drawn 
according to arbi trary probabil i ty distributions. We 
also quote the recent improvements  of Johan Hastad 
[Ha] who extended our techniques to prove that  in- 
deed all the bits of fgjv are hard and that  the upper 
half of the bits are also simultaneously hard. 

The paper  is organized as follows: In section 2 we 
give the various definitions and assumptions used. In 
section 3 we deal with the individual bits security of 
fg,N and in section 4 with the simultaneous bit secu- 
rity. We present some applications of our enhanced 
security results in section 5 and discuss several exten- 
sions of our work in section 6. 

2 P r e l i m i n a r i e s  

Let N = P .  Q, where P ,  Q are distinct odd primes, 
and let n be the binary size of N.  Let Z~v be 
the multiplicative group containing the elements in 
[1, N] that  are relatively prime to N.  The order 
of an element g E Z~v , ordg(g), is the smallest 
c > 1 such tha t  gC = 1 (modN) .  We denote 
maxgezT~ {ordN(g)} by ON. Clearly: 

ON = lcm(P  - 1, Q - 1) < ( P  - 1)(Q - 1) 
- 2 

We refer to any g as a generator despite the fact that  
no g can generate all the elements in Z~v for com- 
posite N.  
De f in i t i on :  For a given g let G C Z~v be the set of 
elements generated by it, i.e.: 

G = {Zlthere exists X e Z~v s.t. Z = gX (modN)}  

Note that  the number  of elements in G equals 
ordN(g). 
Def in i t i on :  Fix a constant k. A high order g is an 
element for which: 

1 . ( p _ l ) ( Q - 1 ) .  ordN(g) >__ -~ 

A careful counting argument ,  for which we grate- 
fully acknowledge Noga Alon, shows that  a substan- 
tial fraction of the elements in Z~v have high order: 

P r o p o s i t i o n  1: 
Let P and Q be randomly chosen primes of equal size, 
N = P .  Q, and g a randomly chosen element in Z~v , 
then: 

( ) 1 . ( p _ l ) ( Q _ l )  < 0  Pr ordN(g) < ~ 

The proof will appear  in the full version of this paper.  
D e f i n i t i o n :  Let g E Z~v • The exponentiation mod- 
ulo composite function is defined by: 

fg,N(X) -~ gX ( m o d g ) .  

Its inverse, the discrete log modulo composite, is de- 
fined only for Z E G by: 

S; ,~(Z)  = X, 

for the unique X < ordg(g) s.t. Z = fg,N(X).  
Note that  while the values of fa,g range from 1 to 
N,  f~,~ outputs  only values up to ordlv(g) which is 
strictly smaller than N.  

Following is a list of the assumptions that  are used 
throughout this paper.  Unless otherwise mentioned, 
we shall assume tha t  all these assumptions hold, even 
though some of our results can be derived without 
some of them. 
A s s u m p t i o n  a . l :  P and Q are of equal size. 
This assumption is commonly used in cryptography, 
and is believed to strengthen the intractabil i ty of fac- 
torization. 
A s s u m p t i o n  a.2: P = Q = 3 (mod 4). 
If the assumption holds, every square in Z~v has 
exactly one square root that  is also a square. Hence, 
squaring is a permuta t ion  of the quadratic residues. 
The numbers N = P .  Q for which both assumptions 
hold are called Blum integers. 
A s s u m p t i o n  a.3: g is a quadratic residue. 
We refer to any g for which assumption a.3 holds as an 
admissible generator. Note that  Proposition 1 holds 
even if we restrict N to be a Blum integer and g to 
be an admissible generator. 
I n t r a c t a b i l i t y  a s s u m p t i o n  [Y]: No family of 
polynomial-size Boolean circuits can factor a poly- 
nomial fraction of the Blum integers. 
De f in i t i on :  An admissible triplet (g, N, Z) is such 
that:  
1. N is a Blum integer. 
2. g is an admissible generator. 
3. Z E G .  
The collection of admissible triplets can be efficiently 
sampled, i.e. it is possible to pick a random admis- 
sible triplet using a polynomial amount  of resources 
(time, random bits). 
A well known result ([na], [Ch]) is: 
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T h e o r e m  2: 
Under the intractabil i ty assumption, the exponenti- 
ation modulo a Blum integer, fg ,N(X),  is a one-way 
function. 
P r o o f :  
We present the simple proof of this theorem as it 
demonstrates some of the basic techniques that  are 
crucial for our results. We establish that  it is possible 
to plant a short yet hard secret inside the argument  
of fg,N, and use that  fact extensively in the sequel. 

Define Y = 9N (modN)  = fa,N(N).  Let S = 
f~,IN(Y ) = N - d .  ordN(9), where d is the largest 
multiple of ordiv(9) for which S is non-negative. Let 
ISI denote the binary size of S. The following key 
lemma proves that  S is extremely small: 
L e m m a  2.1: 

IsI n/2 + 0(1) 

P r o o f :  It  is well known that  for any g E Z~v : 
ordg(g)]Og, and therefore ordN(g)](P - 1 ) ( Q -  1). 
Assume now that  ordN(g) > P + Q - 1 ,~ 2v/-N. In 
that  case it is easy to see that  (P  - 1)(Q - 1) is the 
largest multiple of ordlv (g), which is still smaller than 
N: ( P - 1 ) ( Q - 1 )  < N, but (P- -1 ) (Q-1)+ordg(g )  = 
N - (P  + Q - 1) + ordg(g) > g .  Therefore by defi- 
nition: S = N -  d .ordg(g )  = N -  ( P -  1 ) ( Q -  1) = 
(P  + Q - 1). For g such that  ordg(g) <_ P + Q - 1, 
we get S < ordg(g) < P + Q - 1, which completes 
the proof of the lemma. 

