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Abstract 

Binary Space Partitioning Trees have several 

applications in computer graphics. We prove that there 

exist n-polygon problem instances with an O(n2) lower 

bound on tree size. We also show that a greedy algorithm 

may result in constructing a tree with O(n2) nodes, while 

there exist a tree for the same n-polygon instance with 

only O(n) nodes. Finally, we formulate six different 

heuristics and test their performance. 

1. Introduction 

The hidden line elimination problem is of 

fundamental importance in computer graphics [4,6,7]. The 

Binary Space Partitioning (BSP) tree is one approach to 

the problem [l], and has received recent attention in 

[2.3,8]. An attractive aspect of the BSP tree is that once 

the tree corresponding to a collection of objects is created, 

the scene represented by the tree can be displayed with 

hidden line elimination in time that is linear in the 

number of nodes of the tree. This efficiency inherent in 

BSP tree based hidden line elimination is cause for serious 

consideration of BSP trees to be used in parallel real-time 

scene generation [5]. 
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In general, the tree representing a set of polygons is 

not unique, in fact, the number of nodes in trees 

representing the same scene may vary substantially 

depending on heuristics used in constructing the tree. The 

focus of this research is to evaluate several heuristics used 

to construct BSP trees according to the following two 

criteria : 

(a) The size (number of nodes) of the tree. 

@J) The extent to which the tree is height-balanced. 

The order in which polygons in the left subtree of a 

node are processed is independent of the order in which 

polygons of the right subtree of the node are processed. 

This observation is the motivation for including (b) as a 

method of judging the potential for parallelism (balanced 

subdivision of labour) reflected in the tree structure 

2. Definition and Notation 

Definition : A BSP tree is a binary tree constructed 

from a polygon list. The basic notion is that given a plane 

in a three dimensional scene and a viewing point, no 

polygon on the view point side of the plane can be 

obstructed by any polygon on the far side. The tree can be 

recursively constructed as follows : 
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A polygon is selected from the list and placed at the root, 

Each remaining polygon is tested to see which side of the 

plane containing the root polygon it lies in, and is placed 

in the appropriate side list. A polygon that intersects the 

plane containing the root polygon is split, and each of the 

pieces is placed in the appropriate list depending on which 

halfspace it lies in. The left and right subtrees are 

recursively constructed using the descendent sublists 

generated. Figure 1 shows a 2-D example of the above 

proCdUre. 

Figure 1 

Notation : Let BSP(I) denote a BSP tree corresponding 

to an instance I of n polygons and BSP(I)I denote the tree 

obtained from instance I through using heuristic j.We say 

that BSP(I)* is a ‘node-optimal’ tree if BSP(I)* contains 

the least number of nodes of all possible trees BSP(1). 

‘Height-optimal’ is similarly defined. It is observed in [l] 

that a BSP tree may contain as much as O(n2) nodes, 

where n = I I I. We show that in fact the node-optimal tree 

BSP(l)* may contain as many nodes too. 

Bounds on Tree Size 

T&vent 1: There exists an instance I such that BSP(I)* 

contains O(n2) nodes. 

Proof : Let II denote the set of polygons PO, PI . . . . 

P(n/2 -1) obtained as follows. PO is a rectangle with 

coordinates ~(0, 0, l),(i, 0, l),(l, n/2+2,1),(0, n/2+2,1)>, 
and pi is obtained by translating pi-l unit distance along 

the positive z direction for II i c n/2. 

Let 12 denote the set of polygons Pt.,/2 s P,/2+1, . . . . Pn-I 

where P,/2 is a rectangle with coordinates <(2,1,0), 

(3.1.0). (3,l,n/2+1), (2.1, n/2+1)>, and pi is obtained by 

translating Pi-l unit along the y direction for n /2 5 i c 

n. (see Figure 2). 

Let I = I1 U 12. We claim that any tree constructed from I 

must contain exactly n(n+!) /4 nodes. 

Let 1 i, n/p+j represent the line of intersection of the 

planes containing the polygons Pi and Pn/2 +j where 0 I 

ij c n/2. 

Let BSP (I)* be a ‘node-optimal’ tree and let P be some 

node in the tree. Without loss of generality assume that P 

was obtained from Pi for some i < $2. 

We say the line li, n/2+j is properly contained in P if 

li, n/2+j intersects the interior of P. 

Let k lines be properly contained in P. This means that 

polygons Pn/2+jl , Pn/2+j2,.., Pn/2+jk were split by P 

when P was selected to be the root of some subtree. Since 

each line li, n/2+j is properly contained in some polygon 

of the tree, the number of such splits equal to the number 

of lines 1 id = (n/2)2* Therefore, the number of polygons 

in the tree is equal to (n/2)2+ n = n(n+4)/4. 

