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ABSTRACT 

This note describes RED, a remotely executed 
debugger capable of generating a real-time source 
level trace history of a high level language pro- 
gram executing on a microprocessor. The trace his- 
tory consists of a display of the source state- 
ments of each basic block executed, annotated by 
the time at which execution of that block began. 
Basic blocks are traced rather than statements to 
reduce sampling bandwidth requirements while still 
retaining the ability to record the essential log- 
ical flow of programs. RED is intended to assist 
in debugging stand-alone high level language pro- 
cess control programs with real-time constraints. 

We outline two possible implementation schemes for 
generating the real-time trace history. In both, 
a "debugging co-processor" collects in a history 
buffer the values of the program counter (PC) and 
the corresponding value of a clock as each basic 
block begins execution. The debugger, which runs 
on the processor hosting the compiler and has 
access to the co-processor over a fast link, 
reconstructs a source level trace from the PC-time 
pairs in the history buffer. In one scheme, the 
language compiler emits an extra instruction at 
the beginning of each basic block in the program 
to output the value of the program counter to a 
parallel port connected to the debug processor. 
The second method makes use of an extended target 
memory space to provide tag bits denoting basic 
blocks. When an instruction is fetched, the debug 
processor detects the presence of the tag bits and 
buffers up the value of the corresponding program 
counter and time. The first method is simpler to 
implement, requiring only conventional, usually 
straightforward hardware additions to the target, 
but requires the execution overhead of the extra 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

(~) 1983 ACM 0-89791-111-3/83/007/0145 $00.75 

instructions. In both cases the debugger itself 
runs on the host processor and has access to 
tables generated during compile time of the source 
p r o g r a m .  

1.0 Introduction 

Programs that have real-time constraints are among 
the most difficult to test and debug because there 
is an extra criterion for correctness that is not 
readily apparent from the program text - that of 
time. Since such programs depend on asynchronous 
external events, it may be impossible to compute 
at compile time the actual time one block of code 
executes relative to another. Simulation can be 
used to do some timing analysis and debugging. 
However, the detection of many bugs requires the 
presense of the actual target hardware. A means 
of tracing the execution of the program on the 
target and providing the actual execution times 
(without altering them appreciably during the 
measuring process) would be valuable to the real- 
time programmer for detecting both timing errors 
in the code and invalid assumptions about the tim- 
ing of external events. The trace by itself would 
be useful for program testing. 

Traditionally, time critical parts of microproces- 
sor process control programs have been coded in 
assembly language to permit the programmer com- 
plete control over which machine instructions are 
executed and thus give him a more precise notion 
of how long the code takes to execute. It also 
permits him to optimize the code by hand to reduce 
its running time. However, as optimizing compiler 
technolo~ improves, and the power of microproces- 
sors increases with corresponding decreases in 
cost, it becomes more feasible and economical to 
use high level languages to code all parts of a 
system. Most microprocessor development systems 
still orient their real-time measurement toward 
machine language programs. In this note, we pro- 
pose to extend real-tlme measurement to high level 
language programs in a form meaningful to the 
high-level language programmer. 

2.0 Real~Time Debugger 

RED is designed to be used with a high level 
statement oriented language for developing stand- 
alone process control software running on a 
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microprocessor. The debugger will have the tradi- 
tional features such as inserting breakpoints and 
examining and depositing values of variables. In 
addition, it contains a real-time trace facility 
enabling the user to determine from a source level 
display which basic blocks were executed and at 
what time, relative to a real-time clock. Since 
that feature is what is new and unique about RED, 
in this note we concentrate on describing the 
real-time trace. 

The software development is intended to takelPlace 
on a a fairly powerful host, running UNIX. The 
target processors are typically single-board com- 
puters, and the programs are down loaded for 
actual execution. The debugger is "remote" in the 
sense that the greater part of it runs on the host 
computer. Thls part includes the more complex 
debugger functions, such as the user interface, 
command parser, and command executor, which 
require access to compiler generated files. A 
small debugging kernel, which handles communica- 
tion with the host and implements low level func- 
tions such as examining specific memory locations 
and handling breakpoints, resides on the target. 
RED also uses an intermediate processor between 
the host and target which we call a "debugging 
co-processor". This processor does the sampling 
for the trace. It also contains a high speed 
interface to the host processor such as an Ether- 
net or parallel link. This link does not need to 
operate in real-time, but must have sufficient 
bandwidth to send the contents of the trace buffer 
and the debug~:ing command transactions to the host 
without undue delay. We believe a real-time debug- 
ging co-processor such as this is practical 
because of dropping memory costs and the existence 
of low-cost reliable high-speed links like the 
Ethernet. The latter makes it possible to host the 
debugger on a variety of machines, including large 
minis and mainframes. 

2.1 Characterizing Control Flow Using Basic 
Blocks 

A basic block is a sequence of straight line 
statements, h~ing only one entrance and one exit; 
there are no transfers of control into or out of 
the sequence except by the one entrance and one 
exit. A procedure call or decision statement thus 
terminates a basic block. Since every statement 
within a basic block in a sequential program is 
executed the same number of times, the control 
flow is completely characterized by the sequence 
of basic blocks executed. Counting the executions 
of each basic block has been used in a number of 
compilers to efficiently implement post-execution 
su~aries [Satt][Kieb]. On most machines, this 
can be accomplished with only one extra instruc- 
tion per basic block. 