Assume that  fa,N is not a one-way function, i.e. 
there exists a family C of polynomial-size Boolean 
circuits that  computes f ~ l ( z )  successfully on a non- 
negligible fraction of the Blum integers, N,  the gen- 
erators g E Z~v and the elements Z E G. We use 
C to factor a non-negligible fraction of the Blum in- 
tegers, thus contradicting the intractabili ty assump- 
tion. Let B be the set containing the polynomial 
fraction of the Blum integers for which C computes 
f~ ig(Z ) successfully on a non-negligible fraction of 
g E Z~v and Z E G. Given N E B we use C to 
compute S by applying standard randomization tech- 
niques, and subsequently try to factor N using S in 
one of the following methods: 
M e t h o d  1: For g such that  OrdN(g) > P + Q -  
1: S = ( P + Q -  1). Hence, by solving the two 
equat ions:  S = P + Q -  1 and N = P .  Q we get the 
full factorization of N.  
M e t h o d  2: Let go be a random element in Z~v , 
and let g = g0 2. Let k be the largest integer such 
that  2 k l ( N -  S). As g is an admissible generator, 

"(N--S)12k is g (lv-s)/2k = 1 (modN)  and therefore so 
a square root of 1 modulo N.  With probabili ty 1/2 
g ( N - S ) / 2  k 
0 ~ :/:1, which enables the factorization of 

N.  Note that  while method 1 succeeds for almost all 
N E B, method 2 works for every N E B with ar- 
bitrarily high probability, but requires the knowledge 
of a square root of g. I---] 

3 T h e  H a r d  B i t s  o f  fg ,g(x)  

For a number  U let u,~...ui denote the binary rep- 
resentation of U, with un being the most significant 
bit and ui being the least significant bit. Note that  
most significant bit always refers to the n-th bit in 
the binary representation, even when U ranges over a 
smaller interval of possible values. A substring uk...uj 

k of u , . . .u i  (1 < j < k < n) will be denoted by uj .  
D e f i n i t i o n  H . I :  The i-th bit of the function fg,g 
is hard if no family of polynomial-size Boolean cir- 
cuits can, given a random admissible triplet (g, N,  
Z), compute the i-th bit of f~,~c(Z) with probabili ty 
of success greater than 1/2 + f /poly(n),  for any poly- 
nomial poly( n ). 
Note that  we use the direct definition of hardness (as 
in [BM]) rather  than defining a bit to be hard if its 
approximation is as hard as computing f - 1  (as in 9,N 
[LW]). 
T h e o r e m  3: 
For every 1 < i < (1 - ¢ ) n ,  with ~ an arbitrarily small 
constant, the i-th bit of fg,g is hard. 

Our result left open the question of the individual 
bit security of the extreme left bits (i > ¢n). This was 
recently solved by Johan Hastad [tta] who proved: 
T h e o r e m  4: 
For every i : n/2  < i < n -  O(logn)  the i-th bit of 
fg,Y is hard. 

Proving the individual (as well as simultaneous) 
security of the O(log n) most significant bits of fg,g 
calls for a new definition of security for bits that  are 
a-priori known to be biased (and therefore can be 
trivially predicted with probabil i ty greater that  1/2). 
Following the work in [SS] we can define this notion 
and prove the individual bit security of all the bits. 

Let xi be the i-th input bit of the function fg,g 
and denote its bias towards 0 by b(i). Note that  only 
for i >_ n - O(log n) the bias is significantly greater 
than 1/2, yet the definition we give is valid for any 
bias. 
D e f i n i t i o n  H.2:  xi is hard if for any family C of 
polynomial-size Boolean circuits that  is given a ran- 
dom admissible triplet (g, N,  Z), and for any poly- 
nomial poly(n): 

1 
- -  • P r (C  = xi[C = 0)+ 
b(i) 

1 1 
+ - -  • P r (C  = z i l C  : 1) ,~ 2 --~ - -  

1 - b(i) poly(n) 
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T h e o r e m  5: 
The O(log n) most significant bits of fg,N are hard. 

We now present the full proof of Theorem 3 which 
contains most of the new techniques and procedures 
that  are needed to obtain the above results. 
P r o o f  o f  T h e o r e m  3: 
O v e r v i e w :  
Suppose that  for a certain i, the i-th bit is not 
hard. Then, there exists a polynomial-size oracle 
(circuit) C : ( g , g , z )  --* {0,1}, (where (g, N, Z) 
is an admissible triplet) that  succeeds with probabil- 
ity exceeding 1/2 + 1/n ~ in predicting the i-th bit of 
f~,)v(Z), for some constant k. As in Theorem 2 let 
y = gN (modN).  We use the oracle to factor N, by 
computing all the bits of S -1 =/'g,N(Y) and following 
one of the reductions of Theorem 2. 