Y 

Figure 2 

231 



Scvcral diffcrcnt heuristics have been formulated and 

applied in constructing the BSP tree [1,3]. Each of thcsc 

hcurislics pcrforrn near oplimal under a certain wclldcfmcd 

conditions. In Lhc following WC rcfcr to a greedy algorithm 

as the heuristic which at each step selects a polygon as the 

root that imcrsccls the least number of polygons. In the 

next thcorcm we in fact show that a greedy algorithm 

results in the worst case tree (BSP(I)g) for even a fairly 

straightforward problem instance. This further justifies 

the need lo formulate different heuristics and carefully 

examine their performance. 

Theorem 2 : There exists an instance I where: 

l!!!Edj=*(n) 
I 
bSP0 1 

Proqf: Consider the instance of polygons I as in 

Theorem 1. Augment this instance with a polygon P 

with vertex coordinates < (l-a, n/2+3, 0) , (l-a, n/2+3, 

n/2 +3), (l-b, n/2, n/2+4). (l-b, n/2+3, O)> for constants 

a and b that cause P to intersect the original set It U 12 so 

that : 

(4 

(3) 

w 

The plane containing P intersects all n/2 

polygons in It. 

The plane containing P intersects at least one and 

no more than kt polygons of I, for some 

constant kl. 

Each of the pieces of the polygons of It that lie 

in the same halfspace defined by the plane 

containing P as the n/2-kt polygons of 12 that 

do not intersect the plane containing P, intersect 

at most k2 of these n/2-k, polygons in 12 for 

some constant k2 (see Figure 2). 

Augment It by polygon P’ with coordinates <(0,0,0.5), 

(1,0,0.5X (l,n/2-1,0.5), (O,n/2-1,0.5)>. Note that the 

problem instance size is n + 2, and the planes containing 

polygons from It intcrsccls n/2 polygons from 12 and 

P, (i.e. each plane intcrsccts a total of n/2+1 polygons). 

Each of the planes containing polygons from I2 intersects 

n/2 polygons from It, and polygon P’, except for the 

polygon from 12 with the maximum y coordinates, which 

intersects only the n/2 polygons from 11. The plane 

containing P’ intersects $2 polygons from I2 and P, and 

the plane containing P intersects K, polygons from I2 and 

n/2 polygons from Il. 

The greedy algorithm would start by selecting the 

topmost polygon from 12 as the root, creating as one 

subproblem polygons from ItU P’ and 12 which is 

basically the same situation as the instance in Theorem 1. 

We already know from Theorem 1 that the subtree 

corresponding to this problem instance must contain 

O(n2) nodes. Thus the greedy algorithm would create a tree 

with O(n2) nodes. 

The optimal method of constructing the tree would select 

p as the root, and create n/2+kt new polygons at the first 

level. Thereafter, the polygon in each partition 

intersecting the least number of other polygons in the 

Same partition will intersect at most kt or k2 polygons. 

The number of nodes in the tree will therefore be no more 

than n+ (kt + k2 +l) * n/2 +l. 

Figure 3 
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In the following section, we formulate and evaluate six 

different heuristics in order to explore their potential for 

parallel computation and real-time scene generation. The 

formulation process benefits from inherent properties of a 

directed graph corresponding to the subproblem. While the 

evaluation is established based on the criteria which stated 

earlier. 

3. Evaluating Heuristics 

Thiabult in [3] examines three different schemes to 

construct the BSP tree Briefly, the idea of his heuristic is 

to randomly select a constant size subset of polygons and 

test each member of this set against the remaining 

polygons to compute the heuristic ‘value’. The one that 

minimizes the heuristic is selected to be the splitting 

node. 

Our approach differs from the above method in the 

following important way. The candidate set size in our 

method is varying and is in fact equal to the size of the 

subproblem. Furthermore, in addition to the geometric 

relationships on polygons in a subproblem, we try to 

apply the combinational properties of the subproblem by 

analyzing the directed graph corresponding to the 

subproblem. The directed graph is obtained by viewing 

polygons as nodes and a directed edge exists between nodes 

a and b iff the plane containing polygon a intersects 

polygon b. The inherent properties of the directed graph 

provide a significant flexibility for constructing the tree 

and analyzing the instances of the problem. The main 

steps in all heuristics can be stated as follows: 

1. From the subproblcm I of polygons, construct 

a directed graph, G(I). 

2. Extract combinatorial information from G(I). 

3. Extract geometric information from I. 

4. Use data from steps 2 and 3 to select the 

candidate polygon, P, as root. 

Considering these major steps, six different heuristics are 

formulated as follows: 

H-l : Select minimum outdegree node P from G(I). 

H-2 : Select maximum indegree node P from G(I). 

H-3 : Select minimum outdegree node from G(I) and 

if there is more than one then of all such 

nodes, select one with maximum indegree. 

H-4 : Select node P from G(1) that minimizes 

(1 IN m - OUT 0 1). 

