
INTEGRATED ENVIRONMENTS

Chaired by: R.E. Fairley
Panelists: G.P. Brown, E.S. Cohen, M.A.F. Muellerburg, M.L. Powell, and H.L. Wertz

The session on debugging in integrated
environments started with Fairley's charac-
terization of integrated environments as
follows: (i) versatile collection of
analysis, design, implementation, testing,
and maintenance tools; (2) consistent user
interface among the tools~ (3) common
representation of information (e.g.,
Stoneman's database model, Unix pipe); (4)
history/version control~configuration
management capability; and (5) encourage-
ment of good practice. He then asked the
audience the following questions: (i) what
is your view of environments? (2) what
possibilities exist for debugging in
integrated environments that do not exist
in a mere collection of tools? (3) what is
the difference between high-level debugging
and low-level debugging with high-level
tools?

The Role of Debugging within
Engineering Environments
by M.A.F. Muellerburg, GMD,
Technologie

Software

Software-

Two kinds of software development
environments can be distinguished: (i) an
individual programmer developing small to
medium scale programs. (2) a team of pro-
grammers constructing large-scale systems.
Programming environments (PEs) support the
first kind of software development and pro-
vide tools and methods for a particular
programming language. Software engineering
environments (SEEs) supports the second
kind of software development. SEEs offer
tools and methods for the technical tasks
of software development, such as require-
ments analysis, system specification and
validation,, and also for the further tasks

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and iLts date appear, and notice is given that copying is by
permission of the: Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

(~) 1983 ACM 0-89791-111-3/83/007./0060 $00.75

of project management and software prepara-
tion. They provide tools, models of the
product and of the production process, as
well as means for representation. The use-
fulness of such systems depends on the par-
ticular tasks and constraints of a software
development project.

There are two main problems for debug-
ging : (i) understanding the software
(i.e., its structure and behavior) and (2)
estimating the impacts of an intended
change. Debugging in the context of PEs
and SEEs is based on a programming
i ang uag e.

Many PEs consist of an editor, com-
piler or interpreter, linker, loader, run-
time system, and debugger. Each of the
tools knows the language and its con-
structs. So syntactical errors can be
prevented on entry and the user can
interact with the system on the level of
language concepts. A significant change in
the programmer's situation, and thereby
also in debugging, are already seen today.
For example, software development within
PEs is highly interactive; high-resolution
display terminals provide windowing and
mouse techniques; and powerful small com-
puters allow work stations to be tailored
to particular tasks.

SEEs may evolve into expert systems to
provide information about the software and
development tasks (e.g., test cases for
previously detected errors) . Furthermore,
a query facility may be used instead of
reading large source listings; e.g., to
display where a function is used.

Future software development will be
influenced by (i) terminals allowing window
and mouse capability; (2) small efficient
personal work-stations; and (3) networks of
personal work-stations. Expert systems
will (i) help detect errors; (2) suggest
possible causes of errors; and (3) propose
corrections. The most significant change
may come when knowledge engineering and
functional programming replace present
software engineering techniques based on
procedural programming. Here, spec i fica-
tions wil i be executed. Furthermore,

60

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1006142.1006161&domain=pdf&date_stamp=1983-03-20

validation and debugging will focus on
specifications rather than on programs. So
dynamic analysis and debugging will only
check the remaining problems with respect
to program behavior on a machine; e.g.,
overflows.

(Audience) Isn't the distinction between
PEs and SEEs an artifact?
(Speaker) No, there are indeed fundamental
differences between environments for a sin-
gle programmer and for a group of program-
mers.

An Integrated, Interactive, and Incremental
Programming Environment
H.L. Wertz, Universit Paris

Wertz described an integrated,
interactive, and incremental LISP program-
ming environment. The reasons for
integrated environments are (i) for
developing programs; (2) for executing pro-
grams; and (3) for interactively modifying
programs. In his paradigm, a program is a
set of different versions, documentation,
and possible active annotations. The sys-
tem supports the following. (i) The pro-
grammer can attach input/output assertions
to every point in the program. (2) The
system incrementally constructs static and
dynamic documentation of the program. This
documentation is usable by the debugger.
(3) There are three modes of evaluation:
normal, symbolic, and careful evaluation,
where careful implies a checking of all the
attached assertions and/or stepping and
tracing at variable grain size. (4) While
modifying the program, the system does some
measuring; e.g., the scope of modification.
(5) There is complete version control for
editing and execution; e.g., the programmer
can execute or develop previous versions
without influencing the current one.