Intuitively, we can regard the oracle as a one-bit 
window into the i-th position in a long unknown se- 
quence of bits. By moving the sequence underneath 
the window, we can see everything in it. We there- 
fore need a method to shift the unknown S to the 
right and to the left, by operating on the known 
Y. We should be careful not to cause a wraparound 
(i.e. reduction of the shifted S modulo the unknown 
ordN(g)), by zeroing some known bits of S while op- 
erating on Y. The shifts to the left result essentially 
from squaring Y. We cannot perform the shifts to 
the right by extracting square roots of Y ,  since that 
cannot be done in polynomial time when the factor- 
ization of N is unknown. Instead we develop a special 
technique by which the right shifts result from chang- 
ing the base g of the exponentiation function, and us- 
ing the fact that  squaring modulo a Blum integer is 
a permutat ion over the (randomly chosen) admissible 
generators. 

As the oracle may err, one peek through the win- 
dow in not enough. We 'collect votes' on the value 
of the i-th bit by querying the oracle on polynomi- 
ally many random multiples of the original input, 
and use a majori ty vote to decide the value. To per- 
form this randomization we have to guess an esti- 
mate of the unknown ordN(g) as an upper bound on 
the random choices, thus preventing the occurrence 
of a wraparound. Since the multiplication involves 
the addition of the known exponent of the random 
value with the unknown argument of fg,N, we should 
handle with care the unknown carry into the i-th bit 
position from the addition of their least significant 
i - 1 bits. We solve the problem by guessing the 
value of the O(logn) bits right to the i-th bit and 
zeroing them. A straightforward implementation of 
this guessing strategy for each bit positior~ leads to an 
exponential algorithm, but  a more careful implemen- 
tation can make sure that  only a polynomial number 

of candidates for the value of S exist. 
We begin the proof with a detailed description 

of the bit-zeroing, shifting and randomization tech- 
niques, which provide us with the necessary tools for 
extracting S. We then separate the proof into three 
possible cases and show: 

1. The middle bits (n/2 - O(logn) <_ i <_ n/2 + 
O(log n)) are hard (Proposition 3.1). 

2. Every bit to the right of the middle (1 __< i < 
n/2 - O(log n)) is hard (Proposition 3.2). 

3. Every non-extreme bit to the left of the middle 
(n /2+O( logn )  < i < ( 1 - e ) n  for any ¢) is hard 
(Proposition 3.3). 

The actual extraction of S in this theorem involves 
the basic Forward-Extract  procedure, where the un- 
known bits of S are computed from the least signifi- 
cant to the most significant. We describe the proce- 
dure and its use in detail while proving the proposi- 
tions. In the appendix we present a more complicated 
Backward-Extract  procedure, where the bits are dis- 
covered from the most significant to the least signif- 
icant. The Backward-Extract  procedure is essential 
to the proofs of Theorems 4 and 5 (and later 8). It 
can also be used instead of the Forward-Extract  pro- 
cedure in propositions 3.1 and 3.3 but  in that  context 
it has no advantage. 

We shall henceforth assume that  the randomly cho- 
sen g is of high order and perform our analysis accord- 
ingly. The small probability that  g is not of high order 
(Proposition 1) is taken into consideration in our final 
error estimation of deriving an incorrect value for S. 
M a i n  T e c h n i q u e s :  
Let Y = fg ,g(g) ,  for U < ordg(g). Let m be the 
location of the leftmost non-zero bit in the binary 
representation of ordy(g), on..ol, i.e.: oj = 0 for rn+  
1 < j < n, but  o,~ = 1. Note that  for high order g: 
n - O ( l o g n )  < m < n. Note also that  uj = 0 for 
m + l < _ j < n .  
B i t - Z e r o i n g  T e c h n i q u e :  
The operation of zeroing a known j - th  bit of U (while 
operating on V) is denoted by ZRj(g ,  V). It is easy 
to see that:  

ZRj(g, V) = V.  g- j 2J-, (modlV) 

Shifting Techniques: 
Shifting t o  t h e  lef t :  Assume we are guaranteed 
that  Urn = 0, and we know u,~-l .  We shift the se- 
quence of bits um-1...ul one bit to the left, while 
zeroing the new m-th bit of the shifted U, by using 
the knowledge of m and urn-1 to transform V into 
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(ZRm- l (g ,  V)) ~ (modN).  We cancel um-t  to pre- 
vent the shifted value of U from becoming greater 
than ordN(g) and causing an overflow, which will en- 
tirely change the value of U by subtracting from it 
ordg(g). As ordN(g) and therefore m are unknown, 
we have to guess the value of m (a similar note applies 
to the randomization technique). 
Sh i f t ing  to  t h e  r igh t :  We can shift the sequence 
of bits representing U one bit to the right, with the 
known least significant bit falling off, by transform- 
ing V into ~ (modN),  under an appropri- 
ate choice of one of the four possible square roots. 
However, square roots modulo N cannot be efficiently 
computed without knowledge of the factorization of 
N, so we have to compute it in an indirect way. 

Assume now that g was not arbitrarily chosen, but 
created by squaring rood N another admissible gen- 
erator g'. Let V' = fg,,g(U). Using the knowledge of 
V' and of the least significant bit of U we get: 

shifted U = f~,~c(ZRt(g', V')) 

As V ~ depends on U, if U is unknown V ~ is also un- 
known. However, since we only use the technique to 
obtain shifts of S -1 = f ; ,N(Y)  for Y = fg,N(N), it is 
easy to derive Y'  = fa,,N(S) via Y' = fa,,N(N). 

