
Generating Node Coordinates for
Shortest-Path Computations in
Transportation Networks

ULRIK BRANDES
University of Konstanz
FRANK SCHULZ, DOROTHEA WAGNER, and THOMAS WILLHALM
University of Karlsruhe

Speed-up techniques that exploit given node coordinates have proven useful for shortest-path com-
putations in transportation networks and geographic information systems. To facilitate the use of
such techniques when coordinates are missing from some, or even all, of the nodes in a network we
generate artificial coordinates using methods from graph drawing. Experiments on a large set of
German train timetables indicate that the speed-up achieved with coordinates from our drawings
is close to that achieved with the true coordinates—and in some special cases even better.

Categories and Subject Descriptors: G.2.3 [Discrete Mathematics]: Applications

General Terms: Graph

Additional Key Words and Phrases: Graph drawing, shortest paths, transportation networks, travel
planning

1. INTRODUCTION

In travel-planning systems, shortest-path computations are essential for an-
swering connection queries. While still computing the optimal paths, heuristic
speed-up techniques tailored to geographic networks have been shown to re-
duce response times considerably [Sedgewick and Vitter 1986; Schulz et al.
2000; Schulz et al. 2002] and are, in fact, used in many such systems.

A previous version appeared as Travel Planning With Self-Made Maps, at the Workshop on Algo-
rithm Engineering and Experiments (ALENEX 2001).
This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
WA 654/12-1 and the Human Potential Programme of the European Union under contract no.
HPRN-CT-1999-00104 (AMORE).
Authors’ addresses: Ulrik Brandes, Department of Computer & Information Science, Univer-
sity of Konstanz, Box D 67, 78457 Konstanz, Germany; email: ulrik.brandes@uni-konstanz.de,
http://www.inf.uni-konstanz.de/algo/; Frank Schulz, Dorothea Wagner, and Thomas Willhalm,
Department of Computer Sciences, University of Karlsruhe, Box 6980, 76128 Karlsruhe, Germany;
email: {fschulz,dwagner,willhalm}@ira.uka.de, http://i11www.ira.uka.de/.
Permission to make digital/hard copy of part of this material without fee for personal or classroom
use provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permision and/or a fee.

http://portal.acm.org/JEA/
http://kops.ub.uni-konstanz.de/volltexte/2009/7212
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-72120


2

The problem we consider has been posed by an industrial partner1 who is
a leading provider of travel-planning services for public transportation. They
are faced with the fact that quite often, much of the underlying geography,
that is, the location of nodes in a network, is unknown, since not all transport
authorities provide this information to travel service providers or competitors.
This is particularly true if the provider of the travel information system differs
from the transportation company, for example, for foreign trains or local bus
companies. The situation will become even more serious in future with the lib-
eralization of the European railway network and the integration of local buses
in door-to-door queries. Furthermore, producers of a timetable information sys-
tem need to demonstrate their travel-planning software to new customers who
usually do not have coordinates in a ready-to-use state. Since the reduction in
query response time is important, other ways to make the successful geometric
speed-up heuristics applicable are sought.

The existing, yet unknown, underlying geography is reflected in part by
travel times, which in turn are given in the form of timetables. Therefore, we
can construct a simple undirected weighted graph in the following way. Each
station represents a vertex, and two vertices are adjacent if there is a nonstop
connection between the two corresponding stations. Edge weights are deter-
mined from travel times, thus representing our distance estimates. Reasonable
(relative) location estimates are then obtained by embedding this graph in the
plane such that edge lengths are approximately preserved. This problem is
closely related to drawing Internet latency maps and positioning algorithms
for wireless ad hoc networks. However, it is not our goal to reconstruct the orig-
inal coordinates, but to produce coordinates with which the speed-up techniques
perform well.

Our specific scenario and geometric speed-up heuristics for shortest-path
computations are reviewed briefly in Section 2. In Section 3, we consider the
special case in which the locations of a few stations are known and show that a
simple and efficient graph drawing technique yields excellent substitutes for the
real coordinates. This approach is refined in Section 4 to be applicable in more
general situations. In Section 5, both approaches are experimentally evaluated
on timetables from the German public train network using a snapshot of half
a million connection queries.

2. PRELIMINARIES

Travel-planning systems for, for example, car navigation [Shekhar et al. 1993;
Jung and Pramanik 1996] or public transport [Nachtigall 1995; Preuss and
Syrbe 1997; Siklóssy and Tulp 1988], often make use of geometric speed-up
techniques for shortest-path computations. We consider the (simplified) sce-
nario of a travel-planning system for public railroad transport used in a recent
pilot study [Schulz et al. 2000]. It is based solely on timetables; for each train
there is one table, which contains the departure and arrival times of that train
at each of its halts. In particular, we assume that every train operates daily.

1HaCon Ingenieurgesellschaft mbh, Hannover.



3

The system evaluates connection queries of the following kind: Given a de-
parture station A, a destination station B, and an earliest departure time, find
a connection from A to B with the minimum travel time (i.e., the difference
between the arrival time at B and the departure time at A).

To this end, a (directed) timetable graph is constructed from timetables in a
preprocessing step. For each departure and arrival of a train there is one vertex
in the graph. So, each vertex is naturally associated with a station, and with
a time label (the time the departure or arrival of the train takes place). There
are two different kinds of edges in the graph:

—Stay edges: The vertices associated with the same station are ordered accord-
ing to their time label. Then, there is a directed edge from every vertex to
its successor (for the last vertex there is an edge to the first vertex which
introduces cycles in the graph). Each of these edges represents a stay at the
station, and the edge length is defined by the duration of that stay.

—Travel edges: For every departure of a train there is a directed edge to the
very next arrival of that train. Here, the edge length is defined to be the
time difference between arrival and departure. (Travel edges introduce more
complex cycles.)

Answering a connection query now amounts to finding a shortest path from
a source to one out of several target vertices: The source vertex is the first
vertex at the start station representing a departure that takes place not earlier
than the earliest departure time, and each vertex at the destination station is
a feasible target vertex.

2.1 Geometric Speed-up Techniques

In Schulz et al. [2000], Dijkstra’s algorithm is used as a basis for these shortest-
path computations and several speed-up techniques are investigated. We focus
on the purely geometric ones, that is, those based directly on the coordinates of
the stations, which can be combined with other techniques. Although artificial
coordinates can be used with other heuristic algorithms, this paper deals only
with speed-up techniques that assure the correctness of the result.

2.1.1 Goal-Directed Search. This strategy is found in many textbooks (e.g.,
see Ahuja et al. 1993; Lengauer 1990). For every vertex v, a lower bound b(v)
satisfying a certain consistency criterion is required for the length of a shortest
path to the target. In a timetable graph, a suitable lower bound can be obtained
by dividing the Euclidean distance to the target by the maximum speed of the
fastest train. Using these lower bounds, the length λ{u,v} of each edge is modified
to λ′

{u,v} = λ{u,v} −b(u)+b(v). It can be shown that a shortest path in the original
graph is a shortest path in the graph with the modified edge lengths, and vice
versa. If Dijkstra’s algorithm is applied to the modified graph, the search will
be directed towards a correct target.

In our case, the maximum speed relative to the generated coordinate set
is determined beforehand by a linear scan over all edges in the graph. This
guarantees that goal-directed search finds the correct result whatever the



4

coordinates are. “Bad” coordinates however lead to a slow performance of the
algorithm.

2.1.2 Angle Restriction. In contrast to the goal-directed search, this tech-
nique requires a preprocessing step, which has to be carried out once for the
timetable graph and is independent of the subsequent queries. For every ver-
tex v representing the departure of a train, a circle sector C(v) with origin at
the location of the vertex is computed. That circle sector is stored using its two
bounding angles, and has the following interpretation: If a station A is not in-
side the circle sector C(v), then there is a shortest path from v to A, that starts
with the stay edge from v.

Hence, if Dijkstra’s algorithm is applied to compute a shortest path to some
destination station D, if some vertex u is processed, and D is not inside the
circle sector C(u), then the outgoing travel edge can be ignored, because there
is a shortest path from u to D starting with the stay edge.

2.2 Estimating Distances from Travel Times

The location of stations is needed to determine lower bounds for goal-directed
search, or circle sectors for the angle-restriction heuristic. If the actual geo-
graphic locations are not provided, the only related information available from
the timetables are travel times. We use them to estimate distances between
stations that have a nonstop connection, which in turn are used to generate lo-
cations suitable for the geometric heuristics, though in general far from being
geographically accurate.

The (undirected, simple) station graph of a set of timetables contains a vertex
for each station listed, and an edge between every pair of stations connected by
a train not stopping in between. The length λe of an edge e in the station graph
will represent our estimate of the distance between its endpoints.

Distance between two stations can be expected to be roughly linear in the
travel time. However, for different classes of trains the constant involved will
be different, and closely related to the mean velocity of trains in this class.
We therefore estimate the length of an edge e in the station graph, that is, the
distance between two stations: Consider all nonstop connections that induce
this edge. We use as estimated distance the mean value of their travel time
times the average velocity of the vehicle serving the connection.

Mean velocities have been extracted from the data set described in Section 5,
for which station coordinates are known. For two train categories, the data are
depicted in Figure 1, indicating that linear approximations yield a fairly good
estimation.

Note that all travel times are integers, since they are computed from ar-
rival and departure times. As a consequence, slow trains are often estimated to
have unrealistically high maximum velocities, thus affecting the modified edge
lengths in the goal-directed search heuristic.

Apart from the estimation of geographic distances, a second set of edge
lengths has been tested: a distance that is proportional to the average travel
time of all vehicles including this edge. (It is the same as assuming that all



5

Fig. 1. Euclidean distance versus travel time for nonstop connections. For both service categories,
all data points are shown along with the average distance per travel time and a linear interpolation.

trains have the same average velocity.) This approach can be justified by the
insight that the travel-planning system minimizes only the travel time.

3. NETWORKS WITH PARTIALLY KNOWN GEOGRAPHY

In our particular application, it may occasionally be the case that the geographic
locations of at least some of the major hubs of the network are known, or can
be obtained easily. We therefore first describe a simple method to generate
coordinates for the remaining stations that exploits the fact that such hubs are
typically well distributed and thus form a scaffold for the overall network. Our
approach for the more general case, described in the next section, can be viewed
as an extension of this method.

Let p = (pv)v∈V be a vector of vertex positions, then the potential function

UB(p) =
∑

{u,v}∈E

ω{u,v}‖pu − pv‖2 (1)

where ωe = 1/λe, e ∈ E, weights the influence of an edge according to its
estimated length λe, defines a weighted barycentric layout model [Tutte 1963].
This model has an interesting physical analogy, since each of the terms in (1)
can be interpreted as the potential energy of a spring with spring constant ωe
and ideal length zero.

A necessary condition for a local minimum of UB(p) is that all partial deriva-
tives vanish. That is, for all pv = (xv, yv), v ∈ V , we have

xv = 1∑
u : {u,v}∈E

ω{u,v}

∑
u : {u,v}∈E

ω{u,v}xu

yv = 1∑
u : {u,v}∈E

ω{u,v}

∑
u : {u,v}∈E

ω{u,v} yu.

In other words, each vertex must be positioned in the weighted barycenter
of its neighbors. It is well known that this system of linear equations has a



6

Fig. 2. Barycentric layout of an 72 × 72 grid with the four corners fixed, and the same grid with
95 and with 10 randomly selected vertices fixed.

unique solution, if at least one pv in each connected component of G is given
(and the equations induced by v are omitted) [Brooks et al. 1940]. Note that,
in the physical analogy, this corresponds to fixing some of the points in the
spring system. Moreover, the matrix corresponding to this system of equations
is weakly diagonally dominant, so that iterative equation solvers can be used
to approximate a solution quickly (see, e.g., Golub and van Loan 1996).

Assuming that the given set of vertex positions provides the cornerstones
necessary to unfold the network appropriately, we can thus generate coordi-
nates for the other vertices using, for example, Gauss–Seidel iteration—by it-
eratively placing them at the weighted barycenter of their neighbors. Figure 2
indicates that this approach is highly dependent on the set of given positions.
As is discussed in Section 5, it nevertheless has some practical merits.

4. A TAILOR-MADE LAYOUT MODEL FOR CONNECTION NETWORKS

The main drawbacks of the barycentric approach are that all vertices are posi-
tioned inside of the convex hull of the vertices with given positions, and that the
estimated distances are not preserved. In this section, we modify the potential
(1) to take these estimates into account.

Recall that each of the terms in the barycentric model corresponds to the
potential energy of a spring of length zero between pairs of adjacent vertices.
Kamada and Kawai [1989] use springs of length λ{u,v} = dG(u, v), which is equal
to the length of a shortest path between u and v, between every pair of vertices.
The potential then becomes

UKK(p) =
∑

u,v∈V

ω{u,v}
(‖pu − pv‖ − λ{u,v}

)2 , (2)

the idea being that constituent edges of a shortest path in the graph should
form a straight line in the drawing of the graph. To preserve local structure,
spring constants are chosen as ωe = 1/λ2

e , so that long springs are more flexible
than short ones. (The longer a path in the graph, the less likely are we able
to represent it straight.) Note that this is a special case of multidimensional
scaling, where the input matrix contains all pairwise distances in the graph.

This model certainly does reflect our layout objectives more precisely. Note,
however, that it is NP-hard to determine whether a graph has an embedding
with given edge lengths, even for planar graphs [Eades and Wormald 1990]. In
contrast to the barycentric model, the necessary condition of vanishing partial



7

derivatives leads to a system of nonlinear equations, with dependencies be-
tween x- and y-coordinates. Therefore, we can no longer iteratively position
vertices optimally with respect to the temporarily fixed other vertices as in the
barycentric model. As a substitute, a modified Newton–Raphson method can be
used to approximate an optimal move for a single vertex [Kamada and Kawai
1989; Kumar and Fowler 1994]. Since this method does not scale to graphs with
thousands of vertices, we next describe our modifications to make it work on
connection graphs.2

4.1 Sparsening

If springs are introduced between every pair of vertices, a single iteration takes
time quadratic in the number of vertices. Since at least a linear number of
iterations is needed, this is clearly not feasible. Since, moreover, we are not
interested in a readable layout of the graph, but in supporting the geometric
speed-up heuristics for shortest-path computations, there is no need to intro-
duce springs between all pairs of vertices.

We cannot omit springs corresponding to edges, but in connection graphs,
the number of edges is of the order of the number of vertices, so most of the
pairs in (2) are connected by a shortest path with at least two edges. If a train
runs along a path of k edges, we call this path a k-connection. To model the
plausible assumption that, locally, trains run fairly straight, we include only
terms corresponding to edges (or 1-connections) and to 2- and 3-connections
into the potential. Whenever there are two or more springs for a single pair of
vertices, they are replaced by a single spring of the average length. For realistic
data, the total number of springs thus introduced is linear in the number of
vertices.

4.2 Long-Range Dependencies

Since we omit most of the long-range dependencies (i.e., springs connecting
distant pairs of vertices), an iterative method starting from a random layout is
almost surely trapped in a poor local minimum.

We therefore determine an initial layout by computing a local minimum of
the potential on an even sparser graph that includes only the long-range depen-
dencies relevant for our approach. That is, we consider the subgraph consisting
of all stations that have a fixed position or are a terminal station of some train,
and introduce springs only between the two terminal stations of each train,
and between pairs of the selected vertices that are consecutive on the path
of any train. We refer to these additional pairs as long-range connections. In
case the resulting graph has more components than the connection graph, we
heuristically add some stations touched by trains inducing different compo-
nents and the respective springs. After running our layout algorithm on this
graph (initialized with a barycentric layout), the initial position for all other

2In the graph drawing literature, similar objective functions have been subjected to simulated
annealing [Davidson and Harel 1996; Cruz and Twarog 1996] and genetic algorithms [Kosak et al.
1994; Branke et al. 1997]. These methods seem to scale even worse.



8

vertices is determined from a barycentric layout in which those positions that
have already been computed are fixed.

To measure the impact of this modification, we computed 100 layouts with
and without modification and compared the average of the final potential val-
ues. It turns out that the result with this initial layout has a 9% smaller value
of the objective function.

4.3 Nodes of High Degree

The method to find an initial layout of the sparser graph in the previous section
can be seen as a two-level approach of the embedding algorithm: The first level
is the full graph, the second level is the graph of long-range connections, which is
embedded first. Although the second level already improves the final potential
function, in case no station at all has a fixed position, the iterative method is
still likely to be trapped in a local minimum. The introduction of a third, even
smaller graph therefore leads to another improvement of the potential function
of 21%. (In case of 22 given coordinates for major hubs, the improvement is only
0.1%, however.)

To determine the third level, we use again the structure of the graph: We
iteratively replace all nodes of degree three or less in the second level by edges
between their neighbors. More precisely, nodes

—of degree 0 or 1 are removed,
—of degree 2 are replaced by an edge with length equal to the sum of the lengths

of incident edges,
—of degree 3 are replaced by a triangle of edges, where the edge lengths are

computed as if the angles between the incident edges of the node had been
60◦.

4.4 Iterative Improvement

We compute a local minimum of a potential U (p) by relocating one vertex at a
time according to the forces acting on it, that is, the negative of the gradient,
−∇U (p).

For each node v (in arbitrary order) we move only this node in dependence
of U (pv). The node is shifted in the opposite direction of

d := ∇U (pv) :=
〈
∂U (pv)

∂xv
,
∂U (pv)

∂ yv
,
∂U (pv)

∂zv

〉
.

A substantial parameter of a gradient descent method is the size of each step.
For small graphs it is often sufficient to take a fixed multiple of the gradient
(see the classic example of Eades [1984]), while others suggest some sort of step
size reduction schedule (e.g., see Fruchterman and Reingold 1991).

We applied a more elaborate method that is robust against change of scale,
namely the method of Wolfe and Powell (see, e.g., Spellucci 1993; Kosmol 1993).
The step size σ ∈ (0, ∞) is determined by

∇U (pv − σd )d
∇U (pv)d

≤ κ



9

U (pv) − U (pv − σd )
σ · ∇U (pv)d

≥ δ

for given parameters δ ∈ (0, 0.5) and κ ∈ (δ, 1). Roughly speaking, this guar-
antees that the potential is reduced and that the step is not too small. In our
experiments, this method clearly outperformed the simpler methods both in
terms of convergence and overall running time.

We also implemented the Newton–Raphson method, but it turned out to be
an order of magnitude slower to achieve the same minima. This is mainly due
to the fact that we worked in three dimensions (see the next section), where it
is necessary to invert a 3× 3-matrix and to compute six instead of three second
derivatives. The matrix inversion was performed by our own implementation as
well as by LAPACK [Anderson et al. 1999]. Both versions were not competitive
with the method of Wolfe and Powell.

4.5 Another Dimension

Generally speaking, a set of desired edge lengths can be realized more accu-
rately when the number of dimensions of the Euclidean space is increased.

Several models make use of this observation by temporarily allowing addi-
tional coordinates and then penalizing their deviation from zero [Tunkelang
1998] or projecting down [Gajer et al. 2001].

We use a third coordinate during all phases of the layout algorithm, but
ignore it in the final layout. Since projections do not preserve the edge lengths,3

we use a penalty function
∑

v∈V ctz2
v , where ct is the penalty weight at the tth

iteration, to gradually reduce the value of the z-coordinate towards the end of
the layout computation.

The penalty has to be chosen large enough such that the graph is finally
pressed into the plane and small enough that the result differs from the
projection.4 Let P0 denote the potential at the beginning of the last phase.
Experiments showed that a multiple of the unmodified potential that increases
like the fourth power of the time gives good results: ct = CP0t4.

The average final potential of 100 runs of the algorithm is reduced by 16%
with respect to an exclusively two-dimensional approach.

In summary, our layout algorithm consists of the following six steps:

(1) Barycentric layout of graph of long-range connections for nodes of high
degree.

(2) Iterative improvement.
(3) Barycentric layout of graph of long-range connections.
(4) Iterative improvement.

3In our experiments with 100 layouts, the objective function triples if the graph is simply projected
into the plane.
4In our experiments with 100 layouts, the objective function of a projection into the plane and a
subsequent optimization in the plane is 7% worse.



10

Fig. 3. Layouts of the graph of Figure 2, where fictitious trains run along grid lines, under tailored
model.

(5) Barycentric layout of entire graph including 2-, 3-, and long-range
connections.

(6) Iterative improvement with increasing z-coordinate penalties.

In each of these steps, the iteration is stopped when none of the stations
was moved by more than a fixed distance. Figure 3 shows the results of this
approach when applied to the graph of Figure 2.

5. RESULTS AND DISCUSSION

Our computational experiments are based on the timetables of the Deutsche
Bahn AG, Germany’s national train and railroad company, for the winter period
1996/1997.

It contains a total of 933,280 arrivals and departures on 6,884 stations, for
which we have the complete coordinate information.

To assess the quality of coordinates generated by the layout algorithms de-
scribed in Sections 3 and 4, we used a snapshot of queries against the central
travel information server of Deutsche Bahn AG. This data consists of 544,181
queries collected over several hours of a regular working day.

These benchmark data are unique in the sense that it is the only real network
for which we have both coordinates and query data.

In the experiments, shortest paths are computed for the above queries using
our own implementation of Dijkstra’s algorithm and the angle-restriction and
goal-directed search heuristics. All implementations are in C or C++, compiled
with gcc version 2.95.2.

From the timetables, we generated the following instances:

—de-org (coordinates known for all stations);
—de-22-important (coordinates known for the 22 most important5 stations);
—de-22-random (coordinates known for 22 randomly selected stations);
—de (no coordinates given);

5Together with the coordinate information, there is a value associated with each station that indi-
cates its importance as a hub. The 22 selected stations have the highest attained value.



11

Table I. Average Query Response Times and Number of Nodes Touched by
Dijkstra’s Algorithm. Without Coordinates, the Average Response Time is 105 ms

(33,704 edges)

Speed-up Technique
Angles Goal Both

Instance Layout Model ms Edges ms Edges ms Edges

de-org 17 9,177 79 20,995 14 6,496
de (Figure 5) Tailored (dist. est.) 40 17,553 107 28,591 43 15,167

Tailored (time avg.) 43 18,228 92 24,634 38 13,888
de-22- Barycenteric 20 10,464 100 26,669 19 8,722
important Tailored (dist. est.) 19 9,844 93 24,334 19 7,763
(Figure 6) Tailored (time avg.) 22 10,994 75 20,052 17 7,412
de-22- Barycentric 27 13,415 124 32,628 31 13,066
random Tailored (dist. est.) 21 10,597 87 23,033 18 7,973
(Figure 7) Tailored (time avg.) 27 11,671 77 20,853 22 8,055

Fig. 4. de-org.

For these instances, we generated layouts using the barycentric model of
Section 3, the tailored model of Section 4 with estimated distances, or the tai-
lored model with average travel time as “distance,” and measured the average
core CPU time spent on answering the queries, as well as the number of edges
touched by the modified versions of Dijkstra’s algorithm. Each experiment was
performed on a single 336 MHz UltraSparc-II processor of a Sun Enterprise
4000/5000 workstation with 1,024 MB of main memory. The results are given
in Table I, and the layouts are shown in Figures 4 and 5.

The results show that the barycentric model seems to pair very well with
the angle-restriction heuristic when important stations are fixed. The some-
what surprising usefulness of this simple model even for the randomly se-
lected stations seems to be due to the fact that our sample spreads out quite
well.



12

Fig. 5. de.

Fig. 6. de-22-important.

Another interesting observation is that the layouts according to average
travel times are better for goal-directed search than the layouts that use es-
timated distances. This can be explained by the fact that goal-directed search
uses the highest speed to calculate the lower bound to the destination, which
is tighter in this case.

The tailored layout model appears to work well in all cases. Note that the
average response time for connection queries compared to the average response
time without coordinates is reduced by 60%, even without any knowledge of the

.



13

Fig. 7. de-22-random.

Fig. 8. de-org-t.

underlying geography. With the fairly realistic assumption that the location of
a limited number of important stations is known, the speed-up obtained with
the actual coordinates is almost matched.

To evaluate whether the tailored model achieves the objective of preserving
given edge lengths, we generated additional instances from de-org by dropping
a fixed percentage ranging from 0% to 100% of station coordinates, while setting
λe to its true value. As can be seen in Figure 9, these distances are reconstructed
quite well.



14

Fig. 9. Evaluation whether the tailored layout model preserves edge lengths. Minimum, mean,
and maximum relative error in edge lengths, averaged over 10 instances each.

Table II. Average Query Response Times and Number of Nodes Touched by Dijkstra’s
Algorithm for the Layout Based on Original Coordinates

speed-up technique
Angles Goal Both

Instance Layout Model ms Edges ms Edges ms Edges

de-org-t modified org 18 9,384 71 18,782 14 6,086

As an attempt to avoid the small but existing shortcomings of the layout algo-
rithms as much as possible, we generated a further set of coordinates de-org-t
that uses the original coordinates as initialization. The layout was then modi-
fied locally to fit the travel times as much as possible.

The result is depicted in Figure 8 and the resulting query times are shown
in Table II. With de-org-t, the results are slightly better than the results with
any other generated coordinates. This suggests that there is still some space for
improvement of the layout algorithm, but probably not much. The main result
of this last experiment, however, is the observation that the original coordinates
can be improved with respect to the goal-directed search.

6. OUTLOOK

The results and pictures suggest that our layout algorithm produces a rea-
sonably good reconstruction of the traffic network with respect to the travel-
planning system.

The query response times for the modified original coordinates de-org-t
show that it is possible to create layouts that are tailored to shortest-path
problems. It will be interesting to study this phenomenon in more detail and
search for characteristics of layouts that pair well with specific geometric speed-
up techniques.

When it comes to ship and flight schedules it is not possible anymore to ignore
the fact that the earth is not flat. Fortunately, it is easy to modify the algorithm
in such a way that it works on a sphere. It is sufficient

—to use a metric that reflects the slope of the earth,
—to modify penalty function the projection.

Whereas the latter can be done in a canonical way, the new distance should
avoid expensive trigonometric calculations. A fifth order approximation of
the arcus sine multiplied by the Euclidean distance turns out to work well in
practice.



15

ACKNOWLEDGMENTS

We thank Steffen Mecke and Jasper Möller for help with experiments, and
companies TLC/EVA and HaCon for providing timetables and connection query
data, respectively.

REFERENCES

AHUJA, R., MAGNANTI, T., AND ORLIN, J. 1993. Network Flows. Prentice-Hall, Englewood Cliffs, NJ.
ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A.,

HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK User’s Guide, 3rd ed. Society
for Industrial and Applied Mathematics. Available at http://www.netlib.org/lapack/.

BRANKE, J., BUCHER, F., AND SCHMECK, H. 1997. A genetic algorithm for drawing undirected graphs.
In Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applications. 193–
206.

BROOKS, R. L., SMITH, C. A. B., STONE, A. H., AND TUTTE, W. T. 1940. The dissection of rectangles
into squares. Duke Math. J. 7, 312–340.

CRUZ, I. F. AND TWAROG, J. P. 1996. 3D graph drawing with simulated annealing. In Proceedings of
the Third International Symposium on Graph Drawing (GD ’95), F. J. Brandenburg, ed. Lecture
Notes in Computer Science, vol. 1027. Springer, Berlin, 162–165.

DAVIDSON, R. AND HAREL, D. 1996. Drawing graphs nicely using simulated annealing. ACM Trans.
Graphics 15, 4, 301–331.

EADES, P. 1984. A heuristic for graph drawing. Congressus Numerantium 42, 149–160.
EADES, P. AND WORMALD, N. C. 1990. Fixed edge-length graph drawing is np-hard. Discrete Appl.

Math. 28, 111–134.
FRUCHTERMAN, T. M. AND REINGOLD, E. M. 1991. Graph-drawing by force-directed placement. Softw.

- Pract. Exp. 21, 11, 1129–1164.
GAJER, P., GOODRICH, M. T., AND KOBOUROV, S. G. 2001. A fast multi-dimensional algorithm for

drawing large graphs. In Proceedings of the Eighth International Symposium on Graph Drawing
(GD 2000), J. Marks, ed. Lecture Notes in Computer Science, vol. 1984. Springer, Berlin, 211–
221.

GOLUB, G. H. AND VAN LOAN, C. F. 1996. Matrix Computations, 3rd ed. Johns Hopkins University
Press, Baltimore, MD.

JUNG, S. AND PRAMANIK, S. 1996. Hiti graph model of topographical road maps in navigation
systems. In Proceedings of the 12th IEEE International Conference Data Engineering. 76–84.

KAMADA, T. AND KAWAI, S. 1989. An algorithm for drawing general undirected graphs. Inf. Process.
Lett. 31, 7–15.

KOSAK, C., MARKS, J., AND SHIEBER, S. 1994. Automating the layout of network diagrams with
specified visual organization. IEEE Trans. Syst. Man Cybern. 24, 3, 440–454.

KOSMOL, P. 1993. Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Opti-
mierungsaufgaben. Teubner Verlag.

KUMAR, A. AND FOWLER, R. 1994. A Spring Modeling Algorithm to Position Nodes of an Undirected
Graph in Three Dimensions. Tech. rep., Department of Computer Science, University of Texas,
Pan American, Edinburgh.

LENGAUER, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York.
NACHTIGALL, K. 1995. Time depending shortest-path problems with applications to railway net-

works. Eur. J. Oper. Res. 83, 1, 154–166.
PREUSS, T. AND SYRBE, J.-H. 1997. An integrated traffic information system. In Proceedings of the

Sixth International Conference on Applied Computer Networking in Architecture, Construction,
Design, Civil Engineering, and Urban Planning (europIA ’97).

SCHULZ, F., WAGNER, D., AND WEIHE, K. 2000. Dijkstra’s algorithm on-line: An empirical case study
from public railroad transport. J. Exp. Algorithmics 5, 12.

SCHULZ, F., WAGNER, D., AND ZAROLIAGIS, C. 2002. Using multi-level graphs for timetable infor-
mation. In Proceedings of the Algorithm Engineering and Experiments (ALENEX ’02). Lecture
Notes in Computer Science, Springer, Berlin, in press.

SEDGEWICK, R. AND VITTER, J. S. 1986. Shortest paths in Euclidean space. Algorithmica 1, 1, 31–48.



16

SHEKHAR, S., KOHLI, A., AND COYLE, M. 1993. Path computation algorithms for advanced traveler
information system (ATIS). In Proceedings of the Ninth IEEE International Conference on Data
Engineering. 31–39.

SIKLÓSSY, L. AND TULP, E. 1988. Trains, an active time-table searcher. In Proceedings of the 8th
European Conference on Artificial Intelligence. 170–175.

SPELLUCCI, P. 1993. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser Verlag.
TUNKELANG, D. 1998. JIGGLE: Java interactive general graph layout environment. In Proceed-

ings of the Sixth International Symposium on Graph Drawing (GD ’98), S. H. Whitesides, ed.
Lecture Notes in Computer Science, vol. 1547. Springer, Berlin, 413–422.

TUTTE, W. T. 1963. How to draw a graph? Proc. London Math. Soc., Third Series 13, 743–768.


	Text36: First publ. in: Journal of Experimental Algorithmics 9 (2004), Article 1.1
	Text59: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-72120URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7212


