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THE POLYTOPE OF NON-CROSSING GRAPHS ON A PLANAR

POINT SET

DAVID ORDEN AND FRANCISCO SANTOS

Abstract. For any finite set A of n points in R
2, we define a (3n − 3)-

dimensional simple polyhedron whose face poset is isomorphic to the poset
of “non-crossing marked graphs” with vertex set A, where a marked graph is
defined as a geometric graph together with a subset of its vertices. The poset
of non-crossing graphs on A appears as the complement of the star of a face
in that polyhedron.

The polyhedron has a unique maximal bounded face, of dimension 2ni +
n − 3 where ni is the number of points of A in the interior of conv(A). The
vertices of this polytope are all the pseudo-triangulations of A, and the edges
are flips of two types: the traditional diagonal flips (in pseudo-triangulations)
and the removal or insertion of a single edge.

As a by-product of our construction we prove that all pseudo-triangulations
are infinitesimally rigid graphs.

1. Introduction

The set of (straight-line, or geometric) non-crossing graphs with a given set of
vertices in the plane is of interest in Computational Geometry, Geometric Combi-
natorics, and related areas. In particular, much effort has been directed towards
enumeration, counting and optimization on the set of maximal such graphs, that is
to say, triangulations. A lower bound of 2ni+2n−3 = Ω(4n) for any point set A is
trivial (consider the subgraphs of any given triangulation) and an upper bound of
type O(cn) for some constant c was first shown in [3]. The best current value for
c is 59 · 8 = 472 [17]. In this paragraph and in the rest of the paper n is the total
cardinality of A and ni denotes the number of points in the interior of conv(A),
respectively. For point sets in non-general position we will need to distinguish be-
tween vertices of conv(A) (extremal points) and other points in the boundary of
conv(A), which we call semi-interior points. We denote nv and ns their respective
numbers, so that n = ni + nv + ns.

The poset structure of non-crossing graphs is only well understood if the points
are in convex position. In this case the non-crossing graphs containing all the hull
edges are the same as the polygonal subdivisions of the convex n-gon and, as is
well-known, they form the face poset of the (n − 3)-associahedron. The paper [7]
contains several enumerative results about geometric graphs with vertices in convex
position. In particular, it shows that there are Θ((6 + 4

√
2)nn−3/2) non-crossing

graphs in total and gives explicit formulas for each fixed cardinality.
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In this paper we generalize the associahedron and construct from A a polytope
whose face poset contains the poset of non-crossing graphs on A embedded in a
very nice way:

Theorem 1.1. Let A be a finite set of n points in the plane, not all contained in a
line. Let ni, ns and nv be the number of interior, semi-interior and extremal points
of A, respectively.

There is a simple polytope Yf (A) of dimension 2ni + n − 3, and a face F of
Yf (A) (of dimension 2ni + nv − 3) such that the complement of the star of F in
the face-poset of Yf (A) equals the poset of non-crossing graphs on A that use all
the convex hull edges.

This statement deserves some words of explanation:

– Since convex hull edges are irrelevant to crossingness, the poset of all non-
crossing graphs on A is the direct product of the poset in the statement
and a Boolean poset of rank nv.

– The equality of posets in Theorem 1.1 reverses inclusions. Maximal non-
crossing graphs (triangulations of A) correspond to minimal faces (vertices
of Yf (A)).

– We remind the reader that the star of a face F is the set of faces contained
in the union of all the facets (maximal proper faces) containing F . In the
complement of the star of F we must include the polytope Yf (A) itself,
which corresponds to the graph with no interior edges.

– If our point set is in convex position then Yf (A) is the associahedron and
the face F is the whole polytope, whose star we must interpret as being
empty.

– We give a fully explicit facet description of Yf (A). It lives in R
3n and is

defined by the 3 linear equalities (1) and the
(

n
2

)

+ n linear inequalities
(4) and (5) of Section 3, with some of them turned into equalities. (With
one exception: for technical reasons, if A contains three collinear boundary
points we need to add extra points to its exterior and obtain Yf (A) as a
face of the polytope Yf (A′) of the extended point set A′).

– The fij ’s in equations (4) and (5) and in the notation Yf (A) denote a vector

in R
(n+1

2 ). Our construction starts with a linear cone Y0(A) (Definition
3.1) whose facets are then translated using the entries of f to produce a
polyhedron Yf (A), of which the polytope Yf (A) is the unique maximal
bounded face. Our proof goes by analyzing the necessary and sufficient
conditions for f to produce a polytope with the desired properties and
then proving the existence of valid choices of f . In particular, Theorem 3.7
shows one valid choice. This is essentially the same approach used in [16]
for the polytope of pointed non-crossing graphs constructed there. That
polytope is actually the face F of the statement of Theorem 1.1.

– Our results are valid for point sets in non-general position, an aspect which
was left open in [16]. Our definition of non-crossing in non-general posi-
tion is that if q is between p and r, then the edge pr cannot appear in
a non-crossing graph, regardless of whether q is incident to any edge in
the graph. This definition has the slight drawback that a graph which is
non-crossing in a point set A may become crossing in A ∪ {p}, but it has
the advantage that it makes maximal crossing-free graphs coincide with
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the triangulations of A (with the convention, standard in Computational
Geometry, that triangulations of A are required to use all the points of A
as vertices).

It is worth relating our construction to other two constructions of polytopes
whose vertices are triangulations of a point set:

(1) The secondary polytope of A, of dimension n− 3 (see [4]), which specializes
also to the associahedron for points in convex position. Its face poset is that
of regular subdivisions with vertex set contained in A. That is to say, only
regular (or “generalized Delaunay”) triangulations of A appear as vertices,
and the definition of triangulation allows for interior points to be used as
vertices or not.

(2) The universal polytope, which is a 0/1 polytope living in R
(n3) (one coor-

dinate for each possible triangle in the configuration) and has dimension
(

n−1

3

)

for point sets in general position. In the definition of [6], triangu-
lations that do not use all the interior points as vertices are allowed. But
those using all the interior points form a face, obtained setting to zero all
the variables of non-empty triangles.

Both the secondary polytope and the universal polytope have been used for
optimization or enumeration purposes in triangulations. But observe that there are
no explicit facet descriptions of them: In the secondary polytope, facets correspond
to the coarse polygonal subdivisions of A, which have no easy characterization. In
the universal polytope, the facet description in [6] gives only a linear programming
relaxation of the polytope, which implies that integer programming is needed in
order to optimize linear functionals in it.

The fact that the poset we are interested in is the complement of the star of a
face and not just a subposet of the face lattice of Yf (A) has theoretical and practical
implications. On the one hand, it implies that the poset is homeomorphic to a ball
of dimension 2ni+n−4, since there is a shelling order ending precisely in the facets
that contain F . It also says that the part of the boundary of Yf (A) that we are
interested in becomes the (strict) lower envelope of a convex polyhedron via any
projective transformation that sends a supporting hyperplane of the face F to the
infinity.

Observe also that the dimension 2ni + n − 3 of the polytope we construct is
the minimum possible one because it equals the number of interior edges in every
triangulation.

Although this paper is (mostly) self-contained, the construction is greatly based
on [16]. There, a polyhedron Xf (A) of dimension 2n− 3 is constructed whose face
poset is (opposite to) that of pointed non-crossing graphs on A. A straight-line
graph embedded in the plane is called pointed if the edges incident to every vertex
span an angle of at most 180 degrees (but there is a subtlety in our understanding
of pointedness at semi-interior points. See Definition 5.2). The polyhedron Xf (A)
has a unique maximal bounded face Xf(A), of dimension 2ni+nv − 3, the polytope
of pointed pseudo-triangulations of A.