We can use this method to perform a bounded 
number of shifts to the right. In order to perform at 
most k shifts to the right, we prepare in advance the 
sequence: {gjl~+ljj=0, where gJ = gj-12 (modN),  and 
use g = gk+l as the base of the exponentiation func- 
tion. Since squaring is a permutat ion of the quadratic 
residues modulo a Plum integer N, a random choice 
of go will produce a random admissible g for any k. 

Note that  assumptions a.2 and a.3 are needed only 
to enable the right shifts, and can be dropped when- 
ever right shifts are not performed. 
R a n d o m i z a t i o n  T e c h n i q u e :  
We perform the randomization by querying the oracle 
on polynomially many inputs of the form: (g, N,  V • 
gn) for randomly chosen n-bit R = rn.. .r l  such that 
0 < R < OrdN(g). We then determine the value of ui 
by a majority vote. 
Two main problems arise: 

1. Despite our knowledge of R, we cannot know 
whether a carry from the addition of the i - 1 
least significant bits of the known R and the un- 
known U effects the i-th bit of the sum, and thus 
we cannot infer ui from the answers of the oracle 
for the i-th bit. If, on the other hand, we were 
guaranteed that  U i _ l . . . U i _ O ( l o g n )  - -  000...0, we 
could discard the possibility of a carry except in 
the low probability event that ri-1 . . . r i - - O ( l o g n )  = 

111...1. As the actual values of U i _ l . . . U i _ o ( l o g r t  ) 

are unknown, we try out all their (polynomial 
number of) possible values. For each value we act 
as if it was the correct value, zero it and compute 
the unknown bit ui accordingly. Our procedures 
for the extraction of S make sure that the am- 
biguity concerning its value remains polynomial, 
so that  an exhaustive search can find the correct 
value. 

2. The order of g, ordN(g), is unknown, and cannot 
be computed in polynomial time. We can guess 
an approximation e = em...el of ordN(g) (which 
enables a sufficiently random choice of R) by the 
following three stages: 
1. Pick 0 _< n - m  _< O(log n) (using O(log log n) 
random bits), 
2. Pick a value for em-1...em-oOog,O, 
3. Set all the lower order bits of e to zero. 

P r o p o s i t i o n  3.1: 
For every i : n/2 - O(log n) < i < n/2 + O(log n) the 
i-th bit of fg,g is hard. 
P r o o f :  
To simplify the presentation, assume that we are 
given an oracle for the n /2- th  bit. It is easy to see that 
the same reasoning applies to all i : n/2 - O(log n) < 
i < n/2 + O(log n). We extract  the half-sized secret 
S by using the following method: 
T h e  F o r w a r d - E x t r a c t  P r o c e d u r e :  

1. Shift S n/2 - O(log n) bits to the left. This will 
not cause a wraparound for high order g. 

2. Guess the O(logn) least significant bits of S 
which have not passed under the oracle's loca- 
tion, and then zero these guessed bits to prevent 
any carry into the oracle's location during the 
randomization. 

3. Let Y~ denote Y after the transformations of pre- 
vious stages. Let sj be the bit that  is currently 
at the oracle's location. Deduce s I by querying 
the oracle on sufficiently many random multiples 
y i .  gR (modN),  for R < e (see previous discus- 
sion of randomization technique), and zero it. 

4. Shift S one bit back to the right, placing sj+l 
at the oracle's location. The right shifts may 
be performed directly whenever S is located to 
the left of its original location. (See the note 
following the proof of Proposition 3.3 for further 
discussion). 

5. Repeat stages 3-4, to extract  all bits, sj, 
O(log n) < j < n /2  + O(1). 
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I . . .  0 . . .  

6. Repeat  previous stages for each of the (polyno- 
mial number)  of initial guesses at stage 2. 

The correct value of S among the nO(l) resulting can- 
didates from the procedure is chosen by trying to fac- 
tor N with each computed S. 

The following scheme illustrates the position of S 
during the procedure. We denote an unknown value 
of a bit by a question mark.  All bits that  are known a- 
priori to be zero are denoted by a zero. Bits of S tha t  
were discovered or assigned values and subsequently 
zeroed are denoted by an exclamation mark.  The 
n /2- th  bit, where the oracle is located, is indicated 
by a box. 

Before the procedure begins: 

... ? ... 

After stages 1,2: _~ ~ O(log n) 

. . .  0 . . .  01 ... ? ... 

During the procedure (stages 3-5): 

... 0 ... 

I 0 I ?  1 1 0  
Finally: 

I . . .  0 . . .  1 "'" ! "'" 

It  is not difficult to show that:  
C l a i m  1.1: The procedure yields at most nO(1) pos- 
sible values for S. 
C l a i m  1.2: With non-negligible probabil i ty one of 
the values is the correct value of S, where the proba- 
bility is over the possible values of g, N and R. 
C l a i m  1.3: The above procedure can be used to fac- 
tor a non-negligible fraction of the Blum integers with 
an overwhelming probabil i ty of success, by trying ran- 
dom admissible g's. V--] 

P r o p o s i t i o n  3.2: 
For every i : 1 < i < n / 2 -  O(logn) ,  the i-th bit of 
f g , g  is hard. 
P r o o f  
Assume that  for some 1 < i < n / 2  - O(logn) ,  the 
i-th bit is not hard. In that  case we use a simpli- 
fied version of procedure Forward-Extract .  As we 
shift S i bits to the left (stage 1 of Forward-Extract ,  
where i substi tutes the n/2-shift) ,  we know that  all 
the i - 1 least significant bits are 0. We can therefore 

extract  the successive bits of S, by repeatedly per- 
forming stages 3-4 of procedure Forward-Extract  for 
all bits s j ,  1 < j < n /2 .  In this simplified version we 
need not guess the least significant bits of S (stage 
2), whereas in Proposition 3.1 some of the bits of S 
remain to the oracle's right after the initial shift so 
that  stage 2 cannot be avoided. 

