
“PRABHA” - A Distributed Concurrency Control Mechanism

Albert Burger and Vijay Kumar
Computer Science

University of Missouri-Kansas City
5100 Rockhill

Kansas City, MO 64110

We propose a non-preemptive, deadlock free
concurrency control mechanism for distributed database
systems. The algorithm uses a combination of transaction
blocking and roll-back to achieve serialization. Unlike
other locking mechanisms presented in the past, the
algorithm proposed here uses dynamic attributes of
transactions to resolve conflicts to achieve serialization.
We argue that using the dynamic attributes of transactions
economizes memory use and reduces conflict resolution
time.

1. Introduction

Serialization of concurrent transactions is more difficult
in distributed database systems (DDBS) than in centralized
database systems because (a) the database is distributed
among nodes, (b) message communication is necessary in
transaction processing, and (c) messages may get delayed or
lost during communication. For these reasons, Concurrency
Control Mechanisms (CCMs) for distributed systems will
have to do much more than centralized CCMs to achieve
serialization. An efficient CCM for distributed systems,
therefore, must have:

Independent conflict resolution capability. By
independent conflict resolution capability we mean that
every node is to be able to resolve conflict with a minimum
or no help from other nodes where conflicting transactions
have visited. For example, if transaction Tl conflicts with
T2 at node Nl and transaction T2 conflicts with Tl at node
N2. then the conflict decisions of Nl and N2 should be
independent, as far as possible, of each other but must be
the same (i.e. if Nl decides to roll-back Tl then N2 must
also decide to roll-back Tl). Such high degree of node
independence in resolving conflicts requires that sufficient
information about conflict transactions should be available
to the nodes where a conflict has occurred. One of the
common ways to accomplish this is using timestamps
[BERN81].

Deadlock free. The CCM should be deadlock free. In
distributed systems, two types of deadlock may occur. One
is local deadlock which is confined to a node and the other
is inter-node deadlock where more than one node is involved
in a deadlock. Dealing with local deadlock is not expensive
but inter-node deadlock may not be that easy to detect and
resolve.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-348-5/90/0002/0392 $1 SO 392

Robust. The CCM should be robust, i.e., it should exhibit
good performance in a lightly loaded system and acceptable
performance in heavily loaded systems, and the commit
operation should not be expensive (i.e., it should not
require too many messages).

In the past several distributed CCMs (two-phase and
non-two-phase) have been suggested [BERN81]. The main
problem with these algorithms is that they either use some
external ordering to pre-define the execution of concurrent
transactions or they use timestamps to resolve conflicts or
they are not deadlock-free. The problems with
timestamping are generation and maintenance of
timestamps. Since every transaction and data item are
associated with unique timestamps requiring a large amount
of memory to save them. Operational disadvantage is that
the CCM resolves conflicts only by rolling-back
transactions. The performance measurement of basic
fimestamp algorithms [KUM88a] has shown that the cost of
roll-backs significantly affects the performance.

In this paper we report a distributed concurrrency
control mechanism that is based on two-phase locking
policy. Unlike other two-phase CCMs, our algorithm uses a
subset of a set of dynamic attributes (see below) of
transactions to resolve conflict. The execution order is not
pre-determined, it is deadlock-free and we provide supportive
arguments in favor of its usefulness and robustness.

2. Algorithm

A transaction acquires several attributes during its life
time. Some relevant attributes are number of conflicts,
number of entities locked by the transaction, the time the
transaction waited for the desired data items etc. These
attributes are related only with the underlying concurrency
control mechanism and their values change continuously
during its entire execution. We call these attributes dynamic
attributes of transactions, and a subset of these attributes
gives a transaction a unique status. We propose that this
subset can be used to resolve conflicts and serialize
transaction execution in distributed systems. The set of
dynamic attributes (DA) we have selected for our algorithm
is:

DA = {number of conflicts accumulated, number
of locks acquired }

We selected number of conflicts since this parameter is
inherent to concurrent execution of transactions and may
change more frequently than other dynamic attributes. We
selected number of locks acquired by a transaction since
under two-phase policy the progress of a transaction
depends on its successfully acquiring the desired lock. So

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100348.100409&domain=pdf&date_stamp=1990-01-01

the number of locks gives a measure of transaction maturity
(i.e., how far it has progressed in its execution) in terms of
its resource utilization.