Our main new ingredient is that we consider “marked” non-crossing graphs,
meaning non-crossing graphs together with the specification of a subset of their
pointed vertices. With ideas similar to those of [16] but with n extra coordinates
for the n possible marks, we get a polyhedron Yf (A) of dimension 3n− 3. Facets
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of Yf (A) correspond to the edges or marks available in A, which are
(

n
2

)

+ n in
general position and less than that in special position, because edges whose relative
interior meets A do not produce facets. Yf (A) has a unique maximal bounded face,
which is the polytope Yf (A) in the statement of Theorem 1.1. In the absence of
semi-interior points, this face is just the intersection of the 2nv facets corresponding
to marks in boundary vertices or edges of conv(A). The face F of the statement of
Theorem 1.1 is the intersection with the facets of the remaining n−nv = ni marks.
If semi-interior points exist then our construction is slightly indirect, as mentioned
above.

The technical tools both in our construction and in [16] are pseudo-triangulations
of planar point sets and their relation to structural rigidity of non-crossing graphs.
Pseudo-triangulations, first introduced by Pocchiola and Vegter around 1995 (see
[14]), have by now been used in many Computational Geometry applications, among
them visibility [13, 15, 14, 18], ray shooting [9], and kinetic data structures [1, 12].
Streinu [19] introduced the minimum or pointed pseudo-triangulations, and used
them to prove the Carpenter’s Rule Theorem (the first proof of which was given
shortly before by Connelly et al [5]). Pointed pseudo-triangulations turn out to
coincide with the maximal non-crossing and pointed graphs; that is to say, with
the vertices of the polyhedron Xf (A) of [16] (the face F of Theorem 1.1). Our
method extends that construction to cover all pseudo-triangulations, with a suitable
definition of pseudo-triangulation for point sets in non-general position (Definition
5.1). In particular:

Theorem 1.2. The vertex set of the polytope Yf (A) of Theorem 1.1 is in bijection
to the set of all pseudo-triangulations of A. The 1-skeleton of Yf (A) is the graph
of flips between them.

The flips between pseudo-triangulations that we consider are introduced in Sec-
tion 2 (see Definition 2.5) for point sets in general position and in Section 5 (see
Definition 5.5 and Figures 8 and 9) for point sets with collinearities. The definition
is new (to the best of our knowledge) but in the case of general position it has in-
dependently been considered in [2], where flips between pseudo-triangulations are
related to geometric flips between polyhedral terrains.

Our flips restrict to the ones in [19] and [16] when the two pseudo-triangulations
involved are pointed, and they are also related to the flips of Pocchiola and Vegter
[14] as follows: Pocchiola and Vegter were interested in pseudo-triangulations of a
set O := {o1, . . . , on} of convex bodies, and they defined a graph of flips between
them. That graph is regular of degree 3n− 3. Pocchiola (personal communication)
has shown that taking each oi to be a sufficiently small convex body around each
point, our graph is obtained from the one in [14] by contraction of certain edges.
In particular, this shows that our graph has diameter O(n2) since that is the case
for the graph in [14].

Our construction has also rigid-theoretic consequences. A generically rigid graph
(for dimension 2) is a graph which becomes rigid in almost all its straight-line
embeddings in the plane. Generically rigid graphs need at least 2n−3 edges, because
that is the number of degrees of freedom of n points in the plane (after neglecting
rigid motions). Generically rigid graphs with exactly 2n−3 edges are called isostatic
and they admit the following characterization, due to Laman (see, for example,
[10]): they are the graphs with 2n− 3 edges and with the property that any subset
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of k ≤ n − 2 vertices is incident to at least 2k edges. Using this characterization,
Ileana Streinu [19] proved that every pointed pseudo-triangulations is an isostatic
graph. We have the following generalization:

Theorem 1.3. Let T be a pseudo-triangulation of a planar point set A in general
position. Let G be its underlying graph. Then:

(1) G is infinitesimally rigid, hence rigid and generically rigid.
(2) There are at least 2k + 3l edges of T incident to any subset of k pointed

plus l non-pointed vertices of T (assuming k + l ≤ n− 2).

This result is true for points in non-general position, as long as they do not
have boundary collinearities. In the presence of boundary collinearities, non-rigid
pseudo-triangulations (for our definition) exist. For example, only six of the four-
teen pseudo-triangulations of the point set of Figure 9 are rigid.

If we recall that a pseudo-triangulation with k non-pointed vertices has exactly
2n− 3 + k edges (see Proposition 2.2), Theorem 1.3 has the consequence that the
space of self-stresses on a pseudo-triangulation has exactly dimension k. This fact
follows also from the results of [2].

The structure of the paper is as follows: We first develop our construction for
point sets in general position, in three steps: the combinatorics of the polyhedron
we are seeking for is studied in Section 2, where we introduce in particular the graph
of flips between pseudo-triangulations. Then, the construction of the polytope is
given in Section 3 but the proof that it has the required properties depends on some
assumption which is proved in Section 4 using rigidity theoretic ideas. In Section
5 everything is adapted to point sets with collinearities.

In closing, we propose two open questions:

• Can every planar and generically rigid graph be embedded as a pseudo-
triangulation? We believe this is true. In the maximal case (combinatorial
triangulations can be drawn with convex faces) it holds by Tutte’s theorem.
In the minimal case (planar Laman graphs can be embedded as pointed
pseudo-triangulations) the result has been proved in [11].

• Is the poset of non-crossing graphs on A the poset of a polyhedron? A
naive answer would be that the polyhedron can be obtained by just deleting
from the facet definition of the polytope Yf (A) of Theorem 1.1 the facets
containing F . We have checked that this is false in the simplest example
of a single point in general position in the interior of a quadrilateral. In
this example F itself is a facet, but its removal gives a polyhedron with
two extra vertices, not present in Yf (A), and corresponding to graphs with
crossings.

2. The graph of all pseudo-triangulations of A
All throughout this section, A denotes a set of n points in general position in

the plane, ni of them in the interior of conv(A) and nv in the boundary.

Definition 2.1. A pseudo-triangle is a simple polygon with only three convex
vertices (called corners) joined by three inward convex polygonal chains (called
pseudo-edges of the pseudo-triangle).

A pseudo-triangulation of A is a geometric non-crossing graph with vertex set
A and which partitions conv(A) into pseudo-triangles.
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Part (a) of Figure 1 shows a pseudo-triangle. Parts (b) and (c) show two pseudo-
triangulations.

Since the maximal non-crossing graphs on A (the triangulations of A) are a par-
ticular case of pseudo-triangulations, they are the maximal pseudo-triangulations.
As is well-known, they all have 2nv + 3ni − 3 edges. It turns out that the pseudo-
triangulations with the minimum possible number of edges are also very interesting
from different points of view. We recall that a vertex of a geometric graph is called
pointed if all its incident edges span an angle smaller than 180 degrees from that
vertex. The graph itself is called pointed if all its vertices are pointed. The following
statement comes originally from [19] and a proof can also be found in [16].

Proposition 2.2 (Streinu). Let A be a planar point set as above. Then:

1. Every pseudo-triangulation of A with nγ non-pointed vertices and nǫ pointed
vertices has: 2n− 3 + nγ = 3n− 3− nǫ edges.

2. Every pointed and planar graph on A has at most 2n − 3 edges, and is
contained in some pointed pseudo-triangulation of A.

Part 1 implies that, among pseudo-triangulations of A, pointed ones have the
minimum possible number of edges . For this reason they are sometimes called
minimum pseudo-triangulations. Part 2 says that pointed pseudo-triangulations
coincide with maximal non-crossing and pointed graphs.

(a) (b) (c)

Figure 1. (a) A pseudo-triangle. (b) A pointed pseudo-
triangulation. (c) The dashed edge in (b) is flipped, giving another
pointed pseudo-triangulation.

