
24  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  25  more queue: www.acmqueue.comBSD

Apple

Open Source 
Grows UpFO

CU
S

GNU
gnome

Using open source in 
real-world software products: 

The good, the bad and the ugly

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1005062.1005064&domain=pdf&date_stamp=2004-05-01


24  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  25  more queue: www.acmqueue.comBSDGNU
gnome

T
The open source development model is not exactly new. 
Individual engineers have been using open source as a 
collaborative development methodology for decades. 
Now that it has come to the attention of upper and 
middle management, however, it’s finally being openly 
acknowledged as a commercial engineering force-mul-
tiplier and important option for avoiding significant 
software development costs.

To put it another way, what object-oriented program-
ming often promises in terms of encouraging “code 
re-use,” open source software is definitely delivering. 
This does not come without certain costs and potential 
pitfalls, of course. This article describes the open source 
adoption process at a typical commercial software opera-
tion and discusses some of the more important checklist 
items that any evaluation of open source as an engineer-
ing option should include.

Roughly speaking, this checklist consists of the follow-
ing: investigation, evaluation, adoption, and communication.

INVESTIGATION
There is a lot of open source software in the world, and 
it is increasing day by day, so the first step in determin-
ing whether it can help your project is to make a careful 
study of what is already available. You don’t want to 
reinvent some expensive wheels.

References to how Apple Computer has used various 
bits of open source have been included in the following 
examples to show how one or more pieces of software 

to the Core
Open Source

JORDAN HUBBARD, APPLE COMPUTER



26  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  27  more queue: www.acmqueue.com

have found “institutional relevance.” Examples of cor-
porate usage of open source software abound, however, 
and an important part of the investigative process for any 
open source software product involves seeing who else is 
using it and why. Such examples can serve as a valuable 
roadmap for your own efforts.

Some well-known sources of open source software:

THE UNIVERSITY OF CALIFORNIA, BERKELEY
In the late 1970s, the Computer Systems Research Group 
at the University of California, Berkeley, began its seminal 
research into operating systems and the then-consider-
able task of extending the rather youthful Unix operating 
system into something more generally useful. The result 
of this work was the Berkeley Software Distribution, or 
BSD, release of Unix, well known for its strong network-
ing capabilities.

Not confined to operating systems, the BSD world also 
contains a wide selection of libraries, tools, and generally 
useful code that is distributed under the very liberal BSD 
license. This license essentially allows code to be used for 
almost any purpose, closed or open source, and without 
“encumbering” licensing effects for third-party code that 
uses it. The original BSD distributions spawned a num-
ber of independent projects such as FreeBSD, NetBSD, 
and OpenBSD, all of which continue to do innovative 
work that is released under the same BSD license. This 
has made BSD software a popular choice for commercial 
software and hardware vendors, who are thus free to 
create closed source variants of their products without 
undue restrictions. Such products include Apple’s Mac 
OS X operating system, whose commands, libraries, and 
portions of the kernel are heavily based on FreeBSD. A 
number of commercial network appliances (routers, fire-
walls, servers) and hardware devices also use the highly 
cross-platform BSD operating system in an embedded 
operating system role. 

THE APACHE SOFTWARE FOUNDATION
Probably best known for its acclaimed Apache Web 
server, the Apache Software Foundation (ASF) has since 
broadened its mandate to cover Java development 

tools—particularly where Web-based application (servlet) 
development is concerned—and Java-based build tools. 
ASF products are widely considered to be best-of-breed 
and have essentially taken over the Web server market 
with a market share far exceeding that of anyone else. 
Apple includes both Apache and Apache2 with Mac OS X.

Software produced by the ASF is released under the 
Apache license, a spiritual cousin to the BSD license, 
which allows both closed and open source usage with 
very few restrictions. See the evaluation section later in 
this article for more detail. 

THE GNU PROJECT
The Free Software Foundation launched the GNU proj-
ect in 1984 with the initial aim of creating a complete 
operating system environment (the GNU system). It may 
not have succeeded in creating a mainstream operating 
system, but it did create some excellent tools along the 
way. Among these are the Emacs editor, the GCC (GNU 
C Compiler), and the GDB (GNU Debugger). The latter 
two have essentially become de-facto standards in their 
own right. The GNU project has also created a number of 
general-purpose libraries and tools for easing the process 
of creating cross-platform software. The libraries and tools 
can substantially reduce the amount of work involved in 
many kinds of software development. Apple ships a fair 
amount of GNU software with its Mac OS X operating 
system, including but not limited to GCC, GDB, make, 
Emacs, and bash.

The greatest caveat to using software from the GNU 
project is probably its licensing terms. GNU software is 
released predominately under the GPL (GNU General 
Public License), with some of its software released under 
the less-restrictive but still formidable LGPL (GNU Lesser 
General Public License). Anyone interested in incorporat-
ing GPL- or LGPL-licensed software in their own products 
should certainly read the section on evaluating licenses in 
this article.

THE GNOME PROJECT
Started in the mid-1990s as a project to bring an 
advanced desktop environment to the Linux operating 
system, GNOME (GNU Object Model Environment) has 
since evolved into a serious source of numerous general-
purpose tools and libraries for doing everything from 
parsing XML to processing audio data. The GNOME 
project tends to take a very high-level approach to prob-
lem solving in general, and this shows in the software it 
offers. Apple includes GNOME software such as libxml2, 
an XML parsing library, with Mac OS X.

to the Core
Open Source

Open Source 
Grows UpFO

CU
S



26  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  27  more queue: www.acmqueue.com

Most, if not all, of the GNOME project’s offerings are 
licensed under the GPL or LGPL, so the same caveats 
apply.

THE KDE PROJECT
Another project started in the mid-1990s with the objec-
tive of bringing a sophisticated desktop environment to 
the Linux OS, the KDE Desktop Environment has also 
created a wide array of general-purpose tools and libraries 
in the process. These include a Web browser and office 
productivity suite, as well as libraries for image process-
ing and parsing HTML. Apple includes the latter library, 
known as KHTML, in its Safari Web browser.

Most, if not all, of the KDE project’s offerings are 
licensed under the GPL or LGPL, so the same caveats 
apply. 

SOURCEFORGE
Billing itself as “the world’s largest open source devel-
opment site,” with more than 74,000 hosted projects 
at the time of this writing, SourceForge is probably not 
practicing mere hyperbole. If you can imagine it, you can 
probably find it on SourceForge. Access to each project’s 
information and other resources is made relatively easy. 
If there are any caveats to using SourceForge, it’s simply 
the sheer magnitude of the material offered to search. 
It’s probably also fair to say that of those 74,000-plus 
projects, a good number are either moribund or have 
not made much progress beyond coming up with a nifty 
project name and creating a SourceForge project. Still, free 
is free, and SourceForge is definitely worth a stop on any 
research expedition.

SourceForge projects are released under a variety of 
licenses, so each should be researched individually as part 
of your evaluation. 

GOOGLE AND SLASHDOT
Though somewhat more scattershot than the other 
options, simple keyword searches on search engines like 
Google are often very good ways of pulling out of the 
air references to what would often otherwise be highly 
obscure projects. You obviously need to have a fairly clear 
idea of what you’re searching for, but search strings such 
as “qsort algorithm” or “3D library” can generate surpris-
ingly relevant results in no time at all.

If you have a little more time on your hands and a 
willingness to wade through innumerable news articles 
on everything from the Mars landings to pending court 
cases on encryption, the Slashdot news site covers ongo-
ing developments in the Apple, BSD, and Linux commu-

nities and can be a good source of information you might 
otherwise miss or not know to look for. 

EVALUATION
So, you’ve done your initial investigation and you’ve 
located some open source software that promises to meet 
your needs. The next thing on your checklist is obvi-
ously to evaluate that software in more depth to see if it’s 
genuinely suitable.

LICENSES
The first item on the evaluation checklist, as was already 
mentioned briefly, is the license. Some open source 
software licenses come with significant constraints, and 
for any commercial entity contemplating the use of open 
source software in a commercial product, review by a 
competent legal authority is a must. The various nutshell 
summaries provided here are intended only to give a 
rough notion of what each license implies, and none is 
by any means a substitute for a legal review of the actual 
license text, should you decide to proceed with the soft-
ware in question.

The BSD License. This is one of the more liberal 
licenses. The original version from the University of Cali-
fornia consists of three clauses, roughly summarized as:
1.  Don’t remove our copyright notice and disclaimer from 

the source code.
2.  If you ship binaries, include the copyright notice and 

disclaimer somewhere with the binaries.
3.  You can’t use our name to endorse or advertise your 

product unless you get permission in writing first.
Some BSD projects, such as FreeBSD, have even 

removed the third clause from their own version of this 
license, essentially asking only for some credit for their 
work and disclaiming any responsibility for its use or 
misuse. As licenses go, lawyers tend to rank this one near 
the top of their personal preference lists.

MIT Consortium License. Also sometimes known as 
the X11 license, the MIT Consortium license is extremely 
liberal. It is also a very short license. In essence, it gives 
you full permission to use the software for any purpose, 
just as long as you don’t sue the authors if it breaks or use 
their names in your advertising. It is generally considered 
“morally equivalent” to the BSD license, though it places 
even fewer restrictions on software licensed under it.

The Apache Software Foundation License. The ASF 
license is very similar to the original BSD license but 
with two additional clauses, both essentially intended to 
strengthen the point that you’re not allowed to use the 
terms Apache or Apache Software Foundation to endorse or 



28  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  29  more queue: www.acmqueue.com

promote your own products, or use those terms in any 
derived works, without prior written permission from the 
ASF. The basic intention here appears to prevent dilution 
of the Apache brand or have it used in situations that the 
ASF board would not approve. If you use Apache code 
in your product but call your product something else, 
you’re fine.

The ASF is revising this license and may be done by 
the time this article is published. Those who are inter-
ested should definitely visit the Apache Web site for more 
information on updates to this (or any other) license.

The GNU GPL/LGPL Licenses. The GNU licenses defi-
nitely require serious legal review, given that they come 
with significant strings attached. Roughly summarized, 
those strings are:
GPL. You are allowed to use GPL’d software in your own 
code as long as your own code is also licensed under the 
GPL and provided under the same terms (basically free of 
charge and in source form) to end users.
LGPL. You are allowed to link with libraries that are LGPL-
licensed without having your code under the same license 
(hence, the Lesser, since it is less restrictive). This does not 
mean that you can freely “borrow” code out of LGPL’d 
libraries and sprinkle it throughout your own code or that 
you are free from the requirement of providing sources 
for the LGPL’d code to end users.

Again, these are extremely condensed versions of these 
licenses, given that each runs to several thousand words, 
so be sure to read the full text of each carefully.

Dual-Use Licenses. One of the biggest potential pitfalls 
in using open source software comes with the dreaded 
dual-use license. This license allows the software to be 
used by other open source software but presents some-
thing of a “poison pill” to closed source or commercial 
software. In such cases, a special clause is invoked, which 
generally requires that the user pay for either a software 
license or usage rights to some patent under which the 
software is covered. 

Sometimes, even commercial users can get away with-
out having to pay fees for such software if they structure 
their usage of it so that they can give away their own 
source that uses it, thus qualifying for the open source 

definition of the license. This is tricky, however, particu-
larly when libraries are involved. If you’re an operating 
system vendor and you ship a library for which a dual-
license exists, making sure that your clients of this library 
are provided in source form, what about your custom-
ers who may link their own products with this library? 
Clearly, you don’t want to be handing your customers 
a potential landmine they may not even be aware of. 
This is especially true when discussing software that 
falls under a patent, which is generally easier to infringe 
inadvertently.

It bears repeating that there is simply no substitute for 
a proper legal review of the licenses for any and all open 
source software you intend to use and, in many cases, the 
software that it in turn uses. It is quite easy to fall into the 
trap of thinking that you qualify for a license to use some 
specific piece of software, only to find upon closer inspec-
tion that it in turn requires yet another piece of software 
for which you do not qualify for a license (at least not 
without a substantial dollar investment).

Dual-use licenses are a somewhat controversial part 
of the open source development world, so no specific 
examples of such software will be given here, but rest 
assured that they exist.

Also note that software released under dual-use 
licenses is very different from software that is dual-
licensed, such as Perl, Mozilla, and Qt. With dual-licensed 
software, the user can choose the least restrictive or 
otherwise most appropriate license. This has become a 
popular option for some corporations that wish to offer 
a “commercial version” of their software, generally with 
full technical support, while still making it freely avail-
able to those who are willing to accept the software as is, 
without such support.

CODE QUALITY 
Once you’ve been through the license, the next impor-
tant item on the evaluation checklist is that elusive 
determination of code quality. Sadly, not all open source 
software is created equal when it comes to quality, and 
evaluating the general track record and length of time 
in the field for the project that created it is one useful 
(though not foolproof) way of gauging how refined its 
code is likely to be. You should also make some effort to 
see how actively the code is being maintained (When 
were the last modifications made? Why?) and how many 
maintainers the code has had over its lifetime; software 
that is passed frequently from hand to hand often suffers 
from the inexperience and learning curve of each new 
maintainer.

to the Core
Open Source

Open Source 
Grows UpFO

CU
S



28  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  29  more queue: www.acmqueue.com

COMMUNITY
Next, you need to assess just how large the user commu-
nity surrounding the software is. Is there a user com-
munity? How responsive do its members appear to be to 
questions and/or bug reports from others on their mailing 
lists or Web forums? Are new contributions incorporated 
in a timely fashion or do they appear to fall on the floor? 
Code that is actively maintained is obviously far more 
likely to be secure and functional, so all of these are 
key factors to be weighed before committing to a piece 
of open source software. The last thing you need is to 
inherit a pile of abandon-ware, which you subsequently, 
and probably painfully, find out was abandoned for good 
reason.

SECURITY
Another important though sometimes overrated statistic 
is the number of security advisories that have been posted 
against the software. What makes this metric tricky is 
the fact that software that is buggy but not very popu-
lar is unlikely to have many security advisories posted 
against it, simply because there just aren’t that many 
people using (or tempted to attack) it. Conversely, highly 
popular software gets attacked on a frequent basis and 
may show up disproportionately in the security adviso-
ries. This is a judgment call, obviously, but if a piece of 
software appears to show up in security advisories with 
alarming frequency, you may do well to seek equally 
functional alternatives.

OK, so you’ve done your investigation, you’ve found 
some suitable software, you’ve evaluated it and found it 
to be good, so the hard work is behind you, right? Not 
quite, unfortunately, because the next step is...

ADOPTION
Incorporating open source software code into your prod-
uct has its own internal costs; it’s never truly “free” in 
that respect. There are some important internal checklist 
items you should consider in the areas of management, 
technology, and community. These will help ensure 
that open source software can and will succeed in your 
company.

MANAGEMENT: INTERNAL EVANGELISM
Engineers can be surprisingly averse to adopting com-
paratively finished products rather than developing their 
own from scratch, even when the latter option consti-
tutes significantly more work. Even if you get past the less 
justifiable issues of ego and the loss of satisfaction, both 
of which can be significant barriers in their own right, the 

engineers are likely to have concerns that are not so easy 
to dismiss: code quality, the ease with which it can be 
modified, and expectations the external open source soft-
ware developers are likely to have of them. Unless your 
engineers are already highly bullish on the idea of using 
open source, getting through this part of the process can 
require a fair amount of dialogue and finesse.

Your marketing people will typically like the buzz-wor-
thiness of using open source but, if open source is to be 
leveraged heavily, you will probably also need clear points 
of differentiation that justify the commercial value of 
your product. Management and the legal department will 
also need to clearly understand where the code is coming 
from, what strings are attached to it, and what engineer-
ing’s ongoing obligations are expected to be.

TECHNOLOGY: PORTING
Open source software code may or may not come ready 
to run on your platform. Assume that a certain amount of 
porting and/or adaptation to your needs will be necessary.

