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We propose a non-preemptive, deadlock free 
concurrency control mechanism for distributed database 
systems. The algorithm uses a combination of transaction 
blocking and roll-back to achieve serialization. Unlike 
other locking mechanisms presented in the past, the 
algorithm proposed here uses dynamic attributes of 
transactions to resolve conflicts to achieve serialization. 
We argue that using the dynamic attributes of transactions 
economizes memory use and reduces conflict resolution 
time. 

1. Introduction 

Serialization of concurrent transactions is more difficult 
in distributed database systems (DDBS) than in centralized 
database systems because (a) the database is distributed 
among nodes, (b) message communication is necessary in 
transaction processing, and (c) messages may get delayed or 
lost during communication. For these reasons, Concurrency 
Control Mechanisms (CCMs) for distributed systems will 
have to do much more than centralized CCMs to achieve 
serialization. An efficient CCM for distributed systems, 
therefore, must have: 

Independent conflict resolution capability. By 
independent conflict resolution capability we mean that 
every node is to be able to resolve conflict with a minimum 
or no help from other nodes where conflicting transactions 
have visited. For example, if transaction Tl conflicts with 
T2 at node Nl and transaction T2 conflicts with Tl at node 
N2. then the conflict decisions of Nl and N2 should be 
independent, as far as possible, of each other but must be 
the same (i.e. if Nl decides to roll-back Tl then N2 must 
also decide to roll-back Tl). Such high degree of node 
independence in resolving conflicts requires that sufficient 
information about conflict transactions should be available 
to the nodes where a conflict has occurred. One of the 
common ways to accomplish this is using timestamps 
[BERN81]. 

Deadlock free. The CCM should be deadlock free. In 
distributed systems, two types of deadlock may occur. One 
is local deadlock which is confined to a node and the other 
is inter-node deadlock where more than one node is involved 
in a deadlock. Dealing with local deadlock is not expensive 
but inter-node deadlock may not be that easy to detect and 
resolve. 
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Robust. The CCM should be robust, i.e., it should exhibit 
good performance in a lightly loaded system and acceptable 
performance in heavily loaded systems, and the commit 
operation should not be expensive (i.e., it should not 
require too many messages). 

In the past several distributed CCMs (two-phase and 
non-two-phase) have been suggested [BERN81]. The main 
problem with these algorithms is that they either use some 
external ordering to pre-define the execution of concurrent 
transactions or they use timestamps to resolve conflicts or 
they are not deadlock-free. The problems with 
timestamping are generation and maintenance of 
timestamps. Since every transaction and data item are 
associated with unique timestamps requiring a large amount 
of memory to save them. Operational disadvantage is that 
the CCM resolves conflicts only by rolling-back 
transactions. The performance measurement of basic 
fimestamp algorithms [KUM88a] has shown that the cost of 
roll-backs significantly affects the performance. 

In this paper we report a distributed concurrrency 
control mechanism that is based on two-phase locking 
policy. Unlike other two-phase CCMs, our algorithm uses a 
subset of a set of dynamic attributes (see below) of 
transactions to resolve conflict. The execution order is not 
pre-determined, it is deadlock-free and we provide supportive 
arguments in favor of its usefulness and robustness. 

2. Algorithm 

A transaction acquires several attributes during its life 
time. Some relevant attributes are number of conflicts, 
number of entities locked by the transaction, the time the 
transaction waited for the desired data items etc. These 
attributes are related only with the underlying concurrency 
control mechanism and their values change continuously 
during its entire execution. We call these attributes dynamic 
attributes of transactions, and a subset of these attributes 
gives a transaction a unique status. We propose that this 
subset can be used to resolve conflicts and serialize 
transaction execution in distributed systems. The set of 
dynamic attributes (DA) we have selected for our algorithm 
is: 

DA = {number of conflicts accumulated, number 
of locks acquired } 

We selected number of conflicts since this parameter is 
inherent to concurrent execution of transactions and may 
change more frequently than other dynamic attributes. We 
selected number of locks acquired by a transaction since 
under two-phase policy the progress of a transaction 
depends on its successfully acquiring the desired lock. So 
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the number of locks gives a measure of transaction maturity 
(i.e., how far it has progressed in its execution) in terms of 
its resource utilization. 