Another crucial property of pseudo-triangulations is the existence of a natural
notion of flip. Let e be an interior edge in a pseudo-triangulation T of A and let σ
be the union of the two pseudo-triangles incident to e. We regard σ as a graph, one
of whose edges is e. We can consider σ \ e to be a (perhaps degenerate) polygon,
with a well-defined boundary cycle; in degenerate cases some edges and vertices
may appear twice in the cycle. See an example of what we mean in Figure 2, in
which the cycle of vertices is pqrstsu and the cycle of edges is pq, qr, rs, st, ts, su, up.
As in any polygon, each (appearance of a) vertex in the boundary cycle of σ \ e
is either concave or convex. In the figure, there are four convex vertices (corners),
namely r, second appearance of s, u and q. Then:

Lemma 2.3. 1. σ \ e has either 3 or 4 corners.
2. It has 3 corners if and only if exactly one of the two end-points of e is

pointed in σ. In this case T \ e is still a pseudo-triangulation.
3. It has 4 corners if and only if both end-points of e are pointed in σ. In this

case T \ e is not a pseudo-triangulation and there is a unique way to insert
an edge in T \ e to obtain another pseudo-triangulation.
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Figure 2. The region σ \ e is a degenerate polygon with four corners

Proof. Let v1 and v2 be the two end-points of e. For each vi, one of the following
three things occur: (a) vi is not-pointed in σ, in which case it is a corner of the two
pseudo-triangles incident to e and is not a corner of σ \e; (b) vi is pointed in σ with
the big angle exterior to σ, in which case it is a corner of both pseudo-triangles and
of σ \ e as well, or (c) vi is pointed with its big angle interior, in which case it is a
corner in only one of the two pseudo-triangles and not a corner in σ \ e.

In case (a), vi contributes two more corners to the two pseudo-triangles than to
σ \ e. In the other two cases, it contributes one more corner to the pseudo-triangles
than to σ \ e. Since the two pseudo-triangles have six corners in total, σ \ e has
four, three or two corners depending on whether both, one or none of v1 and v2 are
pointed in σ. The case of two corners is clearly impossible, which finishes the proof
of 1. Part 2 only says that “degenerate pseudo-triangles” cannot appear.

Part 3 is equivalent to saying that a pseudo-quadrangle (even a degenerate one)
can be divided into two pseudo-triangles in exactly two ways. Indeed, these two
partitions are obtained drawing the geodesic arcs between two opposite corners.
Such a geodesic path consists of a unique interior edge and (perhaps) some boundary
edges. �

Cases (2) and (3) of the above lemma will define two different types of flips in a
pseudo-triangulation. The inverse of the first one is the insertion of an edge, in case
this keeps a pseudo-triangulation. The following statement states exactly when this
happens:

Lemma 2.4. Let T be a pseudo-triangle with k non-corners. Then, every inte-
rior edge dividing T into two pseudo-triangles makes non-pointed exactly one non-
corner. Moreover, there are exactly k such interior edges, each making non-pointed
a different non-corner.

Proof. The first sentence follows from Lemma 2.3, which says that exactly one of
the two end-points of the edge inserted is pointed (after the insertion). For each
non-corner, pointedness at the other end of the edge implies that the edge is the
one that arises in the geodesic arc that joins that non-corner to the opposite corner.
This proves uniqueness and existence. �

Definition 2.5. (Flips in pseudo-triangulations) Let T be a pseudo-triangu-
lation. We call flips in T the following three types of operations, all producing
pseudo-triangulations. See examples in Figure 3:

- (Deletion flip). The removal of an edge e ∈ T , if T \ e is a pseudo-
triangulation.
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- (Insertion flip). The insertion of an edge e 6∈ T , if T ∪ e is a pseudo-
triangulation.

- (Diagonal flip). The exchange of an edge e ∈ T , if T \ e is not a pseudo-
triangulation, for the unique edge e′ such that (T \ e) ∪ e′ is a pseudo-
triangulation.

The graph of pseudo-triangulations ofA has as vertices all the pseudo-triangulations
of A and as edges all flips of any of the types.

Figure 3. Above, a diagonal-flip. Below, an insertion-deletion flip.

Proposition 2.6. The graph of pseudo-triangulations of A is connected and regular
of degree 3ni + nv − 3 = 3n− 2nv − 3.

Proof. There is one diagonal or deletion flip for each interior edge, giving a total of
3n− 3 − nǫ − nv by Proposition 2.2. There are as many insertion flips as pointed
interior vertices by Lemma 2.4, giving nǫ − nv.

To establish connectivity, let p be a point on the convex hull of A. The pseudo-
triangulations of A with degree 2 at p coincide with the pseudo-triangulations of
A \ {p} (together with the two tangents from p to A \ {p}). By induction, we
assume all those pseudo-triangulations to be connected in the graph. On the other
hand, in pseudo-triangulations with degree greater than 2 at p all interior edges
incident to e can be flipped and produce pseudo-triangulations with smaller degree
at e. (Remark: if p is an interior point, then a diagonal-flip on an edge incident
to p may create another edge incident to p; but for a boundary point this cannot
be the case since p is a corner in the pseudo-quadrilateral σ \ e of Lemma 2.3).
Decreasing one by one the number of edges incident to p will eventually lead to a
pseudo-triangulation with degree 2 at p. �

Remarks 2.7. It is an immediate consequence of Lemma 2.3 that every interior
edge in a pointed pseudo-triangulation is flippable. This shows that the graph
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of diagonal-flips between pointed pseudo-triangulations of A is regular of degree
2ni + nv − 3, a crucial fact in [16].

As another remark, one may be tempted to think that two pseudo-triangulations
are connected by a diagonal flip if and only if one is obtained from the other by the
removal and insertion of a single edge, but this is not the case: The two pseudo-
triangulations of Figure 4 are not connected by a diagonal flip, according to our
definition, because the intermediate graph T \ e is a pseudo-triangulation.

Figure 4. These two pseudo-triangulations are not connected by
a flip.

Marked non-crossing graphs on A. As happened with pointed pseudo-triangu-
lations, Proposition 2.6 suggests that the graph of pseudo-triangulations of A may
be the skeleton of a simple polytope of dimension 3ni + nv − 3. As a step towards
this result we first look at what the face poset of such a polytope should be. The
polytope being simple means that we want to regard each pseudo-triangulation T
as the upper bound element in a Boolean poset of order 3n− 3− 2nv. This number
equals, by Proposition 2.2, the number of interior edges plus interior pointed vertices
in T :

Definition 2.8. A marked graph on A is a geometric graph with vertex set A
together with a subset of its vertices, that we call “marked”. We call a marked
graph non-crossing if it is non-crossing as a graph and marks arise only in pointed
vertices.

We call a non-crossing marked graph fully-marked if it is marked at all pointed
vertices. If, in addition, it is a pseudo-triangulation, then we call it a fully-marked
pseudo-triangulation, abbreviated as f.m.p.t.

Marked graphs form a poset by inclusion of both the sets of edges and of marked
vertices. We say that a marked graph contains the boundary of A if it contains all
the convex hull edges and convex hull marks. The following results follow easily from
the corresponding statements for non-crossing graphs and pseudo-triangulations.

Proposition 2.9. With the previous definitions:

1. Every marked pseudo-triangulation of A with nγ non-pointed vertices, nǫ

pointed vertices and nm marked vertices, has 2n−3+nγ+nm = 3n−3−nǫ+
nm edges plus marks. In particular, all fully-marked pseudo-triangulations
have 3n− 3 edges plus marks, 3n− 3− 2nv of them interior.

2. Fully-marked pseudo-triangulations of A are exactly the maximal non-crossing
marked graphs on A.

3. (Flips in marked pseudo-triangulations) In a fully-marked pseudo-
triangulation of A, every interior edge or interior mark can be flipped;
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once removed, there is a unique way to insert another edge or mark to
obtain a different fully-marked pseudo-triangulation of A. The graph of
flips between fully-marked pseudo-triangulations of A equals the graph of
pseudo-triangulations of A of Definition 2.5. �

Figure 5. Two marked pseudo-triangulations (with marks repre-
sented by dots) related by a flip. An edge from the left is switched
to a mark on the right.

These properties imply that, if the graph of pseudo-triangulations of A is to
be the skeleton of a simple polytope, then the face poset of that polytope must
be (opposite to) the inclusion poset of non-crossing marked graphs containing the
boundary of A. Indeed, this poset has the right “1-skeleton” and the right lower
ideal below every fully-marked pseudo-triangulation (a Boolean lattice of order
3n− 3− 2nv).

3. The polyhedron of marked non-crossing graphs on A
In the first part of this section we do not assume A to be in general position.

Only after Definition 3.6 we need general position, among other things because we
have not yet defined marked non-crossing graphs or pseudo-triangulations for point
sets in special position. That will be done in Section 5.

