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ABSTRACT
We consider the problem of finding closed form solutions of
linear differential equations having coefficients which are el-
liptic functions. For second order equations we show how to
solve such an ode in terms of doubly periodic functions of the
second kind. The method depends on two procedures, the
first using a second symmetric power of an ode along with
a decision procedure for determining when such equations
have elliptic function solutions while the second involves the
computation of exponential solutions.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Linear odes; elliptic functions; Kovacic’s algorithm; decision
procedures

1. INTRODUCTION

In this paper we consider linear differential equations of
the form

an(x)y
(n)(x) + · · · + a1(x)y

′(x) + a0(x)y(x) = 0 (1)

where the coefficients ai(x) are doubly periodic having the
same periods. Doubly periodic functions are complex-valued
functions having two independent periods, that is, two in-
dependent constants T and T ′ such that

f(x+ T ) = f(x) and f(x+ T
′) = f(x) for all x.
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Classical examples of doubly periodic functions include the
Weierstrass ℘ and ℘′ functions, the Jacobi sn, cn and dn

functions and ratios of Theta functions [1]. We will also
require that our coefficients are in fact elliptic functions,
that is, that they do not have any essential singularities.
We remark that the term doubly periodic is often used when
elliptic is really meant, it being assumed that the functions
under discussion are also meromorphic.
Linear differential equations with elliptic function coeffi-

cients appear historically in many instances (cf. [9]). For ex-
ample, solving Laplace’s equation in three dimensions in el-
lipsoidal coordinates using the separation of variables method
gives the classical Lamé equation

y
′′(x) − (n(n+ 1)℘(x) +B)y(x) = 0 (2)

where n is a positive integer and B is a constant. Additional
interesting examples can be found in many texts, see for
example Forsyth [9], Halphen [10] and Kamke [14].
There are two classical representations of elliptic func-

tions, the Weierstrass form and the Jacobi form. In either
case, we can convert (1) to a linear ode having coefficients

from K(z,
√

w(z)) where w(z) is a polynomial of degree 3
or 4 and K is a field of constants. Using methods from [16,
17] one obtains a decision procedure for determining when
(1) has solutions which are elliptic functions.
Picard’s theorem [9, 15] says that when all solutions of

(1) are uniform or path-independent then the ode has so-
lutions that are doubly periodic of the second kind. These
functions can be expressed in terms of the Weierstrass Zeta
and Sigma functions or the Jacobi Zeta function [1]. In this
paper we show how we can find such solutions in the case
of all second order linear odes, even when all solutions are
not necessarily uniform. In fact we present a complete al-
gorithm for solving reducible second order linear odes with
elliptic function coefficients. We do this by finding elliptic
function solutions of the second symmetric power of the orig-
inal ode (in section 3), or else finding exponential solutions
of the symmetric product of the equation with its conju-
gate (in section 4). The methods have been implemented [7]
and are available (or will shortly be available) in the Maple
computer algebra system. We mention that our method is
not the first algorithm for finding such solutions. Indeed
the procedures in [17] find all Liouvillian solutions of (1), in
both the reducible or irreducible cases. Our contribution is
to provide a new method which both efficient and complete
for the second order reducible case of (1).



The remainder of the paper is organized as follows. In the
next section we give background information for odes of the
form (1). Section 3 gives a method for solving the second
order problem in terms of doubly-periodic functions of the
second kind when there are elliptic function solutions of an
associated third order equation while the following section
produces solutions which are doubly-periodic functions of
the second kind via finding exponential solutions of an asso-
ciated ode of fourth order. The paper ends with a conclusion
along with topics for future research.

2. PRELIMINARIES

In this section we give some well-known facts about ellip-
tic functions, doubly periodic functions of the second kind
and linear odes having elliptic functions as coefficients. Ad-
ditional information and details can be found in the refer-
ences [2, 3, 9, 13].