We decided to use two-phase policy for our algorithm
since a number of performance studies (we list only a few)
[AGA87. KUM87] show that CCMs based on this policy
outperform other commonly known non-two-phase CCMs.
In two-phase CCMs if the requestor (transaction making the
lock request) is blocked then it may create a deadlock (as
happens in general waiting algorithm [KUM87]). On the
other hand if it is rolled-back then we face the problem of
redundant roll-backs [KUM87]. The best approach is,
therefore, to apply an “intelligent” decision to select the
best possible operation (roll-back or blocking). A roll-
back decision is intelligent, if it is least expensive (i.e.,
the roll-back restores fewer number of entities). We
associate the cost of roll-back with the dynamic attribute:
The number of conflicts a transaction (requestor) has
accumulated so far. A larger number of conflicts means the
transaction has travelled much further in its execution. It is
possible that a transaction (requestor) may have accumulated
a large number of conflicts but could not lock any data
items. However, experience in transaction processing
indicates that this happens rarely, or in a badly designed
CCM we, therefore, exclude this possibility.

Algorithm “PRABHA” resolves conflicts either by
blocking or by rolling-back the requestor. Taking action
only on the requestor makes this algorithm deadlock-free
and non-preemptive since the CPU was not being used to
process the data item locked by the transaction. In order to
explain the conflict resolution policy of this algorithm, we
define a set called Conflict Resolution Set = {number
of conflicts the transaction had so far, number of data items
locked by the transaction). In some cases, as we will see,
these two attxibutes may be insufficient to resolve conflict
correctly. In this situation unique identities of conflicting
transactions are used. A transaction identity is different
than a timestamp in the sense that the former never
changes, it is an integral part of the transaction and can
also be used in checkpointing.

A conflict between a requestor and a holder is resolved
using their priorities. The priority of a transaction is
computed using its DA set as follows. We assume
Ci = number of conflicts of a transaction Ti; i = 1, 2, ‘..,

n and n being the number of transactions in the
system.

Ei = the number of data items held by Ti; E = 1, 2, D
(size of the database).

Pi = priority of Ti.

if (cj < Ck) then Pj < Pk
eke if (Cj = Ck) then

if(Ej<Ek) then PjCPk

else if (Ej = Ek) then
(* compare transaction identitities *)

if (Tjid > Tkid) then Pk > Pj

This process guarantees to assign a unique priority to
the requestor since the comparison of transaction identities

will always succeed (inequality). A conflict at a node is
resolved as follows:

If the requestor’s priority > the holder’s priority then
block the requestor otherwise roll-back the requester.

We formally present our algorithm with a set of
procedures. We first describe the algorithm for a fully or
partially replicated database and then we show how it works
in partitioned (no duplication) databases. We distinguish
two types of nodes for a transaction: home node we will
also call it as requesting node (node a transaction
originates) and data node (the node that holds a copy of
the desired data entity). In the case of fully replicated
database one node is home node and all other nodes are data
nodes including the home node. At every node a status
table is maintained that stores transaction identity, type of
lock required by this transaction (read/write), number of
conflicts, the number of data items the transaction has
locked so far, and its standing (holder or requestor). The
table is continuously updated and used in resolving conflict
between a holder and a requestor.

3. Processing of lock requests

The processing of a transaction at its home node and at
data nodes is done differently so we describe them
separately.

3.1 Processing of lock requests originating
from transaction’s home node:

The home node sends lock request for the transaction to
all data nodes. These data nodes resolve conflict using local
inlor uiation. The decision, grant or roll-back or block, is
sent by the data nodes to the home node. The home node,
after receiving these messages from data nodes, makes the
final decision for the transaction which is based on a
majority consensus as follows:

GRANT: If the majority of the messages received are grant
message then the transaction’s lock request is granted. A
majority of grant message indicates that the majority of
nodes support execution of this transaction.

BLOCK: If the majority of the messages received are block
message then the fiiaL decision is to block the transaction.

ROLL-BACK: If the majority of the messages received are
roll-back message then the final decision is to roll-back the
transaction.

The final decision is sent to all data nodes which made
the wrong decision and the states of conflicting transactions
are updated at these nodes. A general problem, however, of
majority consensus is that in some situations no transaction
can get the majority of locks. For example, consider three
transactions trying to lock a data item. Suppose there
exist three copies of the desired data item and each
transaction manages to lock one copy. In this case each
transaction will get one grant message, one roll-back and/or
one block message, thus no majority consensus will be
present.

393

In the absence of majority consensus a transaction with
the lowest ID (WINNER-ID) gets the lock on the data item.
A requesting transaction can determine with which other
transactions it is in conflict by looking at each denied-
message it receives (each denied-message contains the ID of
the transaction that caused it). If the requesting
transaction’s ID is equal to the WINNER-ID then the
transaction gets the lock on the desired data item, otherwise
the requesting transaction is rolled-back or blocked. The
algorithm is presented in pseudo-code as follows:

begin
send lock request message to all nodes which have a
copy of the desired data item;
wait until grant or denied messages from all data nodes
arrived:
if GRANT then
begin

allow requestor to lock the desired entity at all data
nodes;
send this decision via correction message (see below)
to nodes that sent denied messages;
add one to the number of data items locked by the
requestor by sending update messages to those nodes
where the requestor has visited so far;

end
else if ROLLBACK then roll-back the requestor

else (* BLOCK*)
begin

block the requestor (loser);
add one to the number of conflicts of the requestor at
nodes where the requestor has visited by sending
update messages;

end;
end.

3.2 Processing of lock requests at Data nodes

At a data node, more than one lock requests may arrive
simultaneously from several requestors.

A lock request arrives at a data node;
if no conflict then
begin

record the requestor as a new holder of the requested
data item;
increase the number of data items locked by the
requestor by one;
send a grant message back to the requesting node
(home node);

end
else (* there is a conflict *)
begin
increase the number of conflicts of the requestor;
compute the priority of the requestor;
if the requestor’s priority > holder’s priority then
begin

block the requestor (* this may be a temporary
blocking since this transaction may be rolled-back
later when a roll-back message arrive from the home
node of that transaction as explained above *);

send block message to the requesting node (home
node);

end
else

send a roll-back message to the home node but defer
any action on the requestor, i.e, keep the requestor
transaction as blocked in the local table.
(* A data node’s roll-back decision may not be same
as the final decision reached by the home node.)

end;

3.3 Modification of transactions’ attributes at
data nodes

At every node, a transaction’s current status and the
value of its attributes are recorded in a local table. The
value of these attributes are changed by update messages.
Update messages can only arrive for holder transactions,
since requestor transactions in the table are blocked and
cannot change their status. When an update message arrives
the procedure goes as folllows:

Update the number of conflicts and number of data
items of the transaction as directed by the update
message from the home node. After updating
transactions’ attributes the conflict resolution is applied
again which may change the status of a requestor
transaction.

If a requestor transaction is to be rolled-back then
send roll-back message to the home node of
transactions to be rolled-back. (* A requestor
transaction needs to be rolled-back, if the holder
transaction’s priority became greater (due to the
update of the attribute values) than the priority of a
requestor transaction *)

3.4 Processing of a correction message at data
nodes

A correction message is required to inform those data
nodes that denied the lock request, that the final decision of
the home is a grant. At these data nodes the holders of this
data item will change their status to requestors of the data
item and the transaction indicated in the update message
becomes the new holder.

designate the correct holder in the table as indicated in
the correction message:
for the new holder
begin
increment number of data items by one;
decrement number of conflicts by one

end;
for all old holders
begin
increment number of conflicts by one;
decrement number of data items by one

end;
apply conflict resolution policy at nodes where
transactions status are changed from holder to new
requestor to decide either to roll-back or to block the
new requestors

