
A REAL-TIME MICROPROCESSOR DEBUGGING TECHNIQUE

Charles R. Hill

Computer Systems Research
Philips Laboratories

Briarcliff Manor, N.Y. 10510

ABSTRACT

This note describes RED, a remotely executed
debugger capable of generating a real-time source
level trace history of a high level language pro-
gram executing on a microprocessor. The trace his-
tory consists of a display of the source state-
ments of each basic block executed, annotated by
the time at which execution of that block began.
Basic blocks are traced rather than statements to
reduce sampling bandwidth requirements while still
retaining the ability to record the essential log-
ical flow of programs. RED is intended to assist
in debugging stand-alone high level language pro-
cess control programs with real-time constraints.

We outline two possible implementation schemes for
generating the real-time trace history. In both,
a "debugging co-processor" collects in a history
buffer the values of the program counter (PC) and
the corresponding value of a clock as each basic
block begins execution. The debugger, which runs
on the processor hosting the compiler and has
access to the co-processor over a fast link,
reconstructs a source level trace from the PC-time
pairs in the history buffer. In one scheme, the
language compiler emits an extra instruction at
the beginning of each basic block in the program
to output the value of the program counter to a
parallel port connected to the debug processor.
The second method makes use of an extended target
memory space to provide tag bits denoting basic
blocks. When an instruction is fetched, the debug
processor detects the presence of the tag bits and
buffers up the value of the corresponding program
counter and time. The first method is simpler to
implement, requiring only conventional, usually
straightforward hardware additions to the target,
but requires the execution overhead of the extra

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

(~) 1983 ACM 0-89791-111-3/83/007/0145 $00.75

instructions. In both cases the debugger itself
runs on the host processor and has access to
tables generated during compile time of the source
p r o g r a m .

1.0 Introduction

Programs that have real-time constraints are among
the most difficult to test and debug because there
is an extra criterion for correctness that is not
readily apparent from the program text - that of
time. Since such programs depend on asynchronous
external events, it may be impossible to compute
at compile time the actual time one block of code
executes relative to another. Simulation can be
used to do some timing analysis and debugging.
However, the detection of many bugs requires the
presense of the actual target hardware. A means
of tracing the execution of the program on the
target and providing the actual execution times
(without altering them appreciably during the
measuring process) would be valuable to the real-
time programmer for detecting both timing errors
in the code and invalid assumptions about the tim-
ing of external events. The trace by itself would
be useful for program testing.

Traditionally, time critical parts of microproces-
sor process control programs have been coded in
assembly language to permit the programmer com-
plete control over which machine instructions are
executed and thus give him a more precise notion
of how long the code takes to execute. It also
permits him to optimize the code by hand to reduce
its running time. However, as optimizing compiler
technolo~ improves, and the power of microproces-
sors increases with corresponding decreases in
cost, it becomes more feasible and economical to
use high level languages to code all parts of a
system. Most microprocessor development systems
still orient their real-time measurement toward
machine language programs. In this note, we pro-
pose to extend real-tlme measurement to high level
language programs in a form meaningful to the
high-level language programmer.

2.0 Real~Time Debugger

RED is designed to be used with a high level
statement oriented language for developing stand-
alone process control software running on a

145

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1006142.1006179&domain=pdf&date_stamp=1983-03-20

microprocessor. The debugger will have the tradi-
tional features such as inserting breakpoints and
examining and depositing values of variables. In
addition, it contains a real-time trace facility
enabling the user to determine from a source level
display which basic blocks were executed and at
what time, relative to a real-time clock. Since
that feature is what is new and unique about RED,
in this note we concentrate on describing the
real-time trace.

The software development is intended to takelPlace
on a a fairly powerful host, running UNIX. The
target processors are typically single-board com-
puters, and the programs are down loaded for
actual execution. The debugger is "remote" in the
sense that the greater part of it runs on the host
computer. Thls part includes the more complex
debugger functions, such as the user interface,
command parser, and command executor, which
require access to compiler generated files. A
small debugging kernel, which handles communica-
tion with the host and implements low level func-
tions such as examining specific memory locations
and handling breakpoints, resides on the target.
RED also uses an intermediate processor between
the host and target which we call a "debugging
co-processor". This processor does the sampling
for the trace. It also contains a high speed
interface to the host processor such as an Ether-
net or parallel link. This link does not need to
operate in real-time, but must have sufficient
bandwidth to send the contents of the trace buffer
and the debug~:ing command transactions to the host
without undue delay. We believe a real-time debug-
ging co-processor such as this is practical
because of dropping memory costs and the existence
of low-cost reliable high-speed links like the
Ethernet. The latter makes it possible to host the
debugger on a variety of machines, including large
minis and mainframes.

2.1 Characterizing Control Flow Using Basic
Blocks

A basic block is a sequence of straight line
statements, h~ing only one entrance and one exit;
there are no transfers of control into or out of
the sequence except by the one entrance and one
exit. A procedure call or decision statement thus
terminates a basic block. Since every statement
within a basic block in a sequential program is
executed the same number of times, the control
flow is completely characterized by the sequence
of basic blocks executed. Counting the executions
of each basic block has been used in a number of
compilers to efficiently implement post-execution
su~aries [Satt][Kieb]. On most machines, this
can be accomplished with only one extra instruc-
tion per basic block.

Tracing the execution of basic blocks rather than
statements ~Ls two main advantages for real-time
tracing. First;, bandwidth requirements are minim-
ized, since sampling need not occur as often, and
thus memory for buffering is reduced. Secondly,
basic blocks are less likely to be re-ordered by

IUNIX is a trademark of Bell Laboratories.

code improvement techniques than individual state-
ments. We claim that tracing basic blocks is a
good compromise between tracing every statement,
which is probably not necessary for timings and
might be a burden on the sampling hardware, ~d
only tracing procedure calls, which is probably
too coarse a granularity.

Note that for the class of programs for which the
trace facility is intended, i.e., stand-alone pro-
cess control programs, all interrupts are expli-
citly handled by the high level language program.
Thus interrupts in the middle of basic blocks will
be visible by the trace of the interrupt handler
routines, although the precise statement where the
interrupt occurred will not be shown.

2.2 Trace Implementation

The trace consists of a display of each basic
block that has executed over a specific interval,
annotated by the time execution of that block
began. This interval can be specified to be rela-
tive to the beginning of program execution, or
from a breakpoint. The interval terminates when a
breakpoint is reached, or the program terminates.
The successful use of this technique depends on
the presence of naturally quiescent points in the
program at which the program can pause and not
have to run in real-time.

The trace display itself is not generated in
real-time, but is available when the program
reaches the terminating breakpoint. The trace out-
put consists of a pretty-printed display of the
program and a cursor that marks the basic block
currently being considered. The pretty-printlng
is performed so that distinct basic blocks always
begin on a new line. A set of editor-like commands
are provided to move the cursor, and hence change
the current block. There are commands for
displaying the next (or last) block executed, the
next (last) textually contiguous block, the next
(last) procedure, and to exit a compound state-
ment. Each distinct visit of a basic block is
annotated by the value of the time it was exe-
cuted.

The debugger uses a data base generated by the
compiler when the program was compiled, and the
history recorded during execution. The compiler
generated debug files, in addition to containing
the usual information necessary for a symbolic
debugger, contain the pretty-printed source text
for each basic block, and a table of pointers into
that text keyed on the address of the beginning of
each basic block. (If the programwas relocated by
a linker, the linker would need to relocate the
entries of this table). The only information that
needs to be sampled at run-time is the starting
address of each basic block and the time.

Two methods are described for performing the
real-time sampling. One makes use of a parallel
port attached to the target processor, driven by
instructions generated by the compiler at the
beginning of each basic block; this is called the
"software probe" method. The second ("hardware
probe") method relies on an expanded target memory
space that contains tag bits denoting which

146

instructions begin basic blocks. The addresses of
basic blocks that have been executed can then be
directly extracted by hardware.