Tracing the execution of basic blocks rather than 
statements ~Ls two main advantages for real-time 
tracing. First;, bandwidth requirements are minim- 
ized, since sampling need not occur as often, and 
thus memory for buffering is reduced. Secondly, 
basic blocks are less likely to be re-ordered by 
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code improvement techniques than individual state- 
ments. We claim that tracing basic blocks is a 
good compromise between tracing every statement, 
which is probably not necessary for timings and 
might be a burden on the sampling hardware, ~d 
only tracing procedure calls, which is probably 
too coarse a granularity. 

Note that for the class of programs for which the 
trace facility is intended, i.e., stand-alone pro- 
cess control programs, all interrupts are expli- 
citly handled by the high level language program. 
Thus interrupts in the middle of basic blocks will 
be visible by the trace of the interrupt handler 
routines, although the precise statement where the 
interrupt occurred will not be shown. 

2.2 Trace Implementation 

The trace consists of a display of each basic 
block that has executed over a specific interval, 
annotated by the time execution of that block 
began. This interval can be specified to be rela- 
tive to the beginning of program execution, or 
from a breakpoint. The interval terminates when a 
breakpoint is reached, or the program terminates. 
The successful use of this technique depends on 
the presence of naturally quiescent points in the 
program at which the program can pause and not 
have to run in real-time. 

The trace display itself is not generated in 
real-time, but is available when the program 
reaches the terminating breakpoint. The trace out- 
put consists of a pretty-printed display of the 
program and a cursor that marks the basic block 
currently being considered. The pretty-printlng 
is performed so that distinct basic blocks always 
begin on a new line. A set of editor-like commands 
are provided to move the cursor, and hence change 
the current block. There are commands for 
displaying the next (or last) block executed, the 
next (last) textually contiguous block, the next 
(last) procedure, and to exit a compound state- 
ment. Each distinct visit of a basic block is 
annotated by the value of the time it was exe- 
cuted. 

The debugger uses a data base generated by the 
compiler when the program was compiled, and the 
history recorded during execution. The compiler 
generated debug files, in addition to containing 
the usual information necessary for a symbolic 
debugger, contain the pretty-printed source text 
for each basic block, and a table of pointers into 
that text keyed on the address of the beginning of 
each basic block. (If the programwas relocated by 
a linker, the linker would need to relocate the 
entries of this table). The only information that 
needs to be sampled at run-time is the starting 
address of each basic block and the time. 

Two methods are described for performing the 
real-time sampling. One makes use of a parallel 
port attached to the target processor, driven by 
instructions generated by the compiler at the 
beginning of each basic block; this is called the 
"software probe" method. The second ("hardware 
probe") method relies on an expanded target memory 
space that contains tag bits denoting which 
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instructions begin basic blocks. The addresses of 
basic blocks that have been executed can then be 
directly extracted by hardware. 

2.3 Software Probe Method 

The compiler inserts extra instructions in the 
beginning of each basic block as for the execution 
summary described above. However, instead of an 
instruction to increment a counter, it generates 
instructions to output the value of the program 
counter (PC) (or a basic block number) to a paral- 
lel port. (This would only require one instruc- 
tion on processors allowing memory-mapped I/O). 
The parallel port is connected to the debugging 
processor D which buffers each value of PC 
received from the target (T) along with the 
current value of a high resolution clock. When the 
target program is in a quiescent state (either not 
yet initiated or halted at a breakpoint), a small 
kernel is in control of T. This kernel is capable 
of sending and receiving messages sent along the 
parallel line, and thus responding to simple com- 
mands sent by the debugger. These would be com- 
mands to send back or alter the values of memory 
locations and insert breakpoints (calls to the 
kernel) on T. When the user wishes to initiate a 
timing operation, he sets a breakpoint, and issues 
a debug command to trace. The debugger directs D 
to reset the timer, and instructs the kernel to 
give control to the target program. As the pro- 
gram executes, each time a new basic block is 
entered a PC-time pair will be entered into the 
history buffer. When the stop breakpoint is 
reached, the kernel is reentered; it sends a mes- 
sage to D (and thence to the host) indicating the 
sampling is completed. The debugger then initiates 
the source history. 

If the host were a single user workstation, with a 
sufficiently fast processor, it could absorb the 
functions of D. 