394

fox all old holders that changed their status (to
requestors):

if the priority of an old holder > the priority of new
holder

then
block the old holder

else roll-back the old holder;

3.5 Activation of blocked transactions

A blocked transaction is activated after it receives grant
messages from the majority of data nodes. When a
transaction committs, a data node selects the next requestor
of the data just released (only if there are no outstanding
holders of this data item) in first-come-first-served order .
There may be more than one holders of the same data item
in the case of read lock. In this situation nothing is done,
otherwise a grant message is sent to the new holder’s home
node.

3.6 Restart of rolled-back transactions

A rolled-back transaction retains the past values of its
attributes. These values are used to compute its priorioty
when it is rescheduled for execution. This quarantees that
the priority of a transaction always increases and avoids
livelock (starvation).

4. Modification for partitioned databases

In a partitioned database since each node holds a unique
partition, our algorithm requires comparatively less number
of messages to synchronize the execution of transactions.
No correction message is required to change the status of a
transaction at a node and a majority of grants is not
necessary to make a final decision. A transaction sends a
lock request to the data node. The conflict resolution set is
used to resolve a conflict if there is one. The decision (roll-
back or blocking) is sent to the home node. The rest of the
steps are identical to the replicated environment. Notice,
there are no correction messages necessary.

5. Correctness

We estabIish the correctness of our algorithm by
showing that every transaction eventually terminates and it
is deadlock-free. It has been established [HSU87, ESW76,
PAP791 that if well-formed transactions are executed in a
two-phase way then the execution maintains serializability.
Our algorithm is based on two-phase policy and, therefore,
to establish its correctness, it is sufficient to show that no
transaction will remain blocked for ever.

5.1 There is no starvation

A requestor, in our algorithm, is blocked if it has a
higher priority than the holder. Every time a requestor is
blocked due to a conflict, its number of conflicts is
increased which improves its execution possibility.
Suppose, Tj (requestor for data item X) with priority j,
conflicts with Tk (holder of data item X) with priority k,
and j > k. Tj will be blocked and its priority will be

incremented by 1 to (j + 1). Now suppose Tm(requestor for
X) conflicts with Tk where m > k, then Tmwill be blocked
and its priority will be incremented, If now Tk (requestor
for data item Y) conflicts with Tj (holder of data item Y) Tk
is rolled-back and Tj will be rescheduled. If there are several
blocked transactions for the same data item FIFO scheduling
should be used to avoid possible starvation. At every node
a conflict will be resolved (may not be immediately due to
message delay) in this way which guarantees that all
blocked transactions will eventually terminate.

5.2 The algorithm is deadlock free

We show that our algorithm is deadlock-free by
establishing that the condition which may cause a deadlock
is never allowed. We proceed as follows:

Tl+T2+T3 + l l * -) Tn-l-)Tn-)Tl

(Tj ---> Tk’ means Tk is blocked by Tj)

Tn blocked by Tn-1 indicates Pn > Pn-1 (Priority of Tn >
than priority of Tn-1)

Now if Tl conflicts with Tn then Pn > Pl must be
correct. If this is the case then Tl will be rolled-back.
This means that the transaction which may cause a deadlock,
will always be rolled-back [KUM88b]).

Messages delay may create some side effects. One of
such effects is, that there may temporarily exist two
different versions of a transaction’s priority at two or more
different nodes. This might cause a “temporary deadlock”.
We do not regard this as a real deadlock, since the decision
to roll-back a transaction is made on the basis of conflict
resolution policy and not by using any deadlock detection
algorithm. In this situation we “know” which transaction
in the “temporary deadlock” will be rolled-back. Thus the
“temporary deadlock” is solved as soon as the
corresponding update message arrives at the node with the
old priority value. Hence, there will never exist a
permanent deadlock.