2.1 Elliptic Function Solutions of Arbitrary
Order Equations

There are two classical representations of elliptic func-
tions, the Weierstrass form and the Jacobi form (c.f. [3]).
Let ℘(x) = ℘(x; g2, g3) denote the Weierstrass ℘ function
where g2 and g3 are constants which are determined by the
periods. Then ℘′(x) =

√

4℘(x)3 − g2℘(x) − g3 and every
elliptic function can be represented as a rational function
of ℘ and ℘′ (cf. [2]). In the case of Jacobi forms there are
many representations for elliptic functions. For example, let
sn(x) = sn(x, k) where k is a constant determined by the
periods. Then

sn
′(x) = cn(x) · dn(x) =

√

(1 − sn2(x)) · (1 − k2sn2(x))

and every elliptic function can be represented as a rational
function of sn and sn′. A similar statement holds for all the
other 11 forms of the Jacobi elliptic functions (c.f. [2]).
Theorem 2.1 below gives the principal representations for

our problems. The result follows directly from Singer [17]
along with the isomorphism (via a change of variable from
x to f):

K(x,
√

w(x))[
d

dx
] ↔ K(f, f ′)[

d

df
] (3)

via

x 7→ f,
√

w(x) 7→ f
′
,

d

dx
7→ d

df
=

1

f ′
d

dx
. (4)

Theorem 2.1 (Singer [17]). Let L be a linear differ-
ential operator having coefficients in K(f, f ′) with K a field
of constants and where f satisfies (f ′)2 = w(f) for some
polynomial w(z) ∈ K[z]. Then one has a decision procedure
for finding solutions of L(y) = 0 in K(f, f ′). 2

Thus suppose our coefficients are in Weierstrass form and
that we are looking for solutions in the same form. Setting
f(x) = ℘(x; g2, g3)

1, the Weierstrass ℘ function, allows us to
make use of the above formalism using w(z) = 4z3−g2z−g3.

1As in classical texts, we drop the g2 and g3 arguments for
℘ in cases where this is obvious.

2.2 Doubly-periodic Solutions of the Second
Kind

A second class of functions which are almost doubly peri-
odic also plays an important role in the study of linear odes
of the form (1). A function F (x) is said to be doubly periodic
of the second kind if there exist two periods T , T ′, and two
constants s, s′ such that

F (x+ T ) = s · F (x), F (x+ T
′) = s

′ · F (x)

for all x in the complex plane. The constants s and s′ are
referred to as the period multipliers of F (x). These func-
tions are not, in general, truly periodic, as the value of F (x)
changes by a constant factor each time x changes by the
period.
Doubly periodic functions of the second kind are impor-

tant from the following classical observation given by Picard
(see Ince [13]) in 1879.

Theorem 2.2 (Picard’s Theorem). If the coefficients
of a homogeneous linear differential equation are doubly peri-
odic functions of the independent variable, and all solutions
of the equation are uniform (that is, path-independent), then
the equation possesses at least one solution which is a doubly
periodic function of the second kind. 2

We also note that when F (x) is doubly periodic of the

second kind then the ratio G(x) = F ′(x)
F (x)

is doubly periodic.

For if T and T ′ are the periods and s, s′ the corresponding
period multipliers of F then

G(x+ T ) =
F ′(x+ T )

F (x+ T )
=
sF ′(x)

sF (x)
= G(x)

and similarly G(x + T ′) = G(x). Thus the logarithmic
derivative of any doubly periodic function of the second kind
is doubly-periodic.
Conversely assume that F (x) is a solution of our equation

such that F ′(x)
F (x)

= G(x), a doubly periodic function. Then

the logarithmic derivative of F (x+T )
F (x)

is G(x + T ) − G(x),

which is zero by assumption. Hence there exists a constant
s such that F (x + T ) = sF (x). This also occurs for the
second period T ′ and hence F (x) would be doubly-periodic
of the second kind. Thus finding doubly-periodic solutions
of the second kind is equivalent to the search of first order
doubly-periodic right factors of the associated linear differ-
ential operator.
We remark that, as mentioned earlier in the introduc-

tion, all functions are also assumed to not have any essential
singularities. Hence the logarithmic derivative mentioned
above will in fact be an elliptic function.