The setting for our construction is close to the rigid-theoretic one used in [16].
There, the polytope to be constructed is embedded in the space R2n−3 of all infini-
tesimal motions of the n points p1, . . . , pn. The space has dimension 2n−3 because
the infinitesimal motion of each point produces two coordinates (an infinitesimal
velocity vi ∈ R

2) but global translations and rotations produce a 3-dimensional
subspace of trivial motions which are neglected. Formally, this can be done by a
quotient R2n/M0, where M0 is the 3-dimensional subspace of trivial motions, or it
can be done by fixing three of the 2n coordinates to be zero. For example, if the
points p1 and p2 do not lie in the same horizontal line, one can take

v11 = v21 = v12 = 0.

In our approach, we will consider a third coordinate ti for each point, related to the
“marks” discussed in the previous paragraphs, or to pointedness of the vertices.

That is to say, given a set of n points A = {p1, . . . , pn} in R
2, we consider the

following (3n− 3)-dimensional space;

S := {(v1, . . . , vn, t1, . . . , tn) ∈
(

R
2
)n × R

n : v11 = v21 = v12 = 0} ⊂ R
3n. (1)

In it we consider the following
(

n
2

)

+ n linear inequalities

H+
ij := {(v, t) ∈ S : 〈pi − pj , vi − vj〉 − |pi − pj |(ti + tj) ≥ 0} (2)
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and
H+

0j := {(v, t) ∈ S : tj ≥ 0}. (3)

We denote by Hi,j and H0,j their boundary hyperplanes.

Definition 3.1. We call expansion cone of A and denote it Y0(A) the positive
region of the above hyperplane arrangement:

Y0(A) :=
⋂

i,j∈{0,1,...,n}

H+
ij

When clear from the context we will omit the point set A and use just Y0.

Observe that the equations defining Y0 imply that for every i, j:

〈pi − pj , vi − vj〉 ≥ |pi − pj |(ti + tj) ≥ 0.

In particular, the vector (v1, . . . , vn) is an expansive infinitesimal motion of the
point set, in the standard sense.

Lemma 3.2. The polyhedron Y0(A) has full dimension 3n−3 in S ⊂ R
3n and it is

a pointed polyhedral cone. (Here, “pointed” means “having the origin as a vertex”
or, equivalently, “containing no opposite non-zero vectors”).

Proof. The vector (v, t) with vi := pi, ti := mink,l{|pk − pl|}/4 satisfies all the
inequalities (2) and (3) strictly. In order to obtain a point in S we add to it a
suitable infinitesimal trivial motion.

To prove that the cone is pointed, suppose that it contains two opposite vectors
(v, t) and −(v, t). Equivalently, that (v, t) lies in all the hyperplanes Hi,j and H0,i.
That is to say, ti = 0 for every i and

〈vj − vi, pj − pi〉 = 0

for all i, j. These last equations say that (v1, . . . , vn) is an infinitesimal flex of the
complete graph on A. Since the complete graph on every full-dimensional point set
is infinitesimally rigid, (v1, . . . , vn) is a trivial motion and equations (1) imply that
the motion is zero. �

An edge pipj or a point pi are called tight for a certain vector (v, t) ∈ Y0 if (v, t)
lies in the corresponding hyperplane Hi,j or H0,i. We call supporting graph of any
(v, t) and denote it T (v, t) the marked graph of tight edges for (v, t) with marks at
tight points for (v, t).

Lemma 3.3. Let (v, t) ∈ Y0. If T (v, t) contains the boundary edges and vertices
of a convex polygon, then vl = 0 and tl = 0 for every point pl in the interior of
the polygon. Therefore, T (v, t) contains the complete marked graph on the set of
vertices and interior points of the polygon.

Observe that this statement says nothing about points in the relative interior of
a boundary edge, if the polygon has collinear points in its boundary. Indeed, such
points may have a non-zero vl, namely the exterior normal to the boundary edge
containing the point.

Proof. The hypotheses are equivalent to ti = 0 and 〈pi − pj , vi − vj〉 = 0 for all
the boundary vertices pi and boundary edges pipj of the convex polygon. We
first claim that the infinitesimal expansive motion v = (v1, . . . , vn) also preserves
distances between non-consecutive polygon vertices. Since the sum of interior angles
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at vertices of an n-gon is independent of coordinates, a non-trivial motion fixing
the lengths of boundary edges would decrease the interior angle at some polygon
vertex pi and then its adjacent boundary vertices get closer, what contradicts (2).
Hence, v is a translation or rotation of the polygon boundary which, by equations
(1), is zero. On the other hand, if vk 6= 0 for any pk interior to the polygon, then
pk gets closer to some boundary vertex, what using tk ≥ 0 contradicts (2) again.

Therefore, vl = 0 for every point pl enclosed in the polygon (what can be con-
cluded from [16, Lemma 3.2(b)] as well). Then, the equation (2) corresponding to
pl and to any point pi in the boundary of the polygon implies that tl ≤ 0. Together
with the equation (3) corresponding to pl this implies tl = 0. �

Obviously, Y0 is not the polyhedron we are looking for, since its face poset
does not have the desired combinatorial structure; it has a unique vertex while
A may have more than only one fully-marked pseudo-triangulation. The right
polyhedron for our purposes is going to be a convenient perturbation of Y0 obtained
by translation of its facets.

Definition 3.4. For each f ∈ R
(n+1

2 ) (with entries indexed fi,j , for i, j ∈ {0, . . . , n})
we call polyhedron of expansions constrained by f , and denote it Yf (A), the poly-
hedron defined by the

(

n
2

)

equations

〈pi − pj , vi − vj〉 − |pi − pj |(ti + tj) ≥ fij (4)

for every pi, pj ∈ A and the n equations

tj ≥ f0j , ∀pi ∈ A. (5)

From Lemma 3.2, we conclude that:

Corollary 3.5. Yf (A) is a (3n−3)-dimensional unbounded polyhedron with at least
one vertex, for any f . �

In the rest of this section and in Section 4 we assume A to be in general position.
As before, to each feasible point (v, t) ∈ Yf we associate the marked graph consisting
of edges and vertices whose equations (4) and (5) are tight on (v, t). Similarly, to
a face F of Yf we associate the tight marked graph of any of its relative interior

points. This gives an (order-reversing) embedding of the face poset of Yf into the
poset of all marked graphs of A. Our goal is to show that for certain choices of the
constraint parameters f , the face poset of Yf coincides with that of non-crossing
marked graphs on A.

Definition 3.6. We define a choice of the constants f to be valid if the tight
marked graph T (F ) of every face F of Yf is non-crossing.

The proof that valid choices exist for any point set is postponed to Section 4, in
order not to interrupt the current flow of ideas. In particular, Corollary 4.5 implies
that the following explicit choice is valid:

Theorem 3.7. The choice fij := det(O, pi, pj)
2, f0j := 0 is valid.

The main statement in the paper is then:

Theorem 3.8. (The polyhedron of marked non-crossing graphs) If f is
a valid choice of parameters, then Yf is a simple polyhedron of dimension 3n − 3
whose face poset equals (the opposite of) the poset of non-crossing marked graphs
on A. In particular:
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(a) Vertices of the polyhedron are in 1-to-1 correspondence with fully-marked
pseudo-triangulations of A.

(b) Bounded edges correspond to flips of interior edges or marks in fully-marked
pseudo-triangulations, i.e., to fully-marked pseudo-triangulations with one
interior edge or mark removed.

(c) Extreme rays correspond to fully-marked pseudo-triangulations with one
convex hull edge or mark removed.

Proof. By Corollary 3.5, every vertex (v, t) of Yf has at least 3n−3 incident facets.

By Proposition 2.9, if f is valid then the marked graph of any vertex of Yf has
exactly 3n− 3 edges plus marks and is a fully-marked pseudo-triangulation. This
also implies that the polyhedron is simple. If we prove that all the fully-marked
pseudo-triangulations appear as vertices of Yf we finish the proof, because then the

face poset of Yf will have the right minimal elements and the right upper ideals
of minimal elements (the Boolean lattices of subgraphs of fully-marked pseudo-
triangulations) to coincide with the poset of non-crossing marked graphs on A.

