
On Constructing Binary Space Partitioning Trees

Ravinder Krishnaswamy Ghascm S. Alijani
Auto Trol Technology Shyh-Chang Su
Research and Development Computer Science Department
12500 North Washington University of Wyoming
Denver, CO 80233 Laramie, WY 82071

Abstract

Binary Space Partitioning Trees have several

applications in computer graphics. We prove that there

exist n-polygon problem instances with an O(n2) lower

bound on tree size. We also show that a greedy algorithm

may result in constructing a tree with O(n2) nodes, while

there exist a tree for the same n-polygon instance with

only O(n) nodes. Finally, we formulate six different

heuristics and test their performance.

1. Introduction

The hidden line elimination problem is of

fundamental importance in computer graphics [4,6,7]. The

Binary Space Partitioning (BSP) tree is one approach to

the problem [l], and has received recent attention in

[2.3,8]. An attractive aspect of the BSP tree is that once

the tree corresponding to a collection of objects is created,

the scene represented by the tree can be displayed with

hidden line elimination in time that is linear in the

number of nodes of the tree. This efficiency inherent in

BSP tree based hidden line elimination is cause for serious

consideration of BSP trees to be used in parallel real-time

scene generation [5].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-348-5/90/0002/0230 $1.50 230

In general, the tree representing a set of polygons is

not unique, in fact, the number of nodes in trees

representing the same scene may vary substantially

depending on heuristics used in constructing the tree. The

focus of this research is to evaluate several heuristics used

to construct BSP trees according to the following two

criteria :

(a) The size (number of nodes) of the tree.

@J) The extent to which the tree is height-balanced.

The order in which polygons in the left subtree of a

node are processed is independent of the order in which

polygons of the right subtree of the node are processed.

This observation is the motivation for including (b) as a

method of judging the potential for parallelism (balanced

subdivision of labour) reflected in the tree structure

2. Definition and Notation

Definition : A BSP tree is a binary tree constructed

from a polygon list. The basic notion is that given a plane

in a three dimensional scene and a viewing point, no

polygon on the view point side of the plane can be

obstructed by any polygon on the far side. The tree can be

recursively constructed as follows :

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100348.100383&domain=pdf&date_stamp=1990-01-01

A polygon is selected from the list and placed at the root,

Each remaining polygon is tested to see which side of the

plane containing the root polygon it lies in, and is placed

in the appropriate side list. A polygon that intersects the

plane containing the root polygon is split, and each of the

pieces is placed in the appropriate list depending on which

halfspace it lies in. The left and right subtrees are

recursively constructed using the descendent sublists

generated. Figure 1 shows a 2-D example of the above

proCdUre.

Figure 1

Notation : Let BSP(I) denote a BSP tree corresponding

to an instance I of n polygons and BSP(I)I denote the tree

obtained from instance I through using heuristic j.We say

that BSP(I)* is a ‘node-optimal’ tree if BSP(I)* contains

the least number of nodes of all possible trees BSP(1).

‘Height-optimal’ is similarly defined. It is observed in [l]

that a BSP tree may contain as much as O(n2) nodes,

where n = I I I. We show that in fact the node-optimal tree

BSP(l)* may contain as many nodes too.

Bounds on Tree Size

T&vent 1: There exists an instance I such that BSP(I)*

contains O(n2) nodes.

Proof : Let II denote the set of polygons PO, PI

P(n/2 -1) obtained as follows. PO is a rectangle with

coordinates ~(0, 0, l),(i, 0, l),(l, n/2+2,1),(0, n/2+2,1)>,
and pi is obtained by translating pi-l unit distance along

the positive z direction for II i c n/2.

Let 12 denote the set of polygons Pt.,/2 s P,/2+1, Pn-I

where P,/2 is a rectangle with coordinates <(2,1,0),

(3.1.0). (3,l,n/2+1), (2.1, n/2+1)>, and pi is obtained by

translating Pi-l unit along the y direction for n /2 5 i c

n. (see Figure 2).