2.3 Fundamental Bases

To understand how doubly-periodic solutions of the sec-
ond kind arise in the study of (1), one needs to first look at
how fundamental bases behave at the periods. Let the set
{f1(x), f2(x), . . . , fn(x)} be a basis of solutions of (1) where
all the coefficients are doubly periodic functions with peri-
ods T , T ′. Since the coefficients of (1) are doubly periodic
we have that f1(x+ T ), f2(x+ T ), . . . , fn(x+ T ), are also



solutions of (1). Hence each can be expressed as a linear
combination of the basis functions, that is,

fj(x+ T ) = a1jf1(x) + a2jf2(x) + · · · + anjfn(x) (5)

for some constants aij , independent of x. In matrix form
this becomes

f̃(x+ T ) = f̃(x) · A (6)

where f̃(x) = [f1(x), · · · , fn(x)] and A = [aij ]n×n. Similarly,
we also have a constant matrix B = [bij ] which satisfies the
matrix equation

f̃(x+ T
′) = f̃(x) · B. (7)

The following gives some well known facts about the ma-
trices A and B associated to a given fundamental system.
We include a proof for completeness.

Theorem 2.3. Let A and B be constant matrices associ-
ated to a given fundamental basis {f1(x), . . . , fn(x)} of so-
lutions of the linear ode (1). Then

(i) A and B are nonsingular

(ii) If W (f̃(x)) denotes the Wronskian of the fundamental
system then

det(A) =
W (f̃(x+ T ))

W (f̃(x))
and det(B) =

W (f̃(x+ T ′))

W (f̃(x))
.

(8)

(iii) The products of the eigenvalues of A and B, taking
multiplicities into account, are

exp
(

−
∫ x+T

x

an−1(u)

an(u)
du
)

and exp
(

−
∫ x+T ′

x

an−1(u)

an(u)
du
)

,

respectively.

(iv) Suppose F (x) is a solution of (1) with

F (x) = c1 · f1(x) + · · · + cn · fn(x).
Then F (x) is doubly-periodic of the second kind with
period multipliers s and s′ if and only if s and s′ are
eigenvalues of A and B, respectively, each having c̃ =
[c1, . . . , cn]

t as a common eigenvector.

Proof: Differentiating both sides of (6) n−1 times with
respect to x gives n−1 additional equations of the form

f̃
′

(x+ T ) = f̃
′

(x) · A, . . . , f̃ (n−1)(x+ T ) = f̃
(n−1)(x) · A.

Combining these into a single matrix equation, we have

[ f̃(x+ T ) | · · · | f̃ (n−1)(x+ T ) ]t

= [ f̃(x) | · · · | f̃ (n−1)(x) ]t · A. (9)

Since we have a fundamental system the Wronskian matrix
[ f̃(x) | · · · | f̃ (n−1)(x) ]t is nonsingular and hence so
is A. A similar argument shows that B is also nonsingular
hence we have (i). Part (ii) follows by taking determinants
of both sides of (9). Part (iii) follows from (ii) along with
Abel’s identity [13, p. 75].
Suppose now that F (x) is a solution of (1) with

F (x) = c1f1(x) + · · · + cnfn(x) = f̃(x) · c̃ (10)

where c̃ = [c1, . . . , cn]
t. Then

F (x+ T ) = f̃(x+ T ) · c = f̃(x) · A · c̃ (11)

and

F (x+ T
′) = f̃(x+ T

′) · c = f̃(x) · B · c̃. (12)

Notice that for any constants s and s′ equations (11) and
(12) imply that

sF (x) = F (x+ T ) ⇐⇒ sf̃(x) · c̃ = f̃(x) · A · c̃ (13)

and

s
′
F (x) = F (x+ T

′) ⇐⇒ s
′
f̃(x) · c̃ = f̃(x) · B · c̃. (14)

Using a similar argument as before we see that equations
(13) and (14) are equivalent to

s · c̃ = A · c̃ and s
′ · c̃ = B · c̃

so that sF (x) = F (x + T ) and s′F (x) = F (x + T ′) if and
only if s and s′ are in fact eigenvalues of the matrices A and
B, respectively, having a common eigenvector c̃. 2

Remark 2.4. The conditions of Picard’s Theorem require
that all solutions of (1) be path-independent. As such one
can traverse a path from x to x+ T and then to x+ T + T ′

and expect to end at the same place as if one has traversed a
path from x to x+T ′ to x+T ′+T . Using equations (6) and
(7) implies that A and B therefore commute. An elemen-
tary result from linear algebra [8] implies that these matrices
then have eigenvalues s and s′ with a common eigenvector.
Picard’s Theorem thus follows from part (iv) of Theorem
2.3.