2 . 4  Hardware  P r o b e  Method 

This method relies on the "debugging co-processor" 
being able to detect (in parallel with instruction 
execution) when a new basic block is being exe- 
cuted by examining the value of a tag bit in a 
memory space parallel to that of the target. These 
tag bits would be set when the object program is 
loaded; the loader uses a table built by the com- 
piler (and/or linker) containing the addresses of 
thoses instructions which begin new basic blocks. 
During execution, when an instruction is fetched 
whose corresponding tag is set, the value of that 
address and the value of a clock is saved in a 
large trace buffer. The extra memory and hardware 
needed could be implemented on the target confi- 
guration. However, the preferred scheme would be 
to keep this hardware separate, and implement the 
co-processor as part of an in-circuit emulator 
(ICE). The co-processor would consist of addi- 
tional memory to represent the tags, the trace 
memory, a high resolution clock, and a simple pro- 
cessor to monitor the arrival of addresses and 
buffer their value along with that of the clock. 
The complete emulator would consist of a target 
p r o c e s s o r ,  t h e  co-processor, and a d d i t i o n a l  

control logic to enable the co-processor to con- 
trol the target. 

Existing ICEs usually provide a means of tracing 
references to specific addresses, bus cycles, or 
specific instructions, possibly qualified by a 
predicate. However, since the trace memories are 
generally small, and the set of predicates is lim- 
ited to a small number, it is not feasible to use 
such emulators for tracing more than a small 
number of specific instructions or statements. The 
tag method proposed here provides a simple way to 
accomplish a more useful form of tracing over 
larger intervals, utilizing an ordinary memory of 
comparable bandwidth to the main memory. A tag 
scheme can also be used to implement an unlimited 
number of breakpoints on both data and program 
references, as proposed in [John82]. 

There is a problem when using the tag bit scheme 
for instruction tracing with architectures that 
implemen t instruction pre-fetch, such as the 
MC68000. c On such processors, the fetch of an 
instruction does not imply it will be executed. 
This situation would occur when the instruction 
following a branch has been fetched, but the 
branch is taken. On processors that use only sin- 
gle instruction pre-fetch, this problem could be 
handled by not recording an instruction address 
unless the next instruction is HOT tagged. This 
will work because the target of a branch is always 
tagged. The compiler need only guarantee each 
basic block has at least one untagged instruction, 
by inserting no-ops if necessary. (Estimates made 
from existing compilers show that such insertions 
would be needed only rarely). In future architec- 
tures, extra control lines could be provided to 
indicate which of several instructions in a pre- 
fetch queue have been discarded. 

2.~ Comparison and Further Comments 

The clear advantage of the hardware probe method 
is that it does not impose any execution overhead 
on the target program because the basic blocks are 
detected without the execution of additional 
instructions. The user can also change which code 
sections are traced (with no overhead associated 
with el~ded sections) without recompiling the 
source program. The software method is easier to 
try out initially. 

The success of both methods naturally depends on 
having hardware that is fast enough to perform the 
real-time sampling. The fact that basic blocks are 
traced rather than every instruction or statement 
increases the chances that this is possible. 

3.0 Current Work 

3.~ Implementation 

The real-tlme trace facility is currently being 
implemented for the programming language PL Modula 
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[Mah] targeted to an LSI-113 using the software 
probe method. The compiler runs on a VAX under 
Berkeley UNIX. The sampling will be performed by a 
68000 processor over a parallel interface, which 
will communicate with the VAX over a serial line 
initially, and later via an Ethernet connection. 
The language Modula was chosen as an initial vehi- 
cle because it is meant for process control appli- 
cations, and because the in-house developed com- 
piler was readily available. 

During compilation, the compiler generates a 
pretty-printed version of the program source text, 
and a debug file mapping values of program 
addresses to the line numbers of corresponding 
basic blocks in the formatted file. After a trace 
sampling has occurred, and the debugger has 
received the sequence of PC-time ordered pairs, it 
determines the line numbers of the basic blocks 
executed and calls the display module to display 
them. 

The debugger command processor and display modules 
have been ,Pitten and debugged using simulated 
executions of Modula programs. The hardware will 
be installed and tested shortly, permitting actual 
user experience. 

3.2 Editing Features 

A large voltm~e of information can be represented 
by the execution of a program, even over short 
intervals. A large part of this information may 
be uninteresting. For the trace to be useful, 
editing comms~ds must be provided to allow the 
user to foc~m on the areas of interest. The trace 
should be presented in a convenient form for exam- 
ination. Clearly a high-speed display is essen- 
tial. In our implementation, the trace is 
presented in a style similar to the Cornell Pro- 
gram Synthesizer [Teit], with a marker that moves 
to the next (or previous) basic block executed 
rather than the statement, labeled by the time 
that block was executed. Additional commands allow 
positioning of the cursor to blocks selected by 
string matching or cursor movement commands, and a 
command to display the next execution time of the 
selected block. Additional commands exist to elide 
selected portions of the display, and to break out 
of loops or procedures and display the time the 
exit occurred. 

(similar to [Teit]) to develop the formatted 
source text directly. 
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4.0 Further Plans 

If the trace scheme proves feasible, it will be 
incorporated into a production microprocessor 
software system for a Pascal-like process control 
language. The system would be built around a sin- 
gle user workstation to host the compiler and 
debugger ,  and would use  t h e  hardware  probe  method 
for doing the trace sampling. Rather than having 
the compile~ produce a separate, pretty-printed 
version of the source text, the applications pro- 
grammer would use a syntax directed editor 
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