Let I = I1 U 12. We claim that any tree constructed from I

must contain exactly n(n+!) /4 nodes.

Let 1 i, n/p+j represent the line of intersection of the

planes containing the polygons Pi and Pn/2 +j where 0 I

ij c n/2.

Let BSP (I)* be a ‘node-optimal’ tree and let P be some

node in the tree. Without loss of generality assume that P

was obtained from Pi for some i < $2.

We say the line li, n/2+j is properly contained in P if

li, n/2+j intersects the interior of P.

Let k lines be properly contained in P. This means that

polygons Pn/2+jl , Pn/2+j2,.., Pn/2+jk were split by P

when P was selected to be the root of some subtree. Since

each line li, n/2+j is properly contained in some polygon

of the tree, the number of such splits equal to the number

of lines 1 id = (n/2)2* Therefore, the number of polygons

in the tree is equal to (n/2)2+ n = n(n+4)/4.

Y

Figure 2

231

Scvcral diffcrcnt heuristics have been formulated and

applied in constructing the BSP tree [1,3]. Each of thcsc

hcurislics pcrforrn near oplimal under a certain wclldcfmcd

conditions. In Lhc following WC rcfcr to a greedy algorithm

as the heuristic which at each step selects a polygon as the

root that imcrsccls the least number of polygons. In the

next thcorcm we in fact show that a greedy algorithm

results in the worst case tree (BSP(I)g) for even a fairly

straightforward problem instance. This further justifies

the need lo formulate different heuristics and carefully

examine their performance.

Theorem 2 : There exists an instance I where:

l!!!Edj=*(n)
I
bSP0 1

Proqf: Consider the instance of polygons I as in

Theorem 1. Augment this instance with a polygon P

with vertex coordinates < (l-a, n/2+3, 0) , (l-a, n/2+3,

n/2 +3), (l-b, n/2, n/2+4). (l-b, n/2+3, O)> for constants

a and b that cause P to intersect the original set It U 12 so

that :

(4

(3)

w

The plane containing P intersects all n/2

polygons in It.

The plane containing P intersects at least one and

no more than kt polygons of I, for some

constant kl.

Each of the pieces of the polygons of It that lie

in the same halfspace defined by the plane

containing P as the n/2-kt polygons of 12 that

do not intersect the plane containing P, intersect

at most k2 of these n/2-k, polygons in 12 for

some constant k2 (see Figure 2).

Augment It by polygon P’ with coordinates <(0,0,0.5),

(1,0,0.5X (l,n/2-1,0.5), (O,n/2-1,0.5)>. Note that the

problem instance size is n + 2, and the planes containing

polygons from It intcrsccls n/2 polygons from 12 and

P, (i.e. each plane intcrsccts a total of n/2+1 polygons).

Each of the planes containing polygons from I2 intersects

n/2 polygons from It, and polygon P’, except for the

polygon from 12 with the maximum y coordinates, which

intersects only the n/2 polygons from 11. The plane

containing P’ intersects $2 polygons from I2 and P, and

the plane containing P intersects K, polygons from I2 and

n/2 polygons from Il.

The greedy algorithm would start by selecting the

topmost polygon from 12 as the root, creating as one

subproblem polygons from ItU P’ and 12 which is

basically the same situation as the instance in Theorem 1.

We already know from Theorem 1 that the subtree

corresponding to this problem instance must contain

O(n2) nodes. Thus the greedy algorithm would create a tree

with O(n2) nodes.

The optimal method of constructing the tree would select

p as the root, and create n/2+kt new polygons at the first

level. Thereafter, the polygon in each partition

intersecting the least number of other polygons in the

Same partition will intersect at most kt or k2 polygons.

The number of nodes in the tree will therefore be no more

than n+ (kt + k2 +l) * n/2 +l.