We decided to use two-phase policy for our algorithm 
since a number of performance studies (we list only a few) 
[AGA87. KUM87] show that CCMs based on this policy 
outperform other commonly known non-two-phase CCMs. 
In two-phase CCMs if the requestor (transaction making the 
lock request) is blocked then it may create a deadlock (as 
happens in general waiting algorithm [KUM87]). On the 
other hand if it is rolled-back then we face the problem of 
redundant roll-backs [KUM87]. The best approach is, 
therefore, to apply an “intelligent” decision to select the 
best possible operation (roll-back or blocking). A roll- 
back decision is intelligent, if it is least expensive (i.e., 
the roll-back restores fewer number of entities). We 
associate the cost of roll-back with the dynamic attribute: 
The number of conflicts a transaction (requestor) has 
accumulated so far. A larger number of conflicts means the 
transaction has travelled much further in its execution. It is 
possible that a transaction (requestor) may have accumulated 
a large number of conflicts but could not lock any data 
items. However, experience in transaction processing 
indicates that this happens rarely, or in a badly designed 
CCM we, therefore, exclude this possibility. 

Algorithm “PRABHA” resolves conflicts either by 
blocking or by rolling-back the requestor. Taking action 
only on the requestor makes this algorithm deadlock-free 
and non-preemptive since the CPU was not being used to 
process the data item locked by the transaction. In order to 
explain the conflict resolution policy of this algorithm, we 
define a set called Conflict Resolution Set = {number 
of conflicts the transaction had so far, number of data items 
locked by the transaction). In some cases, as we will see, 
these two attxibutes may be insufficient to resolve conflict 
correctly. In this situation unique identities of conflicting 
transactions are used. A transaction identity is different 
than a timestamp in the sense that the former never 
changes, it is an integral part of the transaction and can 
also be used in checkpointing. 

A conflict between a requestor and a holder is resolved 
using their priorities. The priority of a transaction is 
computed using its DA set as follows. We assume 
Ci = number of conflicts of a transaction Ti; i = 1, 2, ‘.., 

n and n being the number of transactions in the 
system. 

Ei = the number of data items held by Ti; E = 1, 2, . . . . D 
(size of the database). 

Pi = priority of Ti. 

if (cj < Ck) then Pj < Pk 
eke if (Cj = Ck) then 

if(Ej<Ek) then PjCPk 

else if (Ej = Ek) then 
(* compare transaction identitities *) 

if (Tjid > Tkid) then Pk > Pj 

This process guarantees to assign a unique priority to 
the requestor since the comparison of transaction identities 

will always succeed (inequality). A conflict at a node is 
resolved as follows: 

If the requestor’s priority > the holder’s priority then 
block the requestor otherwise roll-back the requester. 

We formally present our algorithm with a set of 
procedures. We first describe the algorithm for a fully or 
partially replicated database and then we show how it works 
in partitioned (no duplication) databases. We distinguish 
two types of nodes for a transaction: home node we will 
also call it as requesting node (node a transaction 
originates) and data node (the node that holds a copy of 
the desired data entity). In the case of fully replicated 
database one node is home node and all other nodes are data 
nodes including the home node. At every node a status 
table is maintained that stores transaction identity, type of 
lock required by this transaction (read/write), number of 
conflicts, the number of data items the transaction has 
locked so far, and its standing (holder or requestor). The 
table is continuously updated and used in resolving conflict 
between a holder and a requestor. 

3. Processing of lock requests 

The processing of a transaction at its home node and at 
data nodes is done differently so we describe them 
separately. 

3.1 Processing of lock requests originating 
from transaction’s home node: 

The home node sends lock request for the transaction to 
all data nodes. These data nodes resolve conflict using local 
inlor uiation. The decision, grant or roll-back or block, is 
sent by the data nodes to the home node. The home node, 
after receiving these messages from data nodes, makes the 
final decision for the transaction which is based on a 
majority consensus as follows: 

GRANT: If the majority of the messages received are grant 
message then the transaction’s lock request is granted. A 
majority of grant message indicates that the majority of 
nodes support execution of this transaction. 

BLOCK: If the majority of the messages received are block 
message then the fiiaL decision is to block the transaction. 

ROLL-BACK: If the majority of the messages received are 
roll-back message then the final decision is to roll-back the 
transaction. 