2.3 Software Probe Method

The compiler inserts extra instructions in the
beginning of each basic block as for the execution
summary described above. However, instead of an
instruction to increment a counter, it generates
instructions to output the value of the program
counter (PC) (or a basic block number) to a paral-
lel port. (This would only require one instruc-
tion on processors allowing memory-mapped I/O).
The parallel port is connected to the debugging
processor D which buffers each value of PC
received from the target (T) along with the
current value of a high resolution clock. When the
target program is in a quiescent state (either not
yet initiated or halted at a breakpoint), a small
kernel is in control of T. This kernel is capable
of sending and receiving messages sent along the
parallel line, and thus responding to simple com-
mands sent by the debugger. These would be com-
mands to send back or alter the values of memory
locations and insert breakpoints (calls to the
kernel) on T. When the user wishes to initiate a
timing operation, he sets a breakpoint, and issues
a debug command to trace. The debugger directs D
to reset the timer, and instructs the kernel to
give control to the target program. As the pro-
gram executes, each time a new basic block is
entered a PC-time pair will be entered into the
history buffer. When the stop breakpoint is
reached, the kernel is reentered; it sends a mes-
sage to D (and thence to the host) indicating the
sampling is completed. The debugger then initiates
the source history.

If the host were a single user workstation, with a
sufficiently fast processor, it could absorb the
functions of D.

2 . 4 Hardware P r o b e Method

This method relies on the "debugging co-processor"
being able to detect (in parallel with instruction
execution) when a new basic block is being exe-
cuted by examining the value of a tag bit in a
memory space parallel to that of the target. These
tag bits would be set when the object program is
loaded; the loader uses a table built by the com-
piler (and/or linker) containing the addresses of
thoses instructions which begin new basic blocks.
During execution, when an instruction is fetched
whose corresponding tag is set, the value of that
address and the value of a clock is saved in a
large trace buffer. The extra memory and hardware
needed could be implemented on the target confi-
guration. However, the preferred scheme would be
to keep this hardware separate, and implement the
co-processor as part of an in-circuit emulator
(ICE). The co-processor would consist of addi-
tional memory to represent the tags, the trace
memory, a high resolution clock, and a simple pro-
cessor to monitor the arrival of addresses and
buffer their value along with that of the clock.
The complete emulator would consist of a target
p r o c e s s o r , t h e co-processor, and a d d i t i o n a l

control logic to enable the co-processor to con-
trol the target.

Existing ICEs usually provide a means of tracing
references to specific addresses, bus cycles, or
specific instructions, possibly qualified by a
predicate. However, since the trace memories are
generally small, and the set of predicates is lim-
ited to a small number, it is not feasible to use
such emulators for tracing more than a small
number of specific instructions or statements. The
tag method proposed here provides a simple way to
accomplish a more useful form of tracing over
larger intervals, utilizing an ordinary memory of
comparable bandwidth to the main memory. A tag
scheme can also be used to implement an unlimited
number of breakpoints on both data and program
references, as proposed in [John82].

There is a problem when using the tag bit scheme
for instruction tracing with architectures that
implemen t instruction pre-fetch, such as the
MC68000. c On such processors, the fetch of an
instruction does not imply it will be executed.
This situation would occur when the instruction
following a branch has been fetched, but the
branch is taken. On processors that use only sin-
gle instruction pre-fetch, this problem could be
handled by not recording an instruction address
unless the next instruction is HOT tagged. This
will work because the target of a branch is always
tagged. The compiler need only guarantee each
basic block has at least one untagged instruction,
by inserting no-ops if necessary. (Estimates made
from existing compilers show that such insertions
would be needed only rarely). In future architec-
tures, extra control lines could be provided to
indicate which of several instructions in a pre-
fetch queue have been discarded.

2.~ Comparison and Further Comments

The clear advantage of the hardware probe method
is that it does not impose any execution overhead
on the target program because the basic blocks are
detected without the execution of additional
instructions. The user can also change which code
sections are traced (with no overhead associated
with el~ded sections) without recompiling the
source program. The software method is easier to
try out initially.