The major advantage of the system is
that all annotations to a program are hid-
den to the user, only the effect is visi-
ble; that is, the program itself never
appears to be modified.

(Audience) Why don't systems such as this
get used much?
(Speaker) Programmers do not know of the
systems.
(Audience) Why don't people build system
like this for Pascal?
(Speaker) It is easier to maintain LISP
programs. People who build and use such
systems are used to programming in LISP,
not Pascal.
(Audience) LISP has simple syntax and
semantics. LISP environments are rela-
tively easy to construct and modify.

m Visualization
Brown, Computer Corp. of America.

Brown's thesis in designing and imple-
menting the program visualization (PV)
environment is that: (i) debugging
requires good information about the
behavior of a system; (2) diagrams are an
effective (often the most effective) way to
present information; and (3) a software
development environment should support the
production and use of graphics. She then
showed slides (i) for spatial navigational
aids to present integrated views of the
static information about a program and (2)
for animated views of a running program.

One of the motivation for the PV pro-
ject was the experience of another project
at CCA that built SDD-I, a distributed
database system. The SDD-i project team
built a high-level integrated graphic
display of transaction processing in SDD-i.
This dynamic graphic view of the system was
originally intended as a demonstration
tool, but it ended up being used in-house
as a debugging tool. The SDD-i display
was, however, custom tailored, and in gen-
eral, dynamic graphics displays are hard to
build and maintain. The PV project is
addressing this problem by constructing a
general graphics production environment to
support the construction of graphic debug-
ging tools.

(Audience) How useful is color and how
expensive is it?
(Speaker) Very useful but very expensive.
(Audience) In the text of programs, color
does not seem to buy much.
(Audience) Using color to show time-steps
seems most effective.
(Audience) Use color to show thd frequency
of code execution; e.g., using warm and
cool colors.
(Audience) What makes prodduction of graph-
ics hard?
(Speaker) Construction of high-level
integrated views of system structure and
behavior and design of graphic representa-
tions are hard problems.

A Database Model of Debugging
5y M. L. Power, ~iversity of California,
Berkeley

An integrated environment improves
command syntax, world model, and debugging
environment. In OMEGA, all program infor-
mation is stored in a relational database
system. The database understands the con-
struction of a program (e.g., source, link-
age, heritage) and the execution of a pro-
gram (e.g., run-time State, history). The
system includes debugging capabilities to

61

provide the programmer with a simple yet
powerful mechanism for describing requests.
Debugging in OMEGA is a sequence of queries
and updates on the database.

(Audience) A relational database is nice
since a new relation can be dynamically
added. Is a relational database essential?
(Speaker) No.
(Audience) How much information needs to be
stored? In particular, some information is
hard to capture.
(Speaker) The point is that if some infor-
mation is hard to gather, we probably do
not need it.

An Extensible Debugge[
E.S. Cohen, Brandeis University

It is important for a debugger to pro-
vide a well-defined set of primitive func-
tions which, using an extension language,
can be extended with user-defined func-
tions. The debugger must provide access to
a database holding both static and run-time
information. Furthermore, it must provide
the ability to define hooks which specify
an event and an action to be executed when
that event occurs, as well as the ability
to selectively enable and disable events.
It is possible to define functions for,
among other things, tracing, single-step
execution, generation of execution his-
tories, and program animation. As an exam-
ple, he showed how a hook can be defined
and enabled in his extensible debugging
language based on LISP.

(Audience) Programmers want to spend less
time changing their programs. Do you
expect them to change a debugger?
(Speaker) A library of predefined debugging
routines will be provided for such program-
mers.
(Audience) Isn't your debugging language
another language?
(Speaker) Yes, but it is a uniform language
that can be used for multiple languages.

Insup Lee
Computer Sciences Department

University of Wisconsin - Madison
Madison, Wi 53706

62