The final decision is sent to all data nodes which made 
the wrong decision and the states of conflicting transactions 
are updated at these nodes. A general problem, however, of 
majority consensus is that in some situations no transaction 
can get the majority of locks. For example, consider three 
transactions trying to lock a data item. Suppose there 
exist three copies of the desired data item and each 
transaction manages to lock one copy. In this case each 
transaction will get one grant message, one roll-back and/or 
one block message, thus no majority consensus will be 
present. 
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In the absence of majority consensus a transaction with 
the lowest ID (WINNER-ID) gets the lock on the data item. 
A requesting transaction can determine with which other 
transactions it is in conflict by looking at each denied- 
message it receives (each denied-message contains the ID of 
the transaction that caused it). If the requesting 
transaction’s ID is equal to the WINNER-ID then the 
transaction gets the lock on the desired data item, otherwise 
the requesting transaction is rolled-back or blocked. The 
algorithm is presented in pseudo-code as follows: 

begin 
send lock request message to all nodes which have a 
copy of the desired data item; 
wait until grant or denied messages from all data nodes 
arrived: 
if GRANT then 
begin 

allow requestor to lock the desired entity at all data 
nodes; 
send this decision via correction message (see below) 
to nodes that sent denied messages; 
add one to the number of data items locked by the 
requestor by sending update messages to those nodes 
where the requestor has visited so far; 

end 
else if ROLLBACK then roll-back the requestor 

else (* BLOCK*) 
begin 

block the requestor (loser); 
add one to the number of conflicts of the requestor at 
nodes where the requestor has visited by sending 
update messages; 

end; 
end. 

3.2 Processing of lock requests at Data nodes 

At a data node, more than one lock requests may arrive 
simultaneously from several requestors. 

A lock request arrives at a data node; 
if no conflict then 
begin 

record the requestor as a new holder of the requested 
data item; 
increase the number of data items locked by the 
requestor by one; 
send a grant message back to the requesting node 
(home node); 

end 
else (* there is a conflict *) 
begin 
increase the number of conflicts of the requestor; 
compute the priority of the requestor; 
if the requestor’s priority > holder’s priority then 
begin 

block the requestor (* this may be a temporary 
blocking since this transaction may be rolled-back 
later when a roll-back message arrive from the home 
node of that transaction as explained above *); 

send block message to the requesting node (home 
node); 

end 
else 

send a roll-back message to the home node but defer 
any action on the requestor, i.e, keep the requestor 
transaction as blocked in the local table. 
(* A data node’s roll-back decision may not be same 
as the final decision reached by the home node.) 

end; 

3.3 Modification of transactions’ attributes at 
data nodes 

At every node, a transaction’s current status and the 
value of its attributes are recorded in a local table. The 
value of these attributes are changed by update messages. 
Update messages can only arrive for holder transactions, 
since requestor transactions in the table are blocked and 
cannot change their status. When an update message arrives 
the procedure goes as folllows: 

Update the number of conflicts and number of data 
items of the transaction as directed by the update 
message from the home node. After updating 
transactions’ attributes the conflict resolution is applied 
again which may change the status of a requestor 
transaction. 

If a requestor transaction is to be rolled-back then 
send roll-back message to the home node of 
transactions to be rolled-back. (* A requestor 
transaction needs to be rolled-back, if the holder 
transaction’s priority became greater (due to the 
update of the attribute values) than the priority of a 
requestor transaction *) 

3.4 Processing of a correction message at data 
nodes 

A correction message is required to inform those data 
nodes that denied the lock request, that the final decision of 
the home is a grant. At these data nodes the holders of this 
data item will change their status to requestors of the data 
item and the transaction indicated in the update message 
becomes the new holder. 

designate the correct holder in the table as indicated in 
the correction message: 
for the new holder 
begin 
increment number of data items by one; 
decrement number of conflicts by one 

end; 
for all old holders 
begin 
increment number of conflicts by one; 
decrement number of data items by one 

end; 
apply conflict resolution policy at nodes where 
transactions status are changed from holder to new 
requestor to decide either to roll-back or to block the 
new requestors 
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fox all old holders that changed their status (to 
requestors): 

if the priority of an old holder > the priority of new 
holder 

then 
block the old holder 

else roll-back the old holder; 

3.5 Activation of blocked transactions 

A blocked transaction is activated after it receives grant 
messages from the majority of data nodes. When a 
transaction committs, a data node selects the next requestor 
of the data just released (only if there are no outstanding 
holders of this data item) in first-come-first-served order . 
There may be more than one holders of the same data item 
in the case of read lock. In this situation nothing is done, 
otherwise a grant message is sent to the new holder’s home 
node. 

3.6 Restart of rolled-back transactions 

A rolled-back transaction retains the past values of its 
attributes. These values are used to compute its priorioty 
when it is rescheduled for execution. This quarantees that 
the priority of a transaction always increases and avoids 
livelock (starvation). 

4. Modification for partitioned databases 

In a partitioned database since each node holds a unique 
partition, our algorithm requires comparatively less number 
of messages to synchronize the execution of transactions. 
No correction message is required to change the status of a 
transaction at a node and a majority of grants is not 
necessary to make a final decision. A transaction sends a 
lock request to the data node. The conflict resolution set is 
used to resolve a conflict if there is one. The decision (roll- 
back or blocking) is sent to the home node. The rest of the 
steps are identical to the replicated environment. Notice, 
there are no correction messages necessary. 