Remark 2.5. The multipliers are eigenvalues and thus
independent of the fundamental system.

Remark 2.6. Once one doubly periodic solution of the
second kind has been found we may use reduction of order
to find additional solutions. In the present case, reduction
of order for (1) results in a new ode also having doubly peri-
odic coefficients, and all solutions uniform. Picard’s Theo-
rem therefore implies that this new ode also has at least one
solution which is doubly periodic of the second kind. This
may be repeated, to show that there is a basis of solutions of
(1) of the form

{

y1(x) = φ1(x), y2(x) = φ1(x)

∫

φ2(x)dx,

. . . , yn(x) = φ1(x)

∫

φ2(x) · · ·
∫

φn(x) (dx)
n−1

}

,

where the φi(x) are doubly-periodic of the second kind (Ince
[13, p. 376]).

3. SOLVING 2ND ORDER EQUATIONS
VIA SYMMETRIC POWERS

In this section we are interested in determining when a
second order linear ode (1) has a basis of solutions which are
doubly-periodic of the second kind. From the comments at
the end of section 2.2 we know that this becomes equivalent
to searching for elliptic function first order factors of the
associated linear differential operator. Thus, in the case
of second order equations, we can look to apply the same



techniques as used in modern versions of Kovacic’s algorithm
[18]. In particular, we can reduce our problem to finding
elliptic function solutions of a related third order linear ode.
It is well known that using the transform

y(x) = exp

(

−
∫

an−1(x)

nan(x)
dx

)

· u(x) (15)

converts an n-th order ode in y(x) into an ode in u(x) hav-
ing the second highest term 0. In the case of second order
equations this converts

a2(x) · y′′(x) + a1(x) · y′(x) + a0(x) · y(x) = 0 (16)

into

u
′′(x) − r(x) · u(x) = 0 (17)

with r(x) =
(

a1(x)
2a2(x)

)′

+
(

a1(x)
2a2(x)

)2

− a0(x)
a2(x)

.

The following is central to the results in this section.

Lemma 3.1. Assume that equation (1) has coefficient
an−1(x) = 0 and that {y1(x), . . . , yn(x)} is a basis of so-
lutions with each yi(x) doubly periodic of the second kind.
Then z(x) = y1(x) · · · yn(x) is doubly periodic.

Proof: Let T and T ′ be the periods for the coefficients
of the linear ode and suppose that yi(x + T ) = si · yi(x),
yi(x+ T ′) = s

′

i · yi(x), for i = 1, . . . , n. Then from part (iii)
of Theorem 2.3 we have that s1 · · · sn = 1. Therefore

z(x+ T ) = y1(x+ T ) · · · yn(x+ T )
= (s1 · · · sn) y1(x) · · · yn(x)
= z(x).

(18)

Similarly, z(x + T ′) = z(x) for the second period T ′ and
hence z(x) is doubly periodic. 2

Consider first the case of finding a basis of solutions of
a second order linear ode of the form (17). We show in
Corollary 3.2 and Theorem 3.3 that solutions of such an
equation can be determined by looking for special solutions
of

y
′′′(x) − 4 · r(x) · y′(x) − 2 · r′(x) · y(x) = 0, (19)

the second symmetric power of equation (17).

Corollary 3.2. Suppose that equation (17) has a basis of
solutions which are doubly-periodic of the second kind. Then
the second symmetric power (19) has at least one solution
z(x) which is doubly periodic.

Proof: It is well known (c.f. [14]) that a basis for solu-
tions of equation (19) is given by {y1(x)

2, y1(x)y2(x), y2(x)
2}

where {y1(x), y2(x)} is a basis for equation (17). The corol-
lary thus follows directly from Lemma 3.1. 2

The following theorem shows how to build a basis for (17)
from a solution of (19).