6. Examples

In the following we present two examples to illustrate
the working of our algorithm. The algorithm uses different
types of messages to achieve serialization. The structure of
these messages are given below:

Request Message (RM): (requester id, home site, data
item, lock mode, number of conflicts, number of data items)
Grant Message (GM): (requester id, data item, node id)
Block Message (BM): (id of blocked transaction,
transaction ids of blocking transactions, node id, data item)
Rollback Message (RBM): (id of transaction to be
rolled back, ids of rolling-back transactions, node id, data
item)
Update Message (UM): (transaction id, number of
conflicts, number of data items)
Correction Message (CM): (new holder ids, data item)

The local table at each node stores the following
information about transactions visiting that node:

395

(transaction id, lock mode, number of conflicts,
number of data items, holder/requester)

Example 1 (partitioned database):

Tl and T2 are two transactions, and Nl, N2, N3 and
N4 are four nodes. Tl originates at N4 and requests data item
X, located at N3. T2 originates at Nl and requests data item
Y located at N2 (Figure 1).

1. N4 sends a RM for Tl, for data item X to N3; Nl sends
a RM for T2, for data item Y to N2;
2. At N3, Tl’s request is granted: Tl is recorded as the
holder of data item X with 0 conflicts and has 1 data item.
A Grant-message is sent back to N4 from N3;
3. At N2, T2’s request is granted: T2 is recorded as the
holder of data item Y with 0 conflicts and has1 data item. A
Grant-message is sent back to Nl from N2;

Tl now requests data item Y and T2 requests data item X.

4. N4 sends a RM for Tl, for data item Y to N2;
5. Nl sends a RM for T2, for data item X to N3 ;

At N2 a conflict between T2 (holder of Y) and Tl
&questor for Y) is detected so the number of conflicts for
Tl is updated by 1. The initial number of conflicts for T2
in the local table of N2 is 0. The priority of Tl is higher
than priority of T2, so Tl is blocked at node N2. A BM is
sent to N4 from N2.
7. At node N3 (similar to 6) T2 is blocked at N3. A BM
is sent to Nl from N3 (see figure 2).
8. The arrival of the BM from N2 to N4 indicates that Tl
had a conflict and hence all nodes where Tl visited earlier
(in our example N3 only) need to be informed about the
change of Tl’s priority. An UM is, therefore, sent to N3
from N4 to record the change in Tl’s priority, i.e.. number
of conflicts is updated by 1.
9. (Similar to 8). An UM is sent from Nl to N2 to inform
N2 about the change of T2’s priority.
10. Since the priority of Tl (holder at N3) is higher (Tl’s
identity c T2’s identity) than the priority of T2 (blocked
requestor), T2 is selected to be rolled-back. A RBM is sent
to N3 from Nl.
11. Since the priority of T2 (blocked requestor at N3) is
lower (Tl’s identity < T2’s identity) the priority of Tl
(holder at N3) no further steps need to be taken at N3.
12. When RBM from Nl arrives at N3, T2 is rolled-back

Example 2 (partially replicated database)

Tl and T2 originate at Nl and N5 respectively
request data item X. Copies of X exist at N2, N3 and
(see figure 3).

;4
Nl sends RMs for data item X for Tl to N2, N3

’ 2. N5 sends RMs for data item X to N2, N3 and N4.

and
N4

and

3. At N2 and N3 the requests of Tl (from Nl) arrive before
the requests of T2 (from N5). At N2 and N3, Tl is recorded
as holder of data item X and GMs are sent to Nl from N2
and N3. When the RMs of T2 (from N5) arrive at N2 and
N3 they conflict with Tl. Number of conflicts for T2 is
incremented at N2 and N3. At N2 and N3 priority of T2 is

higher than the priority of Tl, so BMs are sent from N2 and
N3 to N5 to block T2.