5. Correctness 

We estabIish the correctness of our algorithm by 
showing that every transaction eventually terminates and it 
is deadlock-free. It has been established [HSU87, ESW76, 
PAP791 that if well-formed transactions are executed in a 
two-phase way then the execution maintains serializability. 
Our algorithm is based on two-phase policy and, therefore, 
to establish its correctness, it is sufficient to show that no 
transaction will remain blocked for ever. 

5.1 There is no starvation 

A requestor, in our algorithm, is blocked if it has a 
higher priority than the holder. Every time a requestor is 
blocked due to a conflict, its number of conflicts is 
increased which improves its execution possibility. 
Suppose, Tj (requestor for data item X) with priority j, 
conflicts with Tk (holder of data item X) with priority k, 
and j > k. Tj will be blocked and its priority will be 

incremented by 1 to (j + 1). Now suppose Tm(requestor for 
X) conflicts with Tk where m > k, then Tmwill be blocked 
and its priority will be incremented, If now Tk (requestor 
for data item Y) conflicts with Tj (holder of data item Y) Tk 
is rolled-back and Tj will be rescheduled. If there are several 
blocked transactions for the same data item FIFO scheduling 
should be used to avoid possible starvation. At every node 
a conflict will be resolved (may not be immediately due to 
message delay) in this way which guarantees that all 
blocked transactions will eventually terminate. 

5.2 The algorithm is deadlock free 

We show that our algorithm is deadlock-free by 
establishing that the condition which may cause a deadlock 
is never allowed. We proceed as follows: 

Tl+T2+T3 + l l * -) Tn-l-)Tn-)Tl 

(Tj ---> Tk’ means Tk is blocked by Tj) 

Tn blocked by Tn-1 indicates Pn > Pn-1 (Priority of Tn > 
than priority of Tn-1) 

Now if Tl conflicts with Tn then Pn > Pl must be 
correct. If this is the case then Tl will be rolled-back. 
This means that the transaction which may cause a deadlock, 
will always be rolled-back [KUM88b]). 

Messages delay may create some side effects. One of 
such effects is, that there may temporarily exist two 
different versions of a transaction’s priority at two or more 
different nodes. This might cause a “temporary deadlock”. 
We do not regard this as a real deadlock, since the decision 
to roll-back a transaction is made on the basis of conflict 
resolution policy and not by using any deadlock detection 
algorithm. In this situation we “know” which transaction 
in the “temporary deadlock” will be rolled-back. Thus the 
“temporary deadlock” is solved as soon as the 
corresponding update message arrives at the node with the 
old priority value. Hence, there will never exist a 
permanent deadlock. 

6. Examples 

In the following we present two examples to illustrate 
the working of our algorithm. The algorithm uses different 
types of messages to achieve serialization. The structure of 
these messages are given below: 

Request Message (RM): (requester id, home site, data 
item, lock mode, number of conflicts, number of data items) 
Grant Message (GM): (requester id, data item, node id) 
Block Message (BM): (id of blocked transaction, 
transaction ids of blocking transactions, node id, data item) 
Rollback Message (RBM): (id of transaction to be 
rolled back, ids of rolling-back transactions, node id, data 
item) 
Update Message (UM): (transaction id, number of 
conflicts, number of data items) 
Correction Message (CM): (new holder ids, data item) 

The local table at each node stores the following 
information about transactions visiting that node: 
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(transaction id, lock mode, number of conflicts, 
number of data items, holder/requester) 

Example 1 (partitioned database): 

Tl and T2 are two transactions, and Nl, N2, N3 and 
N4 are four nodes. Tl originates at N4 and requests data item 
X, located at N3. T2 originates at Nl and requests data item 
Y located at N2 (Figure 1). 

1. N4 sends a RM for Tl, for data item X to N3; Nl sends 
a RM for T2, for data item Y to N2; 
2. At N3, Tl’s request is granted: Tl is recorded as the 
holder of data item X with 0 conflicts and has 1 data item. 
A Grant-message is sent back to N4 from N3; 
3. At N2, T2’s request is granted: T2 is recorded as the 
holder of data item Y with 0 conflicts and has1 data item. A 
Grant-message is sent back to Nl from N2; 

Tl now requests data item Y and T2 requests data item X. 