That all fully-marked pseudo-triangulations appear follows from connectedness
of the graph of flips: Starting with any given vertex of Yf , corresponding to a certain
f.m.p.t. T of A, its 3n− 3 incident edges correspond to the removal of a single edge
or mark in T . Moreover, if the edge or mark is not in the boundary, Lemma 3.3
implies that the edge (of Yf ) corresponding to it is bounded because it collapses to

the origin in Y0. Then, this edge connects the original vertex of Yf to another one
which can only be the f.m.p.t. given by the flip in the corresponding edge or mark
of T . Since this happens for all vertices, and since all f.m.p.t.’s are reachable from
any other one by flips, we conclude that they all appear as vertices. �

From Theorems 3.7 and 3.8 it is easy to conclude the statements in the intro-
duction. The following is actually a more precise statement implying both:

Theorem 3.9. (The polytope of all pseudo-triangulations) Let Yf (A) be

the face of Yf (A) defined turning into equalities the equations (4) and (5) which
correspond to convex hull edges or convex hull points of A, and assume f to be a
valid choice. Then:

(1) Yf (A) is a simple polytope of dimension 2ni + n − 3 whose 1-skeleton is
the graph of pseudo-triangulations of A. (In particular, it is the unique
maximal bounded face of Yf (A)).

(2) Let F be the face of Yf (A) defined by turning into equalities the remaining
equations (5). Then, the complement of the star of F in the face-poset of
Yf (A) equals the poset of non-crossing graphs on A that use all the convex
hull edges.

Proof. (1) That Yf (A) is a bounded face follows from Lemma 3.3 (it collapses to

the zero face in Y0(A)). Since vertices of Yf (A) are f.m.p.t.’s and since all f.m.p.t.’s
contain all the boundary edges and vertices, Yf (A) contains all the vertices of

Yf (A). Hence, its vertices are in bijection with all f.m.p.t.’s which, in turn, are
in bijection with pseudo-triangulations. Edges of Yf (A) correspond to f.m.p.t.’s
minus one interior edge or mark, which are precisely the flips between f.m.p.t.’s, or
between pseudo-triangulations.

(2) The facets containing F are those corresponding to marks in interior points.
Then, the faces in the complement of the star of F are those in which none of
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the inequalities (5) are tight; that is to say, they form the poset of “non-crossing
marked graphs containing the boundary edges and marks but no interior marks”,
which is the same as the poset of non-crossing graphs containing the boundary. �

We now turn our attention to Theorem 1.3. Its proof is based in the use of the
homogeneous cone Y0(A) or, more preciesely, the set H := {Hij : i, j = 1, . . . , n} ∪
{H0i : i = 1, . . . , n} of hyperplanes that define it.

Proof of Theorem 1.3. Observe now that the equations defining Hij , specialized to
ti = 0 for every i, become the equations of the infinitesimal rigidity of the complete
graph on A. In particular, a graph G is rigid on A if and only if the intersection

(∩ij∈GHij) ∩ (∩n
i=1H0i)

equals 0.
This happens for any pseudo-triangulation because Theorem 3.8 implies that

the hyperplanes corresponding to the 3n− 3 edges and marks of any fully-marked
pseudo-triangulation form a basis of the (dual of) the linear space S.

To prove part (2) we only need the fact that the 3n− 3 linear hyperplanes cor-
responding to a fully-marked pseudo-triangulation are independent. In particular,
any subset of them is independent too. We consider the subset corresponding to the
induced (marked) subgraph on the n− k − l vertices other than the k pointed and
l non-pointed ones we are interested in. They form an independent set involving
only 3(n− k − l) coordinates, hence their number is at most 3(n − k − l) − 3 (we
need to subtract 3 for the rigid motions of the n− k − l points, and here is where
we need k + l ≤ n − 2). Since the fully-marked pseudo-triangulation has 3n − 3
edges plus marks, at least 3k+3l of them are incident to our subset of points. And
exactly k marks are incident to our points, hence at least 2k + 3l edges are. �

Actually, we can derive some consequences for general planar rigid graphs. Ob-
serve that every planar and generically rigid graph G must have between 2n − 3
and 3n − 3 edges (the extreme cases being an isostatic graph and a triangulation
of the 2-sphere). Hence, we can say that the graph G has 2n− 3 + y edges, where
and 0 ≤ y ≤ n− 3. If the graph can be embedded as a pseudo-triangulation then
the embedding will have exactly y non-pointed vertices. In particular, the following
statement is an indication that every planar and rigid graph can be embedded as
a pseudo-triangulation:

Proposition 3.10. Let G be a planar and generically rigid graph with n vertices
and 2n− 3 + y edges. Then, there is a subset Y of cardinality y of the vertices of
G such that every set of l vertices in Y plus k vertices not in Y is incident to at
least 2k + 3l edges, whenever k + l ≤ n− 2.

Proof. Consider G embedded planarly in a sufficiently generic straight-line manner.
Since the embedding is planar, it can be completed to a pseudo-triangulation T .
In particular, the set of edges of G represents an independent subset of 2n− 3 + y
hyperplanes of H. But since the graph is rigid, adding marks to all the vertices
produces a spanning set of 3n− 3+ y hyperplanes. In between these two sets there
must be a basis, consisting of the 2n− 3 + y edges of G plus n− y marks. We call
Y the vertices not marked in this basis, and the same argument as in the proof of
Theorem 1.3 gives the statement. �
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It has to be said however, that a planar graph G with a subset Y of its vertices
satisfying Proposition 3.10 need not be generically rigid. Figure 6 shows an example
(take as Y any three of the four six-valent vertices).

Figure 6. A planar graph satisfying the conclusion of Proposition
3.10 need not be rigid.

4. Valid choices of f

It remains to be proved that valid choices of parameters do exist. In particular,
that the choice in Theorem 3.7 is valid. Our methods, again inspired on [16], give
actually more: a full description of the set of valid choices via a set of

(

n
4

)

linear
inequalities, one for each 4-point subset of the n points.

Definition 4.1. Let G be a graph embedded on A, with set of edges E and set
of marked vertices V . In our context, a stress G is an assignment of scalars wij to
edges and αj to marked vertices of G, such that for every (v, t) ∈ R

3n:
∑

ij∈E

wij(〈pi − pj , vi − vj〉 − |pi − pj |(ti + tj)) +
∑

i∈V

αiti = 0 (6)

Lemma 4.2. Let
∑n

i=1
λipi = 0,

∑

λi = 0, be an affine dependence on a point set
A = {p1, . . . , pn}. Then,

wij := λiλj for every i, j

and

αi :=
∑

j:ij∈E

λiλj |pi − pj | for every i

defines a stress of the complete graph G on A.

Proof. The condition (6) on variables v gives
∑

ij∈E

wij〈pi − pj, vi − vj〉 = 0, for every v ∈ R
2n (7)

what can be equivalently stated as saying that the wij form a stress on the under-
lying graph of G. This is fulfilled by the wij ’s of the statement:

∑

j 6=i

λiλj(pi − pj) =
n
∑

j=1

λiλj(pi − pj) = λipi

n
∑

j=1

λj − λi

n
∑

j=1

λjpj = 0
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where last equality comes from λi’s being an affine dependence. Then, cancellation
of the coefficient of ti in equation (6) is equivalent to αi =

∑

j:ij∈E wij |pi−pj |. �

Let us consider the case of four points in general position in R
2, which have a

unique (up to constants) affine dependence. The coefficients of this dependence
are:

λi = (−1)i det([p1, . . . , p4]\{pi})
Hence, if we divide the wij ’s and αj ’s of the previous lemma by the constant

− det(p1, p2, p3) det(p1, p2, p4) det(p1, p3, p4) det(p2, p3, p4)

we obtain the following expressions:

wij =
1

det(pi, pj, pk) det(pi, pj, pl)
, αi =

∑

j:ij∈E

wij |pi − pj | (8)

where, in that of wi,j , k and l denote the two indices other than i and j. The reason
why we perform the previous rescaling is that the expressions obtained in this way
have a key property which will turn out to be fundamental later on; see Figure 7:

+

+ ++

+ +

-

-

+ + + +

+ ++

+

-

--
-

Figure 7. The negative parts of these two marked graphs are the
excluded minors in non-crossing marked graphs of a point set in
general position

Lemma 4.3. For any four points in general position, the previous expressions
give positive wij and αj on boundary edges and points and negative wij and αj on
interior edges and points.