COMMUNITY: MANAGEMENT 
OF PROCESS AND RELATIONSHIPS
As you progress with the code base, donating your 
changes back to the open source software community 
is an excellent way to build trust, make future merges 
with the external open source software code base easier 
(and less expensive), and help advertise your presence 
to many opinion leaders in the same community likely 
to influence purchasing decisions of your product. It is 
also an important part of establishing a certain amount 
of “credit” in the barter economy that open source 
software development often represents. The volunteer 
engineers in the open source software community are far 
more likely to help those who have demonstrated their 
commitment to the success of the overall open source 
software development process. Even simply keeping lines 
of communication open, with or without code contribu-
tions, is of significant value; most open source software 
engineers have an active interest in what their code is 
being used to do.

The importance of doing all of this cannot be over-
stated. If you establish a reputation, either fairly or 
unfairly, as a “taker” who has no interest in giving 
something back or even communicating with the open 
source software community in good faith, then you’ll 
find yourself at the bottom of a hole you may never 
manage to climb out of, your reputation sullied and 
the repercussions of that likely to be far more extensive 
than you might think. It’s a small world where software 



30  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  31  more queue: www.acmqueue.com

engineering is concerned, particularly with everyone now 
networked, and engineers are clearly part of any high-
tech company’s lifeblood, so the conclusions to be drawn 
from this are pretty obvious.

Apple itself has learned some important lessons 
here, creating additional channels of communication/
collaboration, such as the OpenDarwin project, and 
allowing engineers to communicate more openly 
whenever it becomes apparent that the more traditional 
mechanisms for doing so are overly restrictive or other-
wise ineffective. A commitment to constantly evaluate 
and evolve the communications process when necessary 
also goes a long way.

COMMUNICATION
You’ve managed to incorporate open source software into 
your product, you’ve given the relevant changes back to 

the open source software community, and established a 
reasonable rapport with them. Now it’s time to deploy 
your product. What’s next on the checklist? Perhaps 
obvious to some, but, sadly, not to all, is communica-
tion, both in the initial stages and later in sustaining your 
product after deployment.

INITIAL STAGES 
Marketing. First and foremost, your marketing people 
will (or should) want to have a prepared message about 
your use of open source, even if it’s only to respond to 
any questions that may come up. Make sure that they 
also know enough to make correct assertions about it, 
or you may find yourself paying the price on Slashdot 
when one of them makes an embarrassing public gaffe 
about who provided the technology or attributes it to 
someone else.

Engineering. Engineering will also need to understand 
that there will be people external to the company with 
their own perceptions, both negative and positive, of 
your use of open source. How individual engineers inter-
act (or don’t) with this external community will have a 
lot to do with this balance of positive/negative perception 
going forward, so make sure everyone’s on the same page 
before you go public.

SOURCES OF 
OPEN SOURCE SOFTWARE
FreeBSD
http://www.freebsd.org

NetBSD
http://www.netbsd.org

OpenBSD
http://www.openbsd.org

Apache Foundation Software
http://www.apache.org

The GNU Project
http://www.gnu.org

The GNOME Project
http://www.gnome.org

The KDE Project
http://www.kde.org

SourceForge.net
http://sourceforge.net

Google
http://www.google.com

Slashdot
http://slashdot.org

Apple 
Open Darwin
http://www.opendarwin.org

Mozillazine 
(for information on 
the Safari Web browser)

http://Weblogs.mozillazine.org/
hyatt/ 

OPEN SOURCE 
SOFTWARE LICENSES
BSD
http://www.opensource.org/licenses/
bsd-license.php

MIT Consortium
http://www.opensource.org/licenses/
mit-license.php

Apache Software Foundation
http://www.apache.org/LICENSE.txt

GNU GPL/LGPL
http://www.gnu.org/licenses/
licenses.html#GPL

RESOURCES

to the Core
Open Source

Open Source 
Grows UpFO

CU
S

http://www.freebsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.apache.org
http://www.gnu.org
http://www.gnome.org
http://www.kde.org
http://sourceforge.net
http://www.google.com
http://slashdot.org
http://www.opendarwin.org
http://Weblogs.mozillazine.org/hyatt/
http://Weblogs.mozillazine.org/hyatt/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.apache.org/LICENSE.txt
http://www.gnu.org/licenses/licenses.html#GPL
http://www.gnu.org/licenses/licenses.html#GPL


30  May 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  May 2004  31  more queue: www.acmqueue.com

Legal. Your legal department must understand and 
drive the basic obligations, if any, that go along with 
deployment of this software (such as distributing or mak-
ing available source for GPL code). Don’t assume that 
the engineering people will have the bandwidth or the 
understanding to do this on their own—someone from 
legal should make sure this really happens.