To make the right shifts possible (after the first 
i shifts which merely move S back to its original 
position, but  leave n / 2  - i of the bits of S un- 
known) we must  use the general right shift tech- 

e "hn]2-{-I 
nique. We choose a random go, create igi)i=0 with 
gi+1 = g~ (modN)  and use g = gn/2+1 as the base of 
the exponentiation function. Since by assumption a.2 
squaring is a permuta t ion  over the admissible gener- 
ators, randomly choosing go will result in a random 
g, thus ensuring tha t  the oracle is correct for g with 
a non-negligible probability. 
C l a i m  2.1: The Simplified Forward-Extract  proce- 
dure yields a single value for S. 
C l a i m  2.2: With non-negligible probabil i ty the value 
is the correct value of S, where the probabil i ty is over 
the possible values of g, N and R. 
C l a i m  2.3: The procedure can be used to factor a 
non-negligible fraction of the Blum integers with an 
overwhelming probabil i ty of success, by trying ran- 
dom admissible g0's. l---q 

P r o p o s i t i o n  3.3: 
For every i : n /2  <: i < ( 1 -  c)n, where ~ is an 
arbi trary small constant,  the i-th bit of fg,N is hard. 
P r o o f :  
Assume that  for some i = (1 - c ~ ) n ,  where ~ < 

< 1/2, the i-th bit is not hard. The main prob- 
lem we face here, is that  S can be shifted at most  
n / 2  - O(log n) bits to the left to avoid a wraparound,  
leaving n / 2  - c~n + O(log n) of the bits of S right 
to the oracle's location. Such a large number  of bits 
cannot be guessed efficiently. To solve that  we use 
procedure Forward-Extract  as an internal routine to 
extract  blocks of c~n consecutive bits of S, and repeat 
the use of the routine 1/c~ times to fully extract  S. 
While the bits of each block are discovered from the 
rightmost bit to the leftmost one, we s tar t  with the 
block that  contain the most  significant bits of S and 
finish with the block of the least significant bits, each 
time using the knowledge of the already extracted bits 
to move S further to the left and place more unknown 
bits under the oracle. 

We begin by shifting S n / 2  - c~n bits to the left, 
having s,~/2 located at the i-th bit. We then use pro- 
cedure Forward-Extract  to extract  the possible values 
of Snl2...Sn/2-cm, where at stage 2 we guess the val- 
ues of s,~-~,~+O(logn), ..., sn-~,~. We cannot discard 
any of the possibilities yet, since we can try to factor 
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N only when most of the bits of S are known. We 
can, however, try each of the results for Sn/2...Sn/2--an 
and zero it to enable an additional shift of S up to an  
bits further to the left without causing a wraparound, 
so that  we can perform yet another Forward-Extract 
procedure for 8 n / 2 _ c ~ n . . . S n / 2 _ 2 a  n .  In general, at the 
j - th  stage (1 < j < 1/o 0 of the extraction pro- 
cess we zero each of the recently discovered values 
for s~-( j -1)a~. . . s , - j~n  to enable further left shifts of 
S and to discover s,_j~ . . . .  S n _ ( j T 1 ) a  n .  The process 
increases the number of final candidates for S from 
poly(n) to polyl/c*(n), but for non-extreme locations 
this remains polynomial. Therefore: 
C la im 3.1: For any fixed a the above process yields 
at most n°(1) possible values for S. 
C la im 3.2: With non-negligible probability one of 
the values is the correct value of S, where the proba- 
bility is over the possible values of g, N and R. 
C la im 3.3: The above process can be used to factor a 
non-negligible fraction of the Blum integers with an 
overwhelming probability of success, by trying ran- 
dom admissible g's. I--'] 

N o t e :  The shifts to the right in propositions 3.1 and 
3.3 move S back at most to its initial position but 
not further to the right. Therefore it is possible to 
perform the right shifts directly without using the 
general shift to the right technique. An efficient im- 
plementation of these right shifts involves saving the 
intermediate results of the initial shifts to the left 
and reusing them. As a result Propositions 3.1 and 
3.3 can be altered to hold for any high order g with- 
out assumptions a.2 and a.3. For such generators the 
extraction of S remains unchanged and the factoriza- 
tion of N (now not necessarily a Blum integer) is still 
possible via method 1. 

4 The S imul taneous ly  Hard 
Bits  of fg .N 

In the following section we define the strong no- 
tion of simultaneous security, which states that it is 
computationally hard to succeed with non-negligible 
probability in computing any information whatsoever 
about groups of bits of fg,g. We then show that fg,g 
is indeed secure in that  sense. 
Def in i t ion :  p] : [1, N] ~ {0, 1) k-j+1 is the function 
p](U) = uk...uj, with k > j .  
Def in i t ion :  The bits of fg,g at locations j < i < k 
are simultaneously hard, if k -1 (p~ (f-a,N(Z)), Z) is poly- 
nomially indistiguishable from (x~, Z) for randomly 
chosen admissible (g, N, Z) and a random ( k - j +  1)- 
bit string x].  

