skip to main content
10.1145/1005285.1005314acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

Improvements to a triangulation-decomposition algorithm for ordinary differential systems in higher degree cases

Published:04 July 2004Publication History

ABSTRACT

We introduce new ideas to improve the efficiency and rationality of a triangulation decomposition algorithm. On the one hand we identify and isolate the polynomial remainder sequences in the triangulation-decomposition algorithm. Subresultant polynomial remainder sequences are then used to compute them and their specialization properties are applied for the splittings. The gain is two fold: control of expression swell and reduction of the number of splittings. On the other hand, we remove the role that initials had in previous triangulation-decomposition algorithms. They are not needed in theoretical results and it was expected that they need not appear in the input and output of the algorithms. This is the case of the algorithm presented. New algorithms are presented to compute a subsequent characteristic decomposition from the output of the triangulation decomposition algorithm where the initials need not appear.

References

  1. P. Aubry. Ensembles triangulaires de polynômes et rsolution de systémes algèbriques. Implantation en Axiom. PhD thesis, Universit7eacute; de Paris 6, 1999.]]Google ScholarGoogle Scholar
  2. P. Aubry and D. Wang. Reasonning about surfaces using differential zero and ideal decomposition. In ADG 2000, number 2061 in LNAI, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. F. Boulier and E. Hubert. textscdiffalg: description and examples of use. U. of Waterloo, 1998, \www.inria.fr/cafe/Evelyne.Hubert/diffalg.]]Google ScholarGoogle Scholar
  4. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In ISSAC'95. ACM, 1995.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radicals of finitely generated differential ideals. Technical Report IT-306, LIFL, 1997.]]Google ScholarGoogle Scholar
  6. F. Boulier and F. Lemaire. Computing canonical representatives of regular differential ideals. In ISSAC 2000. ACM, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. F. Boulier, F. Lemaire, and M. Moreno-Maza. Pardi! In ISSAC 2001. ACM, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Bouziane, A. Kandri Rody, and H. Maârouf. Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. Journal of Symbolic Computation, 31(6):631--649, 2001.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Carra Ferro. Grübner bases and differential algebra. In AAECC, volume 356 of Lecture Notes in Computer Science. Springer-Verlag, 1987.]]Google ScholarGoogle Scholar
  10. S-C. Chou and X-S. Gao. Automated reasonning in differential geometry and mechanics using the characteristic set method. Part II. Mechanical theorem proving. Journal of Automated Reasonning, 10:173--189, 1993.]]Google ScholarGoogle ScholarCross RefCross Ref
  11. P. A. Clarkson and E. L. Mansfield. Symmetry reductions and exact solutions of a class of non-linear heat equations. Physica, D70:250--288, 1994.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. E. Collins. Subresultants and reduced polynomial remainder sequences. J. Assoc. Comput. Mach., 14:128--142, 1967.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Dellière. Triangularisation de systèmes constructibles. Application à l'évaluation dynamique. PhD thesis, Univ. de Limoges, 1999.]]Google ScholarGoogle Scholar
  14. L. Ducos. Optimizations of the subresultant algorithm. Journal of Pure and Applied Algebra, 145(2):149--163, 2000.]]Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Fliess and S.T. Glad. An algebraic approach to linear and nonlinear control. In Essays on control: Perspectives in the theory and its applications, volume 14. Birkhäuser, Boston, 1993.]]Google ScholarGoogle Scholar
  16. T. Gómez-Dîaz. Applications de l'évaluation dynamique. PhD thesis, Univ. de Limoges, 1994.]]Google ScholarGoogle Scholar
  17. E. Hubert. Factorisation free decomposition algorithms in differential algebra. Journal of Symbolic Computation, 29(4-5):641--662, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms I: Polynomial systems. In Winkler and Langer.]]Google ScholarGoogle Scholar
  19. E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms II: Differential systems. In Winkler and Langer.]]Google ScholarGoogle Scholar