Figure 3

232

In the following section, we formulate and evaluate six

different heuristics in order to explore their potential for

parallel computation and real-time scene generation. The

formulation process benefits from inherent properties of a

directed graph corresponding to the subproblem. While the

evaluation is established based on the criteria which stated

earlier.

3. Evaluating Heuristics

Thiabult in [3] examines three different schemes to

construct the BSP tree Briefly, the idea of his heuristic is

to randomly select a constant size subset of polygons and

test each member of this set against the remaining

polygons to compute the heuristic ‘value’. The one that

minimizes the heuristic is selected to be the splitting

node.

Our approach differs from the above method in the

following important way. The candidate set size in our

method is varying and is in fact equal to the size of the

subproblem. Furthermore, in addition to the geometric

relationships on polygons in a subproblem, we try to

apply the combinational properties of the subproblem by

analyzing the directed graph corresponding to the

subproblem. The directed graph is obtained by viewing

polygons as nodes and a directed edge exists between nodes

a and b iff the plane containing polygon a intersects

polygon b. The inherent properties of the directed graph

provide a significant flexibility for constructing the tree

and analyzing the instances of the problem. The main

steps in all heuristics can be stated as follows:

1. From the subproblcm I of polygons, construct

a directed graph, G(I).

2. Extract combinatorial information from G(I).

3. Extract geometric information from I.

4. Use data from steps 2 and 3 to select the

candidate polygon, P, as root.

Considering these major steps, six different heuristics are

formulated as follows:

H-l : Select minimum outdegree node P from G(I).

H-2 : Select maximum indegree node P from G(I).

H-3 : Select minimum outdegree node from G(I) and

if there is more than one then of all such

nodes, select one with maximum indegree.

H-4 : Select node P from G(1) that minimizes

(1 IN m - OUT 0 1).

H-5 : Select node P from G(1) that minimizes

(Outdegree (P) * I IN (P) - OUT(P) I).

H-6 : Select node P from G(I) that minimizes

(S * Outdegree + I IN (P) - OUT(P) I).

Where

IN(P) is the number of polygons in halfspace

which defied by the plane containing polygon P

that includes the origin.

OUT(P) is the number of polygons in halfspace

defined by plane which containing polygon P

that does not include the origin. And S is an

integer positive with value between 50-100.

The motivation for H-l and H-3 is that we want to

select nodes that introduce the least number of addition

nodes into the tree. The reason for constructing the

heuristic H-2 is that the two graphs resulting from the

choice of P each corresponding to an induced subproblem

has as few edges as possible. While the objective for

establishing the heuristic H-4 is to find height-balanced

tree in order to increase the degree of parallelism and

reduce the complexity of subproblems. The heuristics H-5

and H-6 are similar to the heuristics in [3] except that we

select the node P from a global set of candidate nodes.

233

3.1. Experimental Results

A set of experiments is conducted to evaluate the

performance each of these heuristics under different

conditions. Figure 4 shows the performance of these

heuristics in terms of number of nodes as well as the

height of the tree. The environment in which these

heuristics have been tested contains several solid objects

such as cylinder, cone and simple blocks. These objects

are divided into a set of polygons with cardinality of 126.

As the result indicate H-l and H-3 tend to minimize the

number of nodes while the heuristics H-5 and H-6

minimize the height of the tree. It should be noted that the

number of nodes generated by heuristics H-4 , H-5 and H-6

is substantially more compared with H-l, H-2 and H-3.

However, the difference in the heights is not significant.

Figure 4

In order to investigate the effectiveness of these

heuristics in more general case, we conduct the next set of

experiments based on different number of randomly

generated polygons. Figure 5 shows the performance of

the heuristics when the number of polygons is selected to

be 100. While figure 6 shows the same type of experiment

using 50 randomly generated polygons. The result indicate

that the heuristics H-4 and H-5 produce trees with

minimum height. More important, the heuristic H-2 tend

to minimize the number of nodes as well as the height of

the tree. Since this heuristic selects a node from the

directed graph with maximum indegree. This process

reduces the height and the number of nodes significantly.