4. N4 sends a RM for Tl, for data item Y to N2; 
5. Nl sends a RM for T2, for data item X to N3 ; 

At N2 a conflict between T2 (holder of Y) and Tl 
&questor for Y) is detected so the number of conflicts for 
Tl is updated by 1. The initial number of conflicts for T2 
in the local table of N2 is 0. The priority of Tl is higher 
than priority of T2, so Tl is blocked at node N2. A BM is 
sent to N4 from N2. 
7. At node N3 (similar to 6) T2 is blocked at N3. A BM 
is sent to Nl from N3 (see figure 2). 
8. The arrival of the BM from N2 to N4 indicates that Tl 
had a conflict and hence all nodes where Tl visited earlier 
(in our example N3 only) need to be informed about the 
change of Tl’s priority. An UM is, therefore, sent to N3 
from N4 to record the change in Tl’s priority, i.e.. number 
of conflicts is updated by 1. 
9. (Similar to 8). An UM is sent from Nl to N2 to inform 
N2 about the change of T2’s priority. 
10. Since the priority of Tl (holder at N3) is higher (Tl’s 
identity c T2’s identity) than the priority of T2 (blocked 
requestor), T2 is selected to be rolled-back. A RBM is sent 
to N3 from Nl. 
11. Since the priority of T2 (blocked requestor at N3) is 
lower (Tl’s identity < T2’s identity) the priority of Tl 
(holder at N3) no further steps need to be taken at N3. 
12. When RBM from Nl arrives at N3, T2 is rolled-back 

Example 2 (partially replicated database) 

Tl and T2 originate at Nl and N5 respectively 
request data item X. Copies of X exist at N2, N3 and 
(see figure 3). 

;4 
Nl sends RMs for data item X for Tl to N2, N3 

’ 2. N5 sends RMs for data item X to N2, N3 and N4. 

and 
N4 

and 

3. At N2 and N3 the requests of Tl (from Nl) arrive before 
the requests of T2 (from N5). At N2 and N3, Tl is recorded 
as holder of data item X and GMs are sent to Nl from N2 
and N3. When the RMs of T2 (from N5) arrive at N2 and 
N3 they conflict with Tl. Number of conflicts for T2 is 
incremented at N2 and N3. At N2 and N3 priority of T2 is 

higher than the priority of Tl, so BMs are sent from N2 and 
N3 to N5 to block T2. 

At N4 the RM of T2 arrives before the one of Tl. T2 
is granted as holder. GM is sent from N4 to N5. When 
request from Nl arrives at N4, transaction Tl conflicts with 
T2 (recorded holder). Number of conflicts for Tl 
incremented by 1. Tl is blocked by T2 at N4 and a BM is 
sent from N4 to Nl. 
4. At N5, the majority of the messages received are BMs. 
T2 is blocked. 
5. At Nl, the majority of the messages received are GMs. 
Tl is granted access to data item X. Since N4 made a wrong 
decision, a Correction-message is sent from Nl to N4, to 
inform N4 about the actual outcome of the majority vote. 
6. When the CM from Nl arrives at N4 the status table is 
updated accordingly, i.e., Tl is recorded as the holder and T2 
becomes the requestor, and the recorded priorities are 
corrected. 

7. Summary and Conclusion 

In this paper we presented a two-phase distributed 
concurrency control mechanism. The algorithm is deadlock 
free and non-preemptive. The unique feature of this 
algorithm is that it utilizes transaction’s inherent attributes 
to resolve the conflict. This scheme avoids setting any 
static execution ordering and additional information to 
achieve serialization. It is a distributed algorithm, since 
there is no centralized control over locking and releasing 
activities. The algorithm utilizes an “intelligent” scheme to 
resolve conflicts among conflicting transactions. It never 
hinders the progress of active transactions (i.e., transaction 
that is using CPU resources). Every node takes decision 
independently on a conflict, i.e., a node does not enquire 
other node(s) what action it should take to resolve a 
conflict). This individual decision z-nay be correct but may 
not be the final. In the later case the final correct decision 
overrides the decision of the data nodes. 

We would like to point out that our algorithm is 
designed in such a way that we can vary the priority schema 
without affecting the rest of the algorithm. It is part of 
further research work to determine an optimal function of 
dynamic attributes for a transaction’s priority. 

The algorithm does not use timestamps thus aviods 
expensive maintainence of the timestamps. It is possible 
that the algorithm may use more messages to achieve 
serialization, however, the message overhead may not have 
significant affect on the performance of the algorithm. We 
are in the process of measuring the performance of this 
algorithm and the results will be reported in our future work. 

We conclude that the inherent attributes of transactions 
are a better set of parameters for resolving conflicts under 
two-phase policy. The algorithm PRABHA can be improved 
further by reducing the number of messages required to 
achieve synchronization and will also be reported in our 
future work. 
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