Theorem 3.3. Let z(x) be a solution of (19) and set

y1(x) =
√

z(x) · exp(−C

2

∫

dx

z(x)
) (20)

and

y2(x) =
√

z(x) · exp(C
2

∫

dx

z(x)
) (21)

where C is a constant given by

C
2 = z

′(x)2 − 2 · z(x) · z′′(x) + 4 · r(x) · z(x)2. (22)

If C 6= 0, then y1(x), y2(x) are linearly independent and
form a basis of (17). If C = 0, then a basis for the solution

space of (17) is given by y1(x) and y2(x) =
√

z(x)
∫

1
z(x)

dx.

Proof: Let z(x) = y1(x) ·y2(x) and C be the Wronskian
of y1(x), y2(x). Note that C is a constant by Abel’s identity
[13]. From z′(x) = y′1(x) · y2(x) + y1(x) · y′2(x) we have that

z′(x)

z(x)
=
y′1(x)

y1(x)
+
y′2(x)

y2(x)
(23)

while C = y′2(x) · y1(x) − y2(x) · y′1(x) implies that

C

z(x)
=
y′2(x)

y2(x)
− y′1(x)

y1(x)
. (24)

Taking equations (23) and (24) together gives

y′1(x)

y1(x)
=
z′(x) − C

2 · z(x) and
y′2(x)

y2(x)
=
z′(x) + C

2 · z(x)

which gives (21). In addition, differentiating
y′1(x)

y1(x)
gives

y′′1 (x)

y1(x)
−
(

y′1(x)

y1(x)

)2

=
2 · z(x) · z′′(x) − 2 · z′(x)2 + 2 · C · z′(x)

4 · z(x)2

so that

y′′1 (x)

y1(x)
=

2 · z(x) · z′′(x) − z′(x)2 + C2

4 · z(x)2 .

Since
y′′1 (x)

y1(x)
= r(x) we get identity (22). Now, since C is

the Wronskian of y1(x), y2(x), C 6= 0 implies that y1(x),
y2(x) are linearly independent and form a basis for (17).
On the other hand, if C = 0, the formulas (21) become

identical, with one solution y1(x) =
√

z(x). A second so-
lution, from standard reduction of order techniques, is then
y2(x) = y1(x)

∫

1
y21(x)

dx =
√

z(x)
∫

1
z(x)

dx. 2

Remark 3.4. Theorem 3.3 appears to have been known
in the 1800’s by Hermite [11], Brioschi [5], and Halphen
[10], at least in the case of Lamé’s equation. Brioschi also
used the result to analyze Mathieu’s equation

y
′′(x) + (p − k

2 · v2 · cos2(x)) · y(x) = 0 (25)

(so r(x) = k2v2cos2(x) − p) where the coefficients are only
periodic. Indeed, in this case equation (22) is known as
Brioschi’s Identity.

In the case of second order linear odes having elliptic func-
tion coefficients, Theorem 3.3 provides a simple method for
finding a general solution for the ode whenever two inde-
pendent solutions, doubly periodic of the second kind, exist.
Classically these solutions are given in terms of the Weier-
strass Zeta and Sigma functions which are defined in terms
of ℘ via

ζ
′(x) = −℘(x) and σ′(x)

σ(x)
= ζ(x). (26)

These Weierstrass functions are not periodic but rather quasi-
periodic (cf. [1]).

Example 3.5. Consider Lamé’s equation (2), with n any
positive integer, B, g2, and g3 arbitrary constants. We



search for solutions that are doubly periodic of the second
kind. The corresponding symmetric power is given by

z
′′′(x)−4 (n(n+ 1)℘(x) +B) z′(x)−2n(n+1)℘′(x)z(x) = 0

(27)
and this has a doubly periodic solution. Thus we can com-
pute solutions of (2) which are doubly periodic of the second
kind.
We can illustrate with some examples for n small. For

example, if n = 1, then solutions z(x) of (27) which are
rational in ℘ and ℘′ are given by multiples of {℘ − B}. Then
C2 = z′(x)2 − 2z(x)z′′(x) + 4r(x)z(x)2 = 4B3 − g2B − g3,

which is a constant. If C 6= 0, two independent solutions are

ỹ1(x) = exp
(

∫ z′1(x)−C

2z1(x)
dx
)

= exp

(

1
2

∫ ℘′(x)−
√

4B3−g2B−g3
℘(x)−B

dx

)

ỹ2(x) = exp
(

∫ z′1(x)+C

2z1(x)
dx
)

= exp

(

1
2

∫ ℘′(x)+
√

4B3−g2B−g3
℘(x)−B

dx

)

.