H-5 : Select node P from G(1) that minimizes 

(Outdegree (P) * I IN (P) - OUT(P) I ). 

H-6 : Select node P from G(I) that minimizes 

(S * Outdegree + I IN (P) - OUT(P) I ). 

Where 

IN(P) is the number of polygons in halfspace 

which defied by the plane containing polygon P 

that includes the origin. 

OUT(P) is the number of polygons in halfspace 

defined by plane which containing polygon P 

that does not include the origin. And S is an 

integer positive with value between 50-100. 

The motivation for H-l and H-3 is that we want to 

select nodes that introduce the least number of addition 

nodes into the tree. The reason for constructing the 

heuristic H-2 is that the two graphs resulting from the 

choice of P each corresponding to an induced subproblem 

has as few edges as possible. While the objective for 

establishing the heuristic H-4 is to find height-balanced 

tree in order to increase the degree of parallelism and 

reduce the complexity of subproblems. The heuristics H-5 

and H-6 are similar to the heuristics in [3] except that we 

select the node P from a global set of candidate nodes. 
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3.1. Experimental Results 

A set of experiments is conducted to evaluate the 

performance each of these heuristics under different 

conditions. Figure 4 shows the performance of these 

heuristics in terms of number of nodes as well as the 

height of the tree. The environment in which these 

heuristics have been tested contains several solid objects 

such as cylinder, cone and simple blocks. These objects 

are divided into a set of polygons with cardinality of 126. 

As the result indicate H-l and H-3 tend to minimize the 

number of nodes while the heuristics H-5 and H-6 

minimize the height of the tree. It should be noted that the 

number of nodes generated by heuristics H-4 , H-5 and H-6 

is substantially more compared with H-l, H-2 and H-3. 

However, the difference in the heights is not significant. 

Figure 4 

In order to investigate the effectiveness of these 

heuristics in more general case, we conduct the next set of 

experiments based on different number of randomly 

generated polygons. Figure 5 shows the performance of 

the heuristics when the number of polygons is selected to 

be 100. While figure 6 shows the same type of experiment 

using 50 randomly generated polygons. The result indicate 

that the heuristics H-4 and H-5 produce trees with 

minimum height. More important, the heuristic H-2 tend 

to minimize the number of nodes as well as the height of 

the tree. Since this heuristic selects a node from the 

directed graph with maximum indegree. This process 

reduces the height and the number of nodes significantly. 

Figure 5 

Heuristics 
Number of Nodes 

Height 

H-l H-2 H-3 H4 H-5 H-6 

501 415 494 509 496 507 

45 15 42 12 11 Yi!3 

Figure 6 

Finally, we conduct a test which represents the worst- 

case model. In this case a set of polygons is divided into 

three subsets each containing a number of polygons. 

Polygons in each subset are intentionally constructed in 

such a way that they intersect with each other in a cyclic 

fashion . In other words, each polygon intersects a 

polygon or it will be intersected by a polygon. As the 

results indicate (see figure 7) more complex heuristics 

such as H4, H-5 and H-6 cannot take the advantage of 

this instance. However, in this particular situation, a 

simple heuristic such as H-l may perform better in terms 

of number of node as well as the height. 

H-1 1 H-2 1 H-3 1 H-4 1 H-5 1 H-6 1 

Figure 7 

In fact it can be shown that for certain class of instances 

the heuristics H-l and H-3 produce an optimal number of 

nodes. 
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Theorem 3 : If G(I) in an Acyclic Directed Graph, then 

1 BSP (I)l 1 = 1 BSP (I)3 1 = 1 BSP (I)* I. 

Proqf : If G(I) is a DAG then there exist at least one node 

with outdegree equal zero. Then the heuristics H- 1 and H-3 

select such a node to be the root. This does not introduce 

any more polygons since the subproblems created by such 

a selection also represent DAGs, therefore H-l and H-3 

will create tree with I I I nodes. 

4. Conclusion 

The work reported in this paper is part of ongoing 

research concerning the practicality of the use of BSP trees 

for sequential and parallel hidden line elimination. 

We compared the performance of different heuristics for 

BSP tree construction with respect to tree height and size. 

From the theorem in section 2 and the tables of results our 

conclusion is that the performance of heuristics varies 

widely according to the family of graphs representing the 

family of scene instances. Thus, a priori knowledge of 

scene characteristics worId be a strong influencing factor 

on heuristic choice. The heuristics H-4 and H-5 

consistently generated trees of low height, suggesting their 

utility for parallel BSP tree processing. 

Future work includes designing more elaborate 

heuristics that include breaking cycles in the directed graph 

by examining directed path of bounded length from a 

candidate mode. A parallel implementation of BSP tree 

construction is currently underway on a sixteen node mesh 

conncctcd transputcr based system. 
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