Def in i t ion :  The i-th bit, j < i < k, of the func- 
tion fg,g is relatively hard to the right (to the left) 
if no family of polynomial-size Boolean circuits can, 
given a random admissible triplet (g, N, Z) and in 
addition the i - k (j  - i) bits of f~,}v(Z) to its right 

(left), compute the i-th bit of f~,}v(Z) with probabil- 
ity of success greater than 1/2 ~- 1/poly(n), for any 
polynomial poly(n). 
P r o p o s i t i o n  6: 
The following conditions are equivalent: 
1. The bits of fg,N at locations j < i < k are simul- 
taneously hard. 
2. Each bit j < i < k of f~,~ (Z) is relatively hard to 
the right. 
3. Each bit j < i < k of f~,}v(Z) is relatively hard to 
the left. 
The proof of this equivalence involves a careful ap- 
plication of the techniques implemented in Yao's well 
known proof of the universality of the next bit test 
[',q. 

T h e o r e m  7: 
The n /2  right hand bits of fg,Y are simultaneously 
hard. 

The techniques used to prove this theorem were 
recently extended by Johan Hastad [Ha] to yield: 
T h e o r e m  8: 
The n /2  left hand bits of fg,g are simultaneously 
hard. 
P r o o f  o f  T h e o r e m  7: 
By Proposition 6 it suffices to show that  every right 
hand bit of fg,g is relatively hard to the right. In 
general, even if each bit is individually hard, it does 
not immediately imply the simultaneous hardness of 
all bits: In order to use an oracle for a relatively weak 
to the right i-th bit, all the i -  1 least significant bits 
of the unknown value must be supplied too, a very 
hard task in general. However, careful analysis of the 
Forward-Extract procedure shows that  such a task is 
possible. 

Let X = f ~ ( Z ) .  Assume that  the theorem is 
false, i.e. for some 1 < i < n/2 there exists an oracle 
C(g, N, Z, x~ -1) (for admissible triplets) that suc- 
ceeds in predicting xi with probability 1 / 2 +  1/n k, for 
some constant k. We extract the bits o f S  = f~,}v(Y), 
where Y -- gg (modN) using procedure Forward- 
Extract  in exactly the same way as in Theorem 3 
(either directly or in its simplified version, according 
to the location of i). The only difference is in the 
queries to the oracle, where we have to supply the 
i - 1 least significant bits of the argument. By ex- 
amining both versions, it is easy to see that after the 
initial shift to the left and for each subsequent right 
shift and bit-zeroing of S (corresponding to a certain 
transformed value Y'  of Y) the i - 1 least significant 
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bits of -1 , f'g,N(Y ) are zero. Therefore the i - 1 least 

significant bits of Y' • gR are the known bits of R, 
i-1, which can be given to the oracle. I--'1 r I 

5 Applications 

5 . 1  C o m m i t m e n t  S c h e m e s  

Several cryptographic schemes require a party to 
commit to a certain message without revealing any 
information on the content of the message. The 
message is drawn out of an arbitrary collection, 
which may be very sparse. Most known commitment 
schemes are designed to hide single bits. Multi-bit 
commitment improves the efficiency of existing pro- 
tocols as presented in [KMO]. Recently Naor has 
presented a multi-bit commitment scheme [Na] using 
any pseudo-random bit generator. We construct a 
different scheme that  uses fg,N directly. 

The simultaneous security of the n/2 right hand 
bits of fg,N implies that  fg,N hides n/2 uniformly dis- 
tr ibuted bits. To use fg,g in a multi-bit commitment 
scheme, it should be proven that  fg,g hides O(n) arbi- 
trarily distributed bits in a polynomially secure man- 
ner. We now formally define the notion of simultane- 
ous security with respect to non-uniform probability 
distributions, prove that  most of our results still hold 
and construct a simple multi-bit commitment scheme 
accordingly. 
Def in i t ion :  A probability distribution function 
(pdf) over the n-bit variable X is right non-uniform 
if: 
1. x .... xnl2+l are uniformly distributed, and 
2. x,~12...Xl are arbitrarily distributed. 
Let D(g, N, Z) denote any pdf  of admissible triplets 
in which: 
1. g and N are uniformly distributed. 
2. the distribution of Z is induced by a right non- 
uniform pdf, P(X), of X -1 : fL (z). 
Def in i t ion :  The /-th bit of the function fg,N is D- 
hardif the conditions of definition H.2 hold under the 
probability distribution D(g, N, Z). 
Let p] be the function defined in section 4. 
Def in i t ion :  k right most bits of fg,g are simulta- 
neously D-hard, if (p~(f~,~(Z)), Z) is polynomially 
indistiguishable from (x~, Z), for D-distributed ad- 
missible (g, N, Z) and P-distr ibuted k-bit x~. 
T h e o r e m  9: 
The n/2 right hand bits of fg,N are simultaneously 
D-hard. In particular for every 1 < i < n/2 the i-th 
bit of fg,N is D-hard. 