(28)

We can also return the final solution in a form found in
standard texts. Indeed, up to an additive constant, we have

1

2

∫

℘′(x) −
√

4B3 − g2B − g3

℘(x) − B
dx = ln

(

σ(x+ a)

σ(x)σ(a)

)

−xζ(a)
(29)

and

1

2

∫

℘′(x) +
√

4B3 − g2B − g3

℘(x) − B
dx = ln

(

σ(x+ a)

σ(x)σ(a)

)

+xζ(a)

(30)
where a is a constant such that ℘(a) = B (cf. [1, 2]). Hence,
from (28), we have the solutions

y1(x) = exp
(

ln
(

σ(x+a)
σ(x)σ(a)

)

− xζ(a)
)

= σ(x+a)
σ(x)σ(a)

e−xζ(a)

y2(x) = σ(x−a)
σ(x)σ(a)

exζ(a),

where a is such that ℘(a) = B.
For higher values of n, solutions for z(x) and C, and hence

for y1(x) and y2(x), are still obtained. However, it becomes
more difficult to evaluate the integrals for increasing values
of n so we just give z(x) and C2 for n = 2 and 3:

n = 2 : z(x) = −1

4
g2 +

1

9
B

2 − 1

3
B℘(x) + ℘(x)2

C
2 = −g2g3 +

1

3
g
2
2B +

1

3
g3B

2

− 7

27
g2B

3 +
4

81
B

5

n = 3 : z(x) = −1

4
g3 +

1

15
g2B − 1

225
B

3 − 1

4
g2℘(x)

+
2

75
B

2
℘(x) − 1

5
B℘(x)2 + ℘(x)3

C
2 = − 1

60
g
3
2B +

9

20
g
2
3B − 9

50
g2g3B

2

+
31

1500
g
2
2B

3 +
22

1875
g3B

4

− 14

5625
g2B

5 +
4

50625
B

7

(31)

Using the computer algebra system Maple, the solutions
y1(x), y2(x) generated from these solutions for z(x) and C

have all been verified to be solutions of the corresponding
instance of Lamé’s equation. 2

4. SOLVING 2ND ORDER EQUATIONS
VIA DIFFERENTIAL FACTORIZATION

If (17) has a doubly periodic of the second kind solution,
then by Theorem 3.3 such a solution can be found when
there is a doubly periodic solution of (19). However, if (19)
has no doubly periodic solutions, then this does not neces-
sarily imply that there are no doubly periodic solutions of
the second kind for (17). For example, the linear ode

y
′′(x) − (℘(x)2 − ℘

′(x))y(x) = 0 (32)

has a solution which is doubly periodic of the second kind
even though its second symmetric power has no doubly pe-
riodic solutions. In this section we give an alternate method
which will solve such equations.
Recall from subsection 2.2 that the logarithmic deriva-

tive of any doubly periodic function of the second kind is
doubly-periodic. As such any doubly-periodic solution of
the second kind of (1) gives a first order right factor of our
original equation. Finding first order factors of a linear op-
erator is equivalent to finding exponential solutions of the
corresponding linear ode. In the case of linear differential
operators in the domain K(x)[Dx] where Dx = d

dx
we can

find exponential solutions with existing algorithms such as
[4, 6, 12] while in our domain we can find exponential solu-
tions via the method from [17].
Assume now that our linear ode (1) has order 2. By using

a reduction of the form (15) we can reduce the problem
of finding doubly-periodic solutions of the second kind to
finding right hand factors of