Proof. In order to check the part concerning wij ’s we use that det(q1, q2, q3) is two
times the signed area of the triangle spanned by q1, q2, q3: For a boundary edge the
two remaining points lie on the same side of the edge, so they have the same sign.
For an interior edge, they lie on opposite sides and therefore they have different
signs.

For the αi’s, if i is an interior point then all the wi,j ’s in the formula for αi are
negative and, hence, αi is also negative. If i is a boundary point then two of the
wi,j are positive and the third one is negative. But, since

∑

j∈{1,2,3,4}\i

wi,j(pi − pj) = 0,

the triangle inequality implies that the two positive summands wij |pi − pj | in the
expression of αi add up to a greater absolute value than the negative one. Hence
αi is positive. �
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The previous statement is crucial to us, because no matter whether the four
points are in convex position or one of them is inside the convex hull of the other
three, the fully-marked pseudo-triangulations on the four points can be character-
ized as the marked graphs with nine edges plus marks and in which the missing
edge or mark is interior (two f.m.p.t’s for points in convex position, four of them
for a triangle plus an interior point).

We conclude that:

Theorem 4.4. An f ∈ R
(n+1

2 ) is valid if and only if for every four points {p1, p2, p3, p4}
of A the following inequality holds,

∑

1≤i<j≤4

wijfij +

4
∑

j=1

αjf0j > 0 (9)

where the wij ’s and αj’s are those of (8).

Proof. Suppose first that A has only four points. The polyhedron Yf (A) is nine-
dimensional, what implies that for every vertex (v, t) of the polyhedron, the set
T (v, t) contains at least nine edges plus marks on those four points. Therefore,
T (v, t) is the complete marked graph with an edge or mark removed.

Let us denote by Gk and Gkl the complete marked graph with a non-marked
vertex k or a missing edge kl, respectively. Recall that by Lemma 4.3 the choice
of stress on four points has the property that Gk and Gkl are fully-marked pseudo-
triangulations if and only if αk and wkl (corresponding respectively to the removed
mark or edge) are negative. Let us see that this is equivalent to f being valid:

By the definition of stress,

∑

1≤i<j≤4

wij(〈pi − pj , vi − vj〉 − |pi − pj |(ti + tj)) +

4
∑

j=1

αjtj

equals zero. In the case of Gk, in which every edge and vertex except k are tight,
that expression equals

∑

1≤i<j≤4

wijfij +
4

∑

j=1

αjf0j + αk(tk − f0k).

In the case of Gkl, where every vertex and edge except kl are tight, it equals

∑

1≤i<j≤4

wijfij +

4
∑

j=1

αjf0j + wkl(〈pk − pl, vk − vl〉 − |pk − pl|(tk + tl)− fkl).

Since 〈pk − pl, vk − vl〉 − |pk − pl|(tk + tl)− fkl ≥ 0 and tk − f0k ≥ 0, by (4) and
(5), we conclude that in the first and second cases above, αk and wkl respectively
are negative if, and only if, f is valid.

Now we turn to the case of a general A and our task is to prove that a choice
of parameters f is valid if and only if it is valid when restricted to any four points.
Observe that if A′ ⊂ A then Yf (A′) equals the intersection of Yf (A) with the
subspace where vi = 0 and ti = 0 for all pi ∈ A \ A′. In particular, the marked
graphs on A′ corresponding to faces of Yf (A′) are subgraphs of marked graphs of
faces of Yf (A). Moreover, non-crossingness of a marked graph on A is equivalent to
non-crossingness of every induced marked graph on four vertices: indeed, a crossing
of two edges appears in the marked graph induced by the four end-points of the
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two edges, and a non-pointed marked vertex appears in the marked graph induced
on the four end-points involved in any three edges forming a non-pointed “letter
Y” at the non-pointed vertex.

Hence: if f is valid for every four points, then none of the 4-point minors forbid-
den by non-crossingness appear in faces of Yf (A) and f is valid for A. Conversely,
if f is not valid on some four point subset A′, then the marked graph on A′ corre-
sponding to any vertex of Yf (A′) would be the complete graph minus one boundary
edge or vertex, that is to say, it would not be non-crossing. Hence f would not be
valid on A either. �

Corollary 4.5. For any a, b ∈ R
2, the choice fij := det(a, pi, pj) det(b, pi, pj),

f0j := 0 is valid.

Proof. Consider the four points pi as fixed and regard R :=
∑

wijfij +
∑

αjf0j =
∑

wijfij as a function of a and b:

R(a, b) =
∑

1≤i<j≤4

det(a, pi, pj) det(b, pi, pj)wij .

We have to show that R(a, b) is always positive. We actually claim it to be always
1. Observe first that R(pi, pj) is trivially 1 for i 6= j. Since any three of our points
are an affine basis and since R(a, b) is an affine function of b for fixed a, we conclude
that R(pi, b) is one for every i ∈ {1, 2, 3, 4} and for every b. The same argument
shows that R(a, b) is constantly 1: for fixed b it is an affine function of a and is
equal to 1 on an affine basis. �

5. Points in special position

In this section we show that almost everything we said so far applies equally
to point sets with collinear points. We will essentially follow the same steps as in
Sections 2, 3 and 4. Two subtleties are that our definitions of pointedness or pseudo-
triangulations can only be fully justified a posteriori, and that the construction of
the polyhedron for point sets with boundary collinearities is slightly indirect: it
relies in the choice of some extra exterior points to make colliniarities go to the
interior.

The graph of all pseudo-triangulations of A.

Definition 5.1. Let A be a finite point set in the plane, possibly with collinear
points.

(1) A graph G with vertex set A is called non-crossing if no edge intersects
another edge of G or point of A except at its end-points. In particular, if
p1, p2 and p3 are three collinear points, in this order, then the edge p1p3
cannot appear in a non-crossing graph, independently of whether there is
an edge incident to p2 or not.

(2) A pseudo-triangle is a simple polygon with only three interior angles smaller
than 180 degrees. A pseudo-triangulation of A is a non-crossing graph with
vertex set A, which partitions conv(A) into pseudo-triangles and such that
no point in the interior of conv(A) is incident to more than one angle of
180 degrees.
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Figure 8 shows the eight pseudo-triangulations of a certain point set. We have
drawn them connected by certain flips, to be defined later, and with certain points
marked. The graph on the right of the figure is not a pseudo-triangulation because
it fails to satisfy the last condition in our definition. Intuitively, the reason why
we do not allow it as a pseudo-triangulation is that we are considering angles of
exactly 180 degrees as being reflex, and we do not want a vertex to be incident to
two reflex angles.

Figure 8. The eight pseudo-triangulations of a point set with
interior collinearities (left) plus a non-crossing graph with pseudo-
triangular faces but which we do not consider a pseudo-
triangulation (right)

But if collinearities happen in the boundary of conv(A), as in Figure 9, we treat
things differently. The exterior angle of 180 degrees is not counted as reflex, and
hence the middle point in a boundary collinearity is allowed to be incident to an
interior angle of 180 degrees. The following definition can be restated as “a vertex
is pointed if and only if it is incident to a reflex angle”, where reflex is meant as in
these last remarks.

Definition 5.2. A vertex p in a non-crossing graph on A is considered pointed if
either (1) it is a vertex of conv(A), (2) it is semi-interior and not incident to any
edge going through the interior of conv(A) or (3) it is interior and its incident edges
span at most 180 degrees.

A non-crossing marked graph is a non-crossing graph with marks at some of its
pointed vertices. If all pointed vertices are marked we say the non-crossing graph
is fully-marked. Marks at interior and semi-interior points will be called interior
marks.