At N4 the RM of T2 arrives before the one of Tl. T2
is granted as holder. GM is sent from N4 to N5. When
request from Nl arrives at N4, transaction Tl conflicts with
T2 (recorded holder). Number of conflicts for Tl
incremented by 1. Tl is blocked by T2 at N4 and a BM is
sent from N4 to Nl.
4. At N5, the majority of the messages received are BMs.
T2 is blocked.
5. At Nl, the majority of the messages received are GMs.
Tl is granted access to data item X. Since N4 made a wrong
decision, a Correction-message is sent from Nl to N4, to
inform N4 about the actual outcome of the majority vote.
6. When the CM from Nl arrives at N4 the status table is
updated accordingly, i.e., Tl is recorded as the holder and T2
becomes the requestor, and the recorded priorities are
corrected.

7. Summary and Conclusion

In this paper we presented a two-phase distributed
concurrency control mechanism. The algorithm is deadlock
free and non-preemptive. The unique feature of this
algorithm is that it utilizes transaction’s inherent attributes
to resolve the conflict. This scheme avoids setting any
static execution ordering and additional information to
achieve serialization. It is a distributed algorithm, since
there is no centralized control over locking and releasing
activities. The algorithm utilizes an “intelligent” scheme to
resolve conflicts among conflicting transactions. It never
hinders the progress of active transactions (i.e., transaction
that is using CPU resources). Every node takes decision
independently on a conflict, i.e., a node does not enquire
other node(s) what action it should take to resolve a
conflict). This individual decision z-nay be correct but may
not be the final. In the later case the final correct decision
overrides the decision of the data nodes.

We would like to point out that our algorithm is
designed in such a way that we can vary the priority schema
without affecting the rest of the algorithm. It is part of
further research work to determine an optimal function of
dynamic attributes for a transaction’s priority.

The algorithm does not use timestamps thus aviods
expensive maintainence of the timestamps. It is possible
that the algorithm may use more messages to achieve
serialization, however, the message overhead may not have
significant affect on the performance of the algorithm. We
are in the process of measuring the performance of this
algorithm and the results will be reported in our future work.

We conclude that the inherent attributes of transactions
are a better set of parameters for resolving conflicts under
two-phase policy. The algorithm PRABHA can be improved
further by reducing the number of messages required to
achieve synchronization and will also be reported in our
future work.

396

References

[AGA87]

[BER8 l]

[ESW76]

[HSU87]

R. Agrawal, M.J. Carey, and L.W. McVoy,
“The Performance of Alternative Strategies
for dealing with Deadlocks in Database
Management Systems”, IEEE Transactions on
Software Engineering, Vol. SE-13, No. 12,
Dec. 1987.
P. Bernstein, and N. Goodman, “Concurrency
Control in Distributed Database Systems”,
ACM Computing Surveys, Vol. 1, No. 2,
June 1981.
K.P. Eswaran, J. Gray, R.A. Lorie, and I.L.
Traiger, “The Notions of Consistency and
Predicate Locks in database Systems”,
Comm. ACM Vol. 19, No. 11, Nov. 1976.
M. Hsu and B. Zhang, “The Mean Value
Approach to Performance Evaluation of
Cautious Waiting”, Submitted for
Publication. 1987.

- . -

0 4 1-1

Figure 1

04
Block Irl, T2, N2. y)

Y (dataitem) 2
Rquest~l.N4.Y. W.O. 1)

Figure 2

[KUM88a]

[KUM88b]

[KUM87]

[PAP791

X (data item]

V. Kumar, “Performance Comparison of
Database Concurrency Control Mechanisms
based on Two-Phase Locking, Timestamping
and Mixed Approach”, Information Sciences:
An International Journal, Vol. 47, No. 1,
1988.
V. Kumar and Meichun Hsu, “A Superior Two-
Phase Locking Algorithm and Its
Performance”, Information Sciences: An
International Journal, Vol. 47, No. 3, 1988.
V. Kumar, “An Analysis of the Roll-back and
Blocking Operations of Three Concurrency
Control Mechanisms”, NCC, Chicago, June,
1987.
C.H. Papadimitriou, “The serializability of
concurrent database updates”, JACM, i6, 4
(Oct. 1979).

Tl

X (data item]

T2

Figure 3

Tl

Figure 4

397