L = D
2
x−r(x) where r(x) = a(℘(x))+b(℘(x))℘′(x) (33)

with a(z), b(z) ∈ K(z).
Notice that if one does a substitution of the form z = ℘(x)

then Dx =
√

w(z)Dz with Dz = d
dz

where w(z) ∈ K[z]

satisfies ℘′(x)2 = w(℘(x)). Thus we can express L as a

differential operator in K(z,
√

w(z))[Dz] by

L = w(z)D2
z +

w′(z)

2
Dz − a(z) − b(z)

√

w(z). (34)

We may assume that b(z) 6= 0 (otherwise L is in K(z)[Dz] in
which case we can use the Kovacic algorithm instead of the
method given below). We can create a fourth order operator
having rational coefficients by

L̂ := symmetric product(L,L) ∈ K(z)[Dz] (35)

where L ∈ K(z,
√

w(z))[Dz] is the conjugate of L (that is,

every occurrence of
√

w(z) is replaced by −
√

w(z)). The

symmetric product produces an operator L̂ of minimal order
such that the product of any solution of L and any solution
of L is a solution of L̂.



Theorem 4.1.

(a) Suppose Dx − s(x) is a right factor of L with

s(x) = u(℘(x)) + v(℘(x))℘′(x).

Then Dz − 2v(z) is a right factor of L̂.

(b) Suppose Dz − c(z) is a right factor of L̂. Set

v(z) = c(z)
2
,

t(z) = v(z)2w(z) + v′(z)w(z) + 1
2
v(z)w′(z),

u(z) = 1
2b(z)

(a′(z) + 4a(z)v(z) − 4t(z)v(z) − t′(z)).

If a(z) = u(z)2 + t(z), then we have the factorization

L = (Dx + s(x))(Dx − s(x)) (36)

where s(x) = u(℘(x)) + v(℘(x))℘′(x).

Proof: Suppose that Dx − s(x) is a right factor of L.
Changing coordinates of this factor via z = ℘(x) and sim-

plifying ensures that Dz −
(

v(z) + u(z)
w(z)

√

w(z)
)

is a right

factor of L. As such Dz −
(

v(z) − u(z)
w(z)

√

w(z)
)

is a right

factor of L and so Dz − 2v(z) is a right factor of L̂, the
symmetric product of L and L. Thus for each right factor
of L̂ we obtain the corresponding formula for v(z).
In order to obtain a formula for the component u(z) first

notice that D2
x − r(x) = (Dx + s(x))(Dx − s(x)) if and only

if

r(x) = s
′(x) + s(x)2

which in turn occurs if and only if

a(z) = u(z)2 + v(z)2w(z) + v
′(z)w(z) +

1

2
v(z)w′(z)

(37)

b(z) = u
′(z) + 2u(z)v(z). (38)

Taking derivatives of equation (37), multiplying equation
(38) by 2u(z), taking differences of the two resulting equa-
tions and then substituting for u(z)2 using equation (37)
gives the formula for u(z). 2

Example 4.2. Consider first equation (32) from the start
of this section. In this case the symmetric product has a right
factor of the form Dz. As such both v(z) = 0 and t(z) = 0.
Further computation gives u(z) = −z and hence the linear
ode associated to (32) has a right factor Dx + ℘(x). This
in turn gives a doubly-periodic of the second kind solution of
(32) of the form

e
−

∫

℘(x)dx = e
ζ(x)

.

Example 4.3. Consider now the equation

y
′′(x) − (6℘(x) + 1 − g2

2℘(x)
+

2

℘(x)
℘
′(x))y(x) = 0.

As before, the corresponding symmetric power equation (17)
does not have a doubly-periodic solution. Forming the opera-
tors L and L, taking the symmetric product L̂ and factoring
then gives a right factor of the form Dz − 2

z
. Using Theo-

rem 4.1 we determine that v(z) = 1
z
and u(z) = 1. Hence

Dx−(1+ ℘′(x)
℘(x)

) is a right factor of our original second order

operator. A doubly-periodic solution of the second kind for
our example is then given by

e
∫

(1+
℘′(x)
℘(x)

)dx
= e

x
℘(x).