  20. E. Hubert and N. Le Roux. Computing power series solutions of a nonlinear pde system. In ISSAC 2003. ACM, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. Journal of Symbolic Computation, 15(2):143--167, 1993.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. A. Kapaev and E. Hubert. A note on the Lax pairs for Painlevé equations. Journal of Physics. A. Mathematical and General, 32(46), 1999.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. E. R. Kolchin. Differential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics. Academic Press, 1973.]]Google ScholarGoogle Scholar
  24. Francois Lemaire. Les classements les plus généraux assurant l'analycité des solutions des systèmes orthonomes pour des conditions initiales analytiques. In CASC 2002. Technische Universität München, Germany, 2002.]]Google ScholarGoogle Scholar
  25. H. Lombardi, M-F. Roy, and M. S. El Din. New structure theorem for subresultants. Journal of Symbolic Computation, 29(4-5):663--690, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. L. Mansfield. Differential Gröbner Bases. PhD thesis, University of Sydney, 1991.]]Google ScholarGoogle Scholar
  27. E. L. Mansfield, G. J. Reid, and P. A. Clarkson. Nonclassical reductions of a 3+1-cubic nonlinear Schrödinger system. Computer Physics Communications, 115:460--488, 1998.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Margaria, E. Riccomagno, M. J. Chappell, and H. P. Wynn. Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. Mathematical Biosciences, 174(1):1--26, 2001.]]Google ScholarGoogle ScholarCross RefCross Ref
  29. B. Mishra. Algorithmic Algebra, volume XIV of Texts and Monographs in Computer Science. Springer-Verlag New York, 1993.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Moreno-Maza. Calculs de pgcd au-dessus des tours d'extensions simples et résolution des systèmes d'équations algébriques. PhD thesis, Université Paris 6, 1997.]]Google ScholarGoogle Scholar
  31. F. Ollivier. Standard bases of differential ideals. In AAECC'90, pages 304--321. Springer, 1991.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Ollivier and A. Sedoglavic. Algorithmes efficacxes pour tester l'identifiabilité locale. In Conférence Internationale Francophone d'Automatique. IEEE, 2002.]]Google ScholarGoogle Scholar
  33. C. Riquier. Les systèmes d'équations aux dérivées partielles. Gauthier-Villars, Paris, 1910.]]Google ScholarGoogle Scholar
  34. J. F. Ritt. Differential Algebra, volume XXXIII of Colloquium publications. American Mathematical Society, 1950. \tt http://www.ams.org/online\_bks.]]Google ScholarGoogle Scholar
  35. C. Rust. Rankings of derivatives for elimination algorithms and formal solvability of analytic partial differential equations. PhD thesis, University of Chicago, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. J. Rust, G. J. Reid, and A. D. Wittkopf. Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In ISSAC'99. ACM, 1999.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Seidenberg. An elimination theory for differential algebra. University of California Publications in Mathematics, 3(2):31--66, 1956.]]Google ScholarGoogle Scholar
  38. D. Wang. An elimination method for differential polynomial systems. I. Systems Science and Mathematical Sciences, 9(3):216--228, 1996.]]Google ScholarGoogle Scholar
  39. D. Wang. Decomposing polynomial systems into simple systems. Journal of Symbolic Computation, 25(3):295--314, 1998.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. D. Wang. Computing triangular systems and regular systems. Journal of Symbolic Computation, 30(2):221--236, 2000.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. Winkler and U. Langer, editors. Symbolic and Numerical Scientific Computing, volume 2630 of LNCS. Springer Verlag, 2003.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. W. T. Wu. On the foundation of algebraic differential geometry. Systems Science and Mathematical Sciences, 2(4):289--312, 1989.]]Google ScholarGoogle Scholar

Index Terms

  1. Improvements to a triangulation-decomposition algorithm for ordinary differential systems in higher degree cases

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation
        July 2004
        334 pages
        ISBN:158113827X
        DOI:10.1145/1005285
        • General Chair:
        • Josef Schicho

        Copyright © 2004 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 July 2004

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader