
Requirements/Design Debugging
(Session Summary)

Peter Bates
University of Massachusetts

Sess ion C h a i r : Rober t Ba l ze r

Par tieipants:
L o r i C la rke
Don Cohen
Jim Cunningham
David Snowd en
D.G. Shap i ro
Bernd Br ugge
Claude Jard
Bill Swar t o u t
Elliot $oloway

This session was essentially a continuation of the
earlier session on Knowledge-Based systems. The
discussion proceeded along two dimensions. One is
the paradigm used to, in some sense, debuE
high-level specifications. This is further broken

• into the 'current' and the 'operational
specifications' paradigms. The other dimension is
one Of techniques for implementing these views.
This dimension also has only two aspects, current
techniques and knowledge-based techniques.

The plan for the session was to introduce the
technologies that may or may not exist to support
these capabilities followed by a debate on these
methods. There are four areas to be discussed in
terms of technologyus~Ambolic evaluation, fault
analysis, behavior expectations and natural
language explanations.

I. 0 Symbolic Evaluation

The first speaker, iori Clarke, posed two questions
to be considered when looking at software analysis
in terms of debugging. The first, "How can we

validate our specifications?", asstmles there exists
some pre-implementation description that is higher
level than the code being produced. The second was
"How can we use previously obtained analysis
information [from the validation process] in the
debugging process?"

Don Cohen works on validating Gist
specifications. He indicated that the real problem
is Just finding that there is a bug with the
specification since once it is found it is obvious
where it came from. The position to be taken is
that just about anything that can be done to show
the user another view of the specifications should
help the user find bugs. The plan is to have
something look at a Gist specification and explain
to the user what the specification says.

The next speaker, Jim Cunningham presented the
parts of a specification as seen by the Aver
project. A specification has three parts, the
components of state consisting of objects and their
relations, the actions which change states, and
provision for constraints which will indicate when
there are problems in the system. Following from
this view, the formal use of tools in constructive
design has two sides, in validation of the design
and verification of the design. In Verification,
the offending system state can be isolated and used
to show the components of that offending state. On
the validation side, with a suitably good theorem
prover, problems with the specification should be
findable.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copyin 8 is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

1983 ACM 0-89791-111-3/83/007/0032 $00.75

2.0 Fault Analysis

Fault analysis is reasoning from a functional
defect to a structural defect in a program. Issues
involved in construction of intelligent fault
analysis systems are related to: I) progr em
representation--there is a need for more than one
way to represent programs at various levels of
abstraction; 2) fault representation--likewise

32

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1006142.1006156&domain=pdf&date_stamp=1983-03-20

there is a need for defining and representing what
a fault is at each level of abstraction; 3)
reasoning mechanism--having a way to reason about
faults in a given program representation; and 4)
knowledge acquisition--where does knowledge on
constructing levels of abstraction come from.

David Snowden works with an expert system that
attempts to find declaration and scope errors in
Ada programs. The expert has a hierarchy of rules
that hold knowledge about declaration and scope
errors. In operation, the system selects an error
message and attempts to determine what types of
errors could give rise to that message. A set of
instance representations of the error type are
generated and compared to how well they explain the
error given the current information.

D.G. Shapiro related that there are many
things that every good programmer knows and it is
desirable to use that knowledge to find what is
wrong with programs. In his approach an
alternative view of the program is generated and a
collection of recognizers of plans for programmin 8
cliches attempt to figure out what is intended.
Bag experts are run and produce a bug analysis
about bugs related to that cliche. The overriding
need is to be able to identify what the
programmer's intentions really were.

5.0 Final Discussion

The session chair Bob Balzer then propesed a set of
so called 'religious questions' as a basis for a

discussion.

I. What does the operational specifications
paradi~ say about the programming
process?

2. Is debugging an implementation the same as
debugging the specifications?

3. What is the nature of the debugging
process if big programs start to be built
by evolution?

4. Specifications are easier to debug than

implementations.

5. Implementation is easier to debug than

specifications

3.0 Formal Descriptions Of Behavior Expectations.

Bernd Brugge described his work using predicate
path expressions as a method of describing some
behaviors expected of a system. The technique
allows users to specify behaviors and indicate some
actions to perform when the behaviors match or fail
to match the system's activity.

Claude Jard uses an extended state-transition
modcl for validation of specifications. His system
will then compare a detailed specification with
user entities to detect errors.

q.o Natural Language Explanat ions

Bill Swartout gave an overview of the structure of
their system for explaining Gist specifications.
Basically it provides methods for describing
particular types of Gist constructs. The methods
attempt to highlight surprising behavior that may
be discovered by a symbolic evaluator.

Elliot Soloway described Proust, a system that
finds bugs in novice programs. The basic premise
is that programmers use plans when they read and
write programs. Proust has these plans and it
proceeds to generate explanations based on the

plans and their goals.

33