For both examples, a second independent solution for the ode
can be found using reduction of order. 2

Remark 4.4. We can obtain a similar result for factor-
izations of the form

L = D
2
z − r(z) = (Dz + s(z))(Dz − s(z))

where r(z) = a(z)+b(z)
√

w(z) and s(z) = u(z)+v(z)
√

w(z).
Indeed, if Dz − c(z) is a right factor of L ∈ K(z)[Dz] then

the conditions for such a factorization would be u(z) = c(z)
2

and

v(z) =
(a′(z) + 4u(z)a(z) − 4u(z)3 − 6u(z)u′(z) − u′′(z))

2b(z)w(z)

with a(z) = u(z)2 + v(z)2w(z) + u′(z). Thus one can ob-
tain a similar procedure by first changing coordinate systems,
then normalizing to remove the linear term of the operator
in K(x,

√

w(z))[Dz] and finally finding right factors of the
resulting symmetric product in K(z)[Dz].

Remark 4.5 (Completeness). Theorem 4.1 provides
a complete method for finding doubly periodic solutions of the
second kind for a second order linear operator of the form
(34). Namely, compute all exponential solutions of L̂ which

in turn gives all first order right factors Dz−c(z) of L̂. Then
search for those c(z), if any, for which the condition a(z) =
u(z)2 + t(z) in Theorem 4.1 holds. Those then produce the
factorization (36).

Remark 4.6 (Implementation). An algorithm for
finding all solutions doubly periodic of the second kind for
second order equations has been implemented and will be in
the coming version of Maple. In implementing our results
[7] we have taken advantage of the existence of an efficient
implementation of the method from section 3. By first trying
the methods from section 3 we do not need to implement the
complete version of Theorem 4.1. We mention two reasons
here. First, because we have tried the method of symmetric
powers, we do not need to compute all exponential solutions
of L̂. Instead we only search for those that are relatively
easy to compute, namely those that do not involve algebraic
extensions of the constants, which makes our implementa-
tion much faster. Secondly, if there exist infinitely many
first order right factors Dz − c(z) of L̂, then all such c(z)
can be represented by finitely many c(z) that contain param-
eters, and we have to find the parameter values for which
a(z) = u(z)2 + t(z). While finding these parameters is not
hard to implement, we have not done so.
We can justify the simplifications in our implementation

of Theorem 4.1 as follows. If we have two first order factors,
then the method of section 3 will find them. Hence we only
need to worry about the case where we have a unique first
order factor. Since this factor does not require an exten-
sion of the field of constants, it is also the case that the
factor Dz − c(z) of L̂ does not require extensions of the
field of constants. Hence no solutions are in fact lost by
not extending our coefficient field. Similarly, suppose L̂ has
infinitely many right factors. In this case, where L has a
unique first order right factor while L̂ has infinitely many,



it can be shown that the second symmetric power will have
an elliptic function solution, and hence the method from sec-
tion 3 will again work. Thus, our simplified implementation
for Theorem 4.1 combined with the method in section 3 gives
a complete algorithm for solutions which are doubly periodic
of the second kind for second order linear odes with elliptic
function coefficients.

5. CONCLUSION

We have implemented an efficient algorithm for finding
elliptic function solutions of arbitrary order linear odes of
the form (1) along with a procedure based on the results of
section 3 to find general solutions for (1) of the second or-
der. The algorithms are included in version 9 of the Maple
computer algebra system, used both inside dsolve, the dif-
ferential equation solver, and as a stand alone function dpe-
riodic sols in the DEtools package. The extensions reported
in section 4 have been added and will be included in the
next version of Maple. A report on these implementations
will be forthcoming [7].
There are a number of topics for future research. We

are interested in developing efficient and complete meth-
ods for all solutions which are doubly-periodic of the second
kind, for odes of the form (1) which have orders higher than
2. In addition, we are interested in finding differential fac-
torizations of higher order linear differential operators in
K[z,

√

w(z)] with w(z) ∈ K[z]. Finally, in the case of sec-
ond order odes we are interested in extending the techniques
used in this paper to compute general Liouvillian solutions
for (1) when there are no solutions doubly periodic of the
second kind.
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