Figure 5

Heuristics
Number of Nodes

Height

H-l H-2 H-3 H4 H-5 H-6

501 415 494 509 496 507

45 15 42 12 11 Yi!3

Figure 6

Finally, we conduct a test which represents the worst-

case model. In this case a set of polygons is divided into

three subsets each containing a number of polygons.

Polygons in each subset are intentionally constructed in

such a way that they intersect with each other in a cyclic

fashion . In other words, each polygon intersects a

polygon or it will be intersected by a polygon. As the

results indicate (see figure 7) more complex heuristics

such as H4, H-5 and H-6 cannot take the advantage of

this instance. However, in this particular situation, a

simple heuristic such as H-l may perform better in terms

of number of node as well as the height.

H-1 1 H-2 1 H-3 1 H-4 1 H-5 1 H-6 1

Figure 7

In fact it can be shown that for certain class of instances

the heuristics H-l and H-3 produce an optimal number of

nodes.

234

Theorem 3 : If G(I) in an Acyclic Directed Graph, then

1 BSP (I)l 1 = 1 BSP (I)3 1 = 1 BSP (I)* I.

Proqf : If G(I) is a DAG then there exist at least one node

with outdegree equal zero. Then the heuristics H- 1 and H-3

select such a node to be the root. This does not introduce

any more polygons since the subproblems created by such

a selection also represent DAGs, therefore H-l and H-3

will create tree with I I I nodes.

4. Conclusion

The work reported in this paper is part of ongoing

research concerning the practicality of the use of BSP trees

for sequential and parallel hidden line elimination.

We compared the performance of different heuristics for

BSP tree construction with respect to tree height and size.

From the theorem in section 2 and the tables of results our

conclusion is that the performance of heuristics varies

widely according to the family of graphs representing the

family of scene instances. Thus, a priori knowledge of

scene characteristics worId be a strong influencing factor

on heuristic choice. The heuristics H-4 and H-5

consistently generated trees of low height, suggesting their

utility for parallel BSP tree processing.

Future work includes designing more elaborate

heuristics that include breaking cycles in the directed graph

by examining directed path of bounded length from a

candidate mode. A parallel implementation of BSP tree

construction is currently underway on a sixteen node mesh

conncctcd transputcr based system.

References

VI

121

[31

[41

@I

H. Fuchs, G. D. Abram and Eric D. Grant, “Near

Real-Time Shaded Display of Rigid Objects”,

Computer Graphics, Vol. 17. No. 3, July 1983.

W. C. Thibault and Bruce F. Naylor, ” Set

Operations on Polyhedra Using Binary Space

Partitioning Trees”, Computer Graphics, Vol.

21, No. 4, July 1987.

W. C. Thibault, “Application of Binary Space

Partitioning Trees to Geometric Modeling and

Ray-Tracing”, Ph.D Thesis Georgia Institute of

Technology, September 1987.

J.D. Foley and A. Van Dam, “Fundamentals of

Interactive Computer Graphics”, Addison-Wesley,

1982.

P. Atkin and J. Parker, “High Performance

Graphics with the IMS T800”, INMOS Technical

Note 37, March 1988.

I.E. Sutherland, R.F. Sproull, and R.A.

Schumacker, “A Characterization of Ten Hidden-

Surface Algorithms”, Computing Surveys, Vol.

6, No. 2, 1974.

P.R. Atherton, “A Scan-Line hidden surface

Removal Procedure for Constructive Solid

Geometry.“, Computer Graphics, Vol. 17, No. 3,

pp. 73-82, July 1983.

Norman Chain and Steven Feiner, “Near Real-

Time Shadow Generation Using BSP Trees”,

Computer Graphics, Vol. 23, No. 3, July 1989.

235