The success of both methods naturally depends on
having hardware that is fast enough to perform the
real-time sampling. The fact that basic blocks are
traced rather than every instruction or statement
increases the chances that this is possible.

3.0 Current Work

3.~ Implementation

The real-tlme trace facility is currently being
implemented for the programming language PL Modula

2MC68000 is a trademark of Motorola.

147

[Mah] targeted to an LSI-113 using the software
probe method. The compiler runs on a VAX under
Berkeley UNIX. The sampling will be performed by a
68000 processor over a parallel interface, which
will communicate with the VAX over a serial line
initially, and later via an Ethernet connection.
The language Modula was chosen as an initial vehi-
cle because it is meant for process control appli-
cations, and because the in-house developed com-
piler was readily available.

During compilation, the compiler generates a
pretty-printed version of the program source text,
and a debug file mapping values of program
addresses to the line numbers of corresponding
basic blocks in the formatted file. After a trace
sampling has occurred, and the debugger has
received the sequence of PC-time ordered pairs, it
determines the line numbers of the basic blocks
executed and calls the display module to display
them.

The debugger command processor and display modules
have been ,Pitten and debugged using simulated
executions of Modula programs. The hardware will
be installed and tested shortly, permitting actual
user experience.

3.2 Editing Features

A large voltm~e of information can be represented
by the execution of a program, even over short
intervals. A large part of this information may
be uninteresting. For the trace to be useful,
editing comms~ds must be provided to allow the
user to foc~m on the areas of interest. The trace
should be presented in a convenient form for exam-
ination. Clearly a high-speed display is essen-
tial. In our implementation, the trace is
presented in a style similar to the Cornell Pro-
gram Synthesizer [Teit], with a marker that moves
to the next (or previous) basic block executed
rather than the statement, labeled by the time
that block was executed. Additional commands allow
positioning of the cursor to blocks selected by
string matching or cursor movement commands, and a
command to display the next execution time of the
selected block. Additional commands exist to elide
selected portions of the display, and to break out
of loops or procedures and display the time the
exit occurred.

(similar to [Teit]) to develop the formatted
source text directly.

Acknowledgements

My thanks to D. Lorenzini and P. Rutter
earlier drafts of this paper.

REFERENCES

who read

[John82]
Johnson , Mark S c o t t , Some Requ i r emen t s f o r
A r c h i t e c t u r a l Suppor t o f S o f t w a r e Debugging,
P r o c e e d i n g s o f Symposium on A r c h i t e c t u r a l
Suppor t f o r Programming Languages and O p e r a t -
i n g Systems, SIGPLAN Notices, April 1982.

[Kieb]
Kieburtz, Richard, William Barabash, Charles
Hill, Stony Brook Pascal User's Manual, Dept.
of Computer Science, SUNY at Stony Brook,
1979.

[Mah]
MahJoub, Ahmed, A New Modula Compiler for the
LSI-11, SIGPLAN Notices, June 1980.

[Satt]
Satterthwaite, Edwin H., Source Language
Debugging Tools, PhD. Thesis, Computer Sci-
ence Dept., Stanford University, (STAN-CS-
75-494), 1975.

[Teit]
Teitelbaum, Tim, Thomas Reps, Susan Horwitz,
The Why and Wherefore of the Cornel1 Program
Synthesizer, SIGPLAN Notices, June 1981.

4.0 Further Plans

If the trace scheme proves feasible, it will be
incorporated into a production microprocessor
software system for a Pascal-like process control
language. The system would be built around a sin-
gle user workstation to host the compiler and
debugger , and would use t h e hardware probe method
for doing the trace sampling. Rather than having
the compile~ produce a separate, pretty-printed
version of the source text, the applications pro-
grammer would use a syntax directed editor

3LSI-11 i~s a trademark of D i g i t a l Equipment
Corporation.

-VAX is a trademark of Digital Equipment Cor-
poration.

148