S k e t c h  o f  Proof." 
The proof of the theorem is essentially a non-uniform 
version of the proof of Theorem 7. If the theorem is 
false then in particular there exists a certain assign- 
ment, A, for the n/2 right hand bits of f~,~¢ such that 
(A, fg,N(RoA)) is polynomially distinguishable from 
(A, Z), where (g, N, Z) is a D-distributed admissible 
triplet, and R is a randomly chosen (n/2 - O(log n))- 
bit string, s.t. R o A < ordlv(g). However the proof 
of Theorem 7 can be strengthen to show that  for any 
specific n/2-bit  message, A, (A, fg,N(RoA)) is poly- 
nomially indistiguishable from (A, Z) for uniformly 
distributed admissible (g, N, Z) and a random R 
which is defined as above. Exploiting once again 
the fact that we work in the non-uniform complex- 
ity model leads to the conclusion that  the same holds 
when the admissible (g, N,  Z) is D-distributed. 

Note that  the theorem can be proven in the uniform 
complexity model under the additional assumption 
that  the distribution P (and therefore D) is polyno- 
mially samplable (as in JILL]). I'---] 

By Theorem 9 it is possible to commit to a n/2- 
bit value M by choosing randomly N and g, picking 
a uniformly distributed (n/2 - O(logn))-bi t  R s.t. 
R o M < ordg(g) and sending Z = fg,N(R o M), 
where o denotes concatenation. In particular the the- 
orem implies that  the existence of even a single pair 
of messages (chosen by the opponent) whose commit- 
ted values can be efficiently distinguished will lead to 
the factorization of N: 
C o r o l l a r y  9.1: 
Let M0, M1 E {0, 1} hI2, be any pair of n/2-bi t  mes- 
sages. Let Zi = fg,N(RO Mi), i = 0,1, with R 
a uniformly distributed (n/2 - O(logn))-bi t  string 
such that R o Mj < ordg(g). Then, (Mi, Zi) and 
(Mi, Zl-i) are polynomiMly indistiguishable. 

In order to perform the above commitment  in prac- 
tice it is necessary not only to verify that  a ran- 
domly chosen generator has high order (which hap- 
pens with high probability), but to know the exact 
order of the generator (to ensure and prove that  R 
has been chosen correctly). Recall that  ordlv(g) di- 
vides ( P - 1 ) ( Q - 1 ) .  Thus in practice the factorization 
of (P  - 1)(Q - 1) must be known to the party that  
chooses the commitment scheme, by carefully choos- 
ing the primes. 
D e f i n i t i o n  [BM]: A prime P of size n is hard if P = 
tP' + 1, where P '  is a prime and 1 < t < poly(n). 

Since hard primes have an asymptotically poly- 
nomial density among the integers of the sequence 
tP' + 1 IBM] hard primes can be found efficiently. 
The commitment protocol will be performed in prac- 
tice using a Blum integer which is the product  of ran- 
domly chosen hard primes, and its security will rely 
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on a somewhat  stronger assumption, namely that  no 
family of polynomial-size Boolean circuits can factor 
a polynomial fraction of the Blum integers that  are 
the product  of hard primes. 

5.2 P s e u d o - R a n d o m  Bi t  G e n e r a t i o n  

Any one-way function can be used for the construc- 
tion of a pseudo-random bit generator, due to a re- 
cent result of JILL]. However, this general technique 
is very inefficient. The simple construction of [BM] is 
inapplicable to fg,Y, since for composite N it is not 
one to one. fg,N is also not regular (i.e. not every pos- 
sible value has the same number  of preimages), hence 
even the (inefficient) construction of [GKL] cannot be 
used. We are interested in an efficient construction, 
using the simultaneous security of O(n) bits of fg,g 
to output  as many  bits as possible in every stage of 
the generation. 

Using the results JILL] and [IZ] we present a con- 
struction of an extender G : {0, 1) I --~ {0, 1} I+°(n) 
where I = O(n). The pseudo-random bit generation 
is achieved through repeated applications of the ex- 
tender to a random seed. 

Let N = P • Q be a Blum integer of size n and 
let g be an admissible high order generator. Let 
n - O( logn)  < m < n - 2 be an integer such that  
2 m-1 < ordg(g) < 2 m. (As before, hard primes must  
be used to find m in practice.) Let Hn,~ be a family 
of universal hash functions, where t = m - 4 • log s n. 
In [IZ] some simple constructions are demonstrated,  
where O(n) bits suffice to define a unique function 
h E Hn,t. Let h be a randomly chosen function in 

H, , t  and let X be a random m-bit  string. Let z~/2 
denote the n/2 right hand bits of X and let o denote 
concatenation. The extender G is: 

a(h  o X)  = h o h (/g,N(X)) o ~:~/2. 

N o t e :  1. The fact that  O(n) bits of fa,N are simulta- 
neously secure and not just  O(log n) is crucial for the 
construction of G. Applying the hash function causes 
a O(log 2 n)-bit  loss in the length of G's  output .  The 
final O(n) extension is possible only because of the 
many simultaneously secure bits, which more than 
compensate  for this loss. 
2. The values that  are made public in G's  construc- 
tion are g, N and also m. This does not detract  from 
the perfectness of G since m can be guessed in poly- 
nomial time (we used this fact in our shifting and 
randomization techniques). 
Using the Leftover Hash Lemma of [IZ] combined 
with our proof of the simultaneous security of the 
bits of fg,N it is easy to show: 

T h e o r e m  10: 
G is a perfect extender. 

6 Discussion 

In this paper we have explored some of the unique 
properties of exponentiation modulo a Blum integer, 
which make it the first number  theoretic function all 
of whose bits are proven to be individually hard and 
half of whose bits are proven to be simultaneously 
hard. The results presented in this paper  can be ex- 
tended in several directions: 

1. 