For example, all the graphs of Figures 8 and 9 are fully-marked. That is to say,
big dots correspond exactly to pointed vertices. Of course, fully-marked pseudo-
triangulations are just pseudo-triangulations with marks at all their pointed ver-
tices. Observe that we are calling interior marks and edges exactly those which
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Figure 9. The graph of pseudo-triangulations of a point set with
boundary collinearities

do not appear in all pseudo-triangulations. From now on, we denote by ni, ns

and nv the number of interior, semi-interior and extremal points of A. Finally,
n = nv +ns+ni denotes the total number of points in A. The following two state-
ments essentially say that Proposition 2.9 is valid for non-generic configurations.

Lemma 5.3. Fully-marked pseudo-triangulations are exactly the maximal marked
non-crossing graphs on A. They all have 3n−ns−3 edges plus marks and 2ni+n−3
interior edges plus interior marks.

Proof. The first sentence is equivalent to saying that every non-crossing graph G
can be completed to a pseudo-triangulation without making any pointed vertex
non-pointed. The proof of this is that if G is not a pseudo-triangulation then either
it has a face with more than three corners, in which case we insert the diagonal
coming from the geodesic between any two non-adjacent corners, or there is an
interior vertex with two angles of 180 degrees, in which case we choose to consider
one of them as reflex and the other as convex, and insert the diagonal joining the
convex angle to the opposite corner of the pseudo-triangle containing it.

To prove the cardinality of pseudo-triangulations, let nǫ denote the number of
marks. Let us think of boundary collinearities as if they were concave boundary
chains in our graph, and triangulate the polygons formed by these chains by adding
(combinatorially, or topologically) ns edges in total. If, in addition, we consider
interior angles of 180 degrees or more as reflex and the others as convex, we get a
graph with all the combinatorial properties of pseudo-triangulations and, in par-
ticular, a graph for which Proposition 2.2 can be applied, since its proof is purely
combinatorial (a double counting of convex angles, combined with Euler’s relation).
In particular, the extended graph has 3n − 3 edges plus marks, and the original
graph has 3n− 3− ns of them. Since there are exactly ns + nv exterior edges and
nv exterior marks in every pseudo-triangulation, the last sentence follows. �
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Lemma 5.4. If an interior edge or mark is removed from a fully-marked pseudo-
triangulation then there is a unique way to insert another edge or mark to obtain
a different fully-marked pseudo-triangulation.

Proof. If an edge is removed then there are three possibilities: (1) the removal does
not create any new reflex angle, in which case the region obtained by the removal is
a pseudo-quadrangle (that is, it has four non-reflex angles), because the two regions
incident to it had six corners in total and the number of them decreases by two.
We insert the opposite diagonal of it. (2) the removal creates a new reflex angle at
a vertex which was not pointed. Then the region obtained is a pseudo-triangle and
we just add a mark at the new pointed vertex. (3) the removal creates a new reflex
angle at a vertex that was already pointed. This means that after the removal the
vertex has two reflex angles, that is to say two angles of exactly 180 degrees each.
We insert the edge joining this vertex to the opposite corner of the pseudo-triangle
containing the original reflex angle.

If a mark is removed, then the only possibility is: (4) the pointed vertex holding
the mark is incident to a unique reflex angle (remember that we consider interior
angles of 180 degrees as reflex). We insert the edge joining the vertex to the opposite
corner of the corresponding pseudo-triangle. �

Definition 5.5. Two fully-marked pseudo-triangulations are said to differ by a flip
if they differ by just one edge or mark. Cases (1), (2), (3) and (4) in the previous
proof are called, respectively, diagonal flip, deletion flip, mirror flip and insertion
flip.

Of course, our definition of flips specializes to the one for points in general
position, except that mirror flips can only appear in the presence of collinearities.
An example of a mirror flip can be seen towards the upper right corner of Figure 8.

Corollary 5.6. The graph of flips between fully-marked pseudo-triangulations of a
planar point set is connected and regular of degree 2ni + n− 3.

The reader will have noticed that the graphs of Figures 8 and 9 are more than
regular of degrees 4 and 3 respectively. They are the graphs of certain simple
polytopes of dimensions 4 and 3. (Figure 8 is a prism over a simplex).

The case with only interior collinearities. Now we assume that our point set
A has only interior collinearities.

For each f ∈ R
n+1 let Yf (A) be the polyhedron defined in Section 3. Recall that

everything we said in that section, up to Corollary 3.5, is valid for points in special
position. Our main result here is that Theorems 3.7 and 3.8 hold word by word in
the case with no boundary collinearities, except that a precision needs to be made
regarding the concept of validity.

Recall that for a given choice of f ∈ R
(n+1

2 ), an edge pipj or a point pi are called

tight for a certain (v, t) ∈ R
3n−3 or for a face F of Yf (A) if the corresponding

equation (4) or (5) is satisfied with equality.

Definition 5.7. We call strict supporting graph of a (v, t) ∈ R
3n−3 (or face F of

Yf (A)) the marked graph of all its tight edges and points, and denote it T (v, t).
We call weak supporting graph of a (v, t) or face the marked subgraph consisting of
edges and points of T (v, t) which define facets of Yf (A).
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A choice of f is called weakly valid (resp., strictly valid) if the weak (resp., strict)
supporting graphs of all the faces of Yf (A) are non-crossing marked graphs.

Observe that from any weakly valid choice f one can obtain strictly valid ones:
just decrease by arbitrary positive amounts the coordinates of f corresponding to
equations which do not define facets of Yf (A). Hence, we could do what follows
only in terms of strict validity and would obtain the same polyhedron. But weak
validity is needed, as we will see in Remark 5.13, if we want our construction to
depend continuously on the coordinates of the point set A.

To obtain the equations that valid choices must satisfy we proceed as in Section
4. The crucial point there was that a marked graph is non-crossing if and only if it
does not contain the negative parts of the unique stress in certain subgraphs.

Lemma 5.8. Let A be a point set with no three collinear boundary points. Then,
a marked graph on A is non-crossing if and only if it does not contain any of the
following four marked subgraphs: the negative parts of the marked graphs displayed
in Figure 7 and the negative parts of the marked graphs displayed in Figure 10.

++ +0 0

−

−
−

+

++

+

+
+

+

−−
−

+

Figure 10. The two additional excluded minors for non-crossing
marked graphs of a point set with interior collinearities

Proof. Exclusion of the negative parts of the left graphs in both figures are our
definition of crossingness for an unmarked graph. An interior vertex is pointed if
and only if none of the negative parts of the right graphs appear. �

Lemma 5.9. The two graphs in Figure 10 have a stress with signs as in the figure.

Proof. For the left part it is easy to show that the following is a stress:

w12 =
1

|p2 − p1|
, w13 = − 1

|p3 − p1|
, w23 =

1

|p3 − p2|
, α1 = α3 = 0, α2 = 2.

For the right part, observe that, by definition, stresses on a marked graph form
a linear space. Let the four exterior points be p1, p2, p3 and p4, in cyclic order,
and let the interior point be p5. We know three different stresses of the complete
graph on these five points: the one we used in Section 4 for the four exterior points
and the two that we have just introduced for the two collinear triplets. From these
three we can eliminate the coordinates of edges p1p3 and p2p4 and we get a stress
with the stated signs. �

Theorem 5.10. Let A be a point set with no three collinear boundary points. Then,
a choice of f is weakly valid if it satisfies equations (9) for all quadruples of points
in general position plus the following sets of equations:
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• For any three points p1, p2 and p3 collinear in this order:

f12
|p2 − p1|

− f13
|p3 − p1|

+
f23

|p3 − p1|
+ 2f02 ≥ 0 (10)

• For any five points as in the right part of Figure 10, the following equation
where the wij ’s and the αi’s form a stress with signs as indicated in the fig-
ure (by convention, wij equals zero for the two missing edges in the graph):

∑

1≤i<j≤5

wijfij +
5

∑

j=1

αjf0j > 0 (11)

The choice is strictly valid if and only if, moreover, the equations (10) of all collinear
triplets are satisfied strictly.