SUSTAINING AFTER DEPLOYMENT
Truly leveraging open source software also means under-
standing and acknowledging that engineers external to 
the company can be as important to your current and 
future deliverables as engineers inside the company. 
That’s a concept that many companies find hard to grasp, 
given the rather stark difference in how much they con-
trol the work habits of each. It is, nonetheless, true on the 
balance, and a number of factors need to be considered in 
managing your development process going forward, after 
your product has shipped:

NDA (nondisclosure agreement) issues and corporate 
security can certainly make communication with the 
open source software community tricky, but it’s still man-
ageable with proper guidelines in place. A far greater and 
more pervasive problem is one where engineers simply 
choose not to communicate externally at all because of 
the amount of work involved and/or deadline pressures 
that drive the focus of their communication inward. 
Making it clear just where and when they are allowed to 
communicate and “expected” to communicate can go 
a long way toward alleviating this problem and prevent 
alienation from the open source software community.

Soliciting and understanding the open source software 
community’s goals for the product(s) you’ve incorpo-
rated is one important part of protecting your own future 
interests. Defining and trying to communicate your own 
needs for the product to the open source software com-
munity will also certainly influence their own direction, 
and openly declaring your own intentions also helps 
build bridges to the community since it’s clear that you’re 
making some effort to keep them in the loop as peers, not 
simply as sources of free labor.

Managing transitions and sustaining engineering 
is also a key item for post-deployment, since healthy 
open source software does not stand still by any means, 
whereas commercial product cycles can be rather lengthy. 
You must project and factor in synchronization costs into 
your timeline.

Finally, the open source software community can be 
an invaluable resource when it comes to recruiting skilled, 
motivated engineers who come with a ready-built under-

standing of at least some aspect of your product. This is 
one reason why developing and sustaining relations with 
the open source software community at the outset is so 
critical, and it should also be understood that open source 
software engineers recruited from this community will 
have a residual loyalty to this community. One nice way 
of maintaining your relationship with the community is 
to allow these engineers to continue doing some amount 
of (now-subsidized) work on the open source software 
public code base. They get better code, you get better 
code, and both sides win.

A SOCIAL ORDER AND ENGINEERING DISCIPLINE
Open source is not just a way of getting free code; it is 
both a social order and an entire engineering discipline in 
its own right, with informal “rules of the road” that must 
be respected if you are to be at all successful there. It is, 
however, also one of the most rewarding ways of doing 
software engineering today, allowing small engineering 
teams to tackle the sorts of challenges that would have 
been considered simply impossible for groups of their size 
before. It has also greatly expanded what were formerly 
engineering “island communities” at both small and 
large companies—communities that were highly insular 
and lacked sufficient exposure to many potentially better 
ways of doing such work more cheaply and with higher 
quality. One company could not possibly hire all the best 
engineers in the world, but by actively involving itself in 
the open source community, it no longer has to! Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JORDAN HUBBARD is the manager of BSD technologies 
for Apple’s core OS engineering team. He oversees the 
BSD technology base for Darwin, the Unix-based core of 
Mac OS X. Before joining Apple in 2001, Hubbard was a 
principal technologist for Wind River Systems, where he 
was responsible for the FreeBSD CD-ROM product line. 
He is a cofounder of the FreeBSD project, which began 
in 1992. Hubbard began his career in software in the 
1970s, working on minicomputers, and has held various 
engineering and management positions in organizations, 
including U.C. Berkeley and Digital Equipment Corpora-
tion. He is a frequent contributor to the open source 
community and has been writing free software since 
1982, beginning with Volume 1 of the comp.sources.unix 
archive and continuing with various works on MIT’s X 
Contributed Software collection. 
© 2004 ACM 1542-7730/04/0500 $5.00

www.acmqueue.com/forums 