. 

. 

It  is interesting to see which mixed groups of bits 
from the right and left half of fg,g can be proven 
to be simultaneously secure. For example,we can 
show that  for every 1 < j < n/2 the rightmost j 
bits together with the leftmost n / 2 - j  bits are si- 
multaneously secure, and in particular the right- 
most n/4 bits together with the leftmost n/4 bits 
are simultaneously secure. 

The factorization of Blum integers may remain 
intractable even if some of the bits of P and Q 
are known. Efficient factorization techniques are 
known only when at least n /3  bits of P or Q 
are given [RS]. Assume that  the factorization 
of Blum integers remains computationally hard 
even when we are given the n /4  most signifi- 
cant bits of P or Q. Under this strengthened 
intractabili ty assumption it is easy to show that  
three quarters of the bits of fg,Y are simultane- 
ously secure, as the length of the unknown part  
of S is now only n /4  instead of n/2. 

Let F denote the set of all composites N which 
are the products of a small number  of large 
primes. Assume that  it is computationally hard 
to distinguish Blum integers from the numbers 
in F (and thus in particular it is difficult to fac- 
tor these numbers).  Under this strengthened as- 
sumption our results hold not only for Blum inte- 
gers but for all F as well, even though our proof 
techniques are not directly applicable to numbers 
in F.  This generalization was first observed by 
Silvio Micali (personal communication).  
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Append ix :  
B a c k w a r d - E x t r a c t  

Procedure  

In this appendix we present an alternative extrac- 
tion procedure for S, named the Backward-Extract 
procedure. In this procedure the bits of S are discov- 
ered from the most significant bit to the least signifi- 
cant bit. The main property of the procedure, which 
makes it essential for the proofs dealing with the ex- 
treme left bits and the simultaneous security of the 
left half of the bits, is that at any stage of its ap- 
plication all the bits left to the oracle's location are 
zero. The procedure is applicable only when the or- 
acle's location is left to the middle. To simplify our 
presentation assume that the oracle's location is ex- 
actly in the middle. Following is a description of the 
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Backward-Extract  procedure, with o denoting con- 
catenation: 
T h e  B a c k w a r d - E x t r a c t  P r o c e d u r e :  

1. Find Snl2 by guessing a value 
k of 8 n l 2 _ l . . . S n / 2 _ O ( l o g n )  , zeroing these guessed 
bits (with the original Y transformed to Y~) and 
querying the oracle on sufficiently many  random 
multiples Y~ • gR (modN) ,  for R < e. Denote 
this current guess for the most significant bits of 
S by CS~ = sn/2 o k. 

2. Repeat  stage 1 for all possible guesses k = 
0, ..., n°(1) of the bits sn/2-1.,..s,~/2-OOog,), thus 

creating n°(D candidate values for the most sig- 
nificant bits of S: CSlo,..., CSI, oo). 

3. Let s , /2- j  be the bit that  is currently eval- 

uated. Let CS~ be the candidate value for 
the left j bits of S that  we use for the eval- 
uation. Guess a value b for Sn/2_j_O(logn). 

Let v = k°0°gn ) - I  o b be the current 
guess for 8n/2_j_ l , . . . ,Sn /2_j_O(logn)  , where 

k °0°gn) denotes the value assigned by k to 
s , /2- j -1 ,  ..., s,~/~-j-OOogn)+l. Shift S j bits to 
the left with the left j bits of S zeroed accord- 
ing to CS~, placing sn/z_j at the middle. Zero 
s,~/2-j-1, ..., s,~/2-j-o(logn) according to v. Let 
Yd denote the resulting Y. 

4. Deduce Snl2_ j by querying the oracle on suffi- 
ciently many  random multiples YJ .gR (modN) ,  
for R <  e. 

5. Check whether the resulting value of sn/2-j 
equals kO(logn), i.e. the value that  has been as- 

signed to that  bit while creating CS j. If  so, up- 
date the current guess for the j + 1 left most bits 
of S to CSJv +1 --  C S  j o b. 

6. Repeat  stages 3-5 for the other possible guess of 
sn/2-j - O(log n). 

7. Repeat  stages 3-6 for all existing candidate val- 
ues for the j left bits of S. 

8. Repeat  previous stages to extract  all bits. 

In the above process we initially create n °(1) pos- 
sible candidates for the O(log n) most significant bits 
of S. As we proceed, a certain candidate CSJv +1. 
can be generated either from candidate value CS~ 
with ko(Iogn) = 1 or from a candidate value with 
ko0ogn ) = 0 but not from both, since we use the 
guess v to determine explicitly the value of s,,/2-j 
and thus evaluate the guess k. Therefore, there are 

I 

still at most n°(U candidate values at every stage of 
the process. The correct value of S among the n O(1) 

resulting candidates is chosen by trying to factor N 
with each computed S. 

The following scheme illustrates the position of S 
during the procedure. We denote an unknown value 
of a bit by a question mark.  All bits tha t  are known a- 
priori to be zero are denoted by a zero. Bits of S that  
were discovered or assigned values and subsequently 
zeroed are denoted by an exclamation mark.  The 
n /2- th  bit, where the oracle is located, is indicated 
by a box. 

Before the procedure begins: 

1 ... 0 ... "'" ? "'" 

After stages 1: .,4 ~ O ( l o g  n) 

It;  ? 
• lj . . . . . . .  ... 0 ... 

During the procedure: 

Finally: 
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