Proof. Equations (9) guarantee that no weak or strict tight graph contains the two
excluded marked graphs of negative edges and points of Figure 7. Equations (10)
and (11) with strict inequality, do the same for the graphs of Figure 10. That
these equations are equivalent to strict validity is proved exactly as in Section
4. The reason why we allow equality in equations (10) if we only want a weakly
valid choice is that the negative part of the stress consists of a single edge. If the
equation is satisfied with equality then the hyperplane corresponding to this edge
is a supporting hyperplane of the face of Yf given by the intersection of the three
hyperplanes of the positive part of the stress. �

Corollary 5.11. Let A be a point set with no collinear boundary points. Any
choice of f satisfying equations (9) for every four points in general position plus
the following ones for every collinear triplet is weakly valid:

f12
|p2 − p1|

− f13
|p3 − p1|

+
f23

|p3 − p1|
+ 2f02 = 0 (12)

In particular, the choices of Corollary 4.5 and Theorem 3.7 are weakly valid.

Proof. For the first assertion, we need to show that equations (11) follow from
equations (9) and (12). But this is straightforward: from our proof of Lemma 5.9
it follows that equation (11) is just the one obtained substituting in (9) the values
for w13 and w24 obtained from the two equations (12).

For the last assertion, we already proved in Corollary 4.5 that the choices of f
introduced there satisfy equations (9). It is easy, and left to the reader, to show
that they also satisfy (12). �

Theorem 5.12. (Main theorem, case without boundary collinearities) Let
A be a point set with no three collinear points in the boundary of conv(A), and
let f be a weakly valid choice of parameters. Then, Yf is a simple polyhedron of
dimension 3n− 3 with all the properties stated in Theorems 3.8 and 3.9.

Proof. Recall that if no three boundary points are collinear then every fully-marked
pseudo-triangulation (i.e., maximal marked non-crossing graph) has 3n − 3 edges
plus marks, exactly as in the general position case (Lemma 5.3). In particular, it is
still true, for the same reasons as in the general position case, that Yf (A) is simple
and all its vertices correspond to f.m.p.t.’s, for any valid choice of f . The rest of the
arguments in the proof of Theorem 3.8 rely on the graph of flips being connected, a
property that we still have. As for Theorem 3.9, the face Yf (A) is bounded because
Lemma 3.3 still applies. The rest is straightforward. �
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Remark 5.13. It is interesting to observe that taking the explicit valid choice of
f of Theorem 3.7 the equations defining Yf (A) depend continuously on the coor-
dinates of the points in A. When three points become collinear, the hyperplane
corresponding to the (now) forbidden edge becomes, as we said in the proof of
Theorem 5.10 a supporting hyperplane of a codimension 3 face of Yf (A). The com-
binatorics of the polytope changes but maintaining its simplicity. This continuity
of the defining hyperplanes would clearly be impossible if we required our choice to
be strictly valid for point sets with collinearities.

Example 5.14. Let A1 and A2 be the two point sets with five points each whose
pseudo-triangulations are depicted in Figures 11 and 12. The first one has three
collinear points and the second is obtained by perturbation of the collinearity. These
two examples were computed with the software CDD+ of Komei Fukuda [8] before
we had a clear idea of what the right definition of pseudo-triangulation for points
in special position should be. To emphasize the meaning of weak validity, in Figure
11 we are showing the weak supporting graphs of the vertices of Yf (A1), rather
than the strict ones.

Figure 11. The 16 pseudo-triangulations of A1

The 10 first pseudo-triangulations are common to both figures (upper two rows).
Only the pseudo-triangulations of A1 using the two collinear edges plus the mark
at the central point of the collinearity are affected by the perturbation of the point
set. This is no surprise, since these two edges plus this mark are the positive part
of the stress involved in the collinearity. At each of these six pseudo-triangulations,
the hyperplane of the big edge is tangent to the vertex of Yf (A1) corresponding
to the pseudo-triangulation. When the collinearity is perturbed, this hyperplane
moves in one of the two possible ways: away from the polyhedron, in which case the
combinatorics is not changed, or towards the interior of the polyhedron, in which
case the old vertex disappears and some new vertices are cut by this hyperplane. In
our case, these two behaviors appear each in three of the six “non-strict” pseudo-
triangulations of A1. When the hyperplane moves towards the interior, four new
vertices appear where there was one.
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Figure 12. The 25 pseudo-triangulations of A2

Boundary collinearities. In the presence of boundary collinearities, Lemma 5.3
implies a significant difference: with the equations we have used so far, the face of
Y0(A) defined by tightness at boundary edges and vertices is not the origin, but an
unbounded cone of dimension ns. Indeed, for each semi-interior point pi, the vector
(v, t) with vi an exterior normal to the boundary of conv(A) at pi and every other
coordinate equal to zero defines an extremal ray of that face. As a consequence,
the corresponding face in Yf (A) is unbounded.

We believe that it should be possible to obtain a polyhedron with the proper-
ties we want by just intersecting the polyhedron of our general definition with ns

hyperplanes. But instead of doing this we use the following simple trick to reduce
this case to the previous one. From a point set A with boundary collinearities we
construct another point set A′ adding to A one point in the exterior of each edge
of conv(A) that contains semi-interior points.

Figure 13. The extended point set A′ and the relation between
non-crossing marked graphs on A and A′

Lemma 5.15. A marked graph G on A is non-crossing if and only if it becomes
a non-crossing graph on A′ when we add to it the marks on all points of A′ \ A
and the edges connecting each of these points to all the points of A lying in the
corresponding edge of conv(A).
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Proof. Straightforward. �

In particular, we can construct the polyhedron Yf (A′) for this extended point

set A′ (taking any f valid on A′), and call Yf (A) the face of Yf (A′) corresponding
to the edges and marks mentioned in the statement of Lemma 5.15. Then:

Corollary 5.16. (Main theorem, case with boundary collinearities) Yf (A)
is a simple polyhedron of dimension 3n − 3 − ns with all the properties stated in
Theorem 3.8.

Let Yf (A) be the face of Yf (A) corresponding to the nv + ns edges between con-
secutive boundary points and the nv marks at vertices of conv(A). Let F be the face
of Yf (A) corresponding to the remaining n− nv marks. Then, Yf (A) is a polytope
of dimension 2ni + n − 3 and F is a face of it of dimension 2ni + nv − 3. They
satisfy all the properties stated in Theorem 3.9.

Remark 5.17. The reader may wonder about the combinatorics of the polyhedron
Yf (A) that one would obtain with the equations of the generic case. Clearly, the
tight graphs of its faces will not contain any of the four forbidden subgraphs of
Lemma 5.8. It can be checked that the maximal marked graphs without those
subgraphs all have 3n−3 edges plus marks and have the following characterization:
as graphs they are pseudo-triangulations in which all the semi-interior vertices are
incident to interior edges, and they have marks at all the boundary points and
at the pointed interior points. In other words, they would be the fully-marked
pseudo-triangulations if we treated semi-interior points exactly as interior ones,
hence forbidding them to be incident to two angles of 180 degrees and considering
them always pointed since they are incident to one angle of 180 degrees.

For example, in the point set of Figure 9 there are 6 such graphs, namely the
ones shown in Figure 14.

Figure 14. The bounded part of Yf (A) for a point set with
boundary collinearities

This implies that the polyhedron Yf (A) is still simple. The reason why we prefer
the definitions we have given is that the polyhedron no longer has a unique maximal
bounded face (it has three in the example of Figure 14) and the graph of flips is no
longer regular.

Observe finally that the proof of Theorem 1.3 given at the end of Section 3 is valid
for points in special position, without much change: in all cases the hyperplanes
corresponding to the edges of a pseudo-triangulation are independent in Y0(A).
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[18] B. Speckmann and C. D. Tóth. Allocating vertex π-guards in simple polygons via pseudo-
triangulations. In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, 2003 (To ap-
pear).

[19] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning.
In Proc. 41st Ann. Symp. on Found. of Computer Science (FOCS 2000), Redondo Beach,
California, pages 443–453, 2000.
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