
VAX DEBUG: An Interactive, Symbolic, Multilingual Debugger

B e r t Beander

Digital Equipment Corporation
110 Spit Brook Road,
Nashua, NB 03062

ABSTRACT

Digital Equipment Corporation's VAX-11 Debugger,
usually called VAX DEBUG or simply DEBUG, is an
interactive, symbolic, and multilingual debugger
which runs on the VAX-11 series of computers under
the VMS operating system. The following gives an
overview of VAX DEBUG and examines how it solves
some of the problems inherent in the design of any
such debugger. Particular attention is paid to how
its command language is designed, how it distin-
guishes between addresses and values in command
input, how it solves the problem of accessing and
organizing symbol table information, and how it
exercises control over the user program.

I. GENERAL OVERVIEW

VAX DEBUG is interactive, symbolic, and multi-
lingual. These attributes are central from the
user's point of view and deserve a brief de-
scription. DEBUG is interactive in the sense that
the user program to be debugged is run interactive-
ly at a terminal under DEBUG control. When the
program starts up, DEBUG gets control first and
prompts for DEBUG commands. These commands may set
up breakpoints, for example, and are normally
followed by the GO command, which causes the user
program to start executing.

The user program then executes until a breakpoint
of some sort is encountered or an exception
condition arises, at which point DEBUG again gets
control and prompts for more command input. The
user can then examine the state of the computation,
alter it if so desired, and either continue program
execution or simply exit the debugging session. In
short, the user interactively follows the execution
of the program and can examine or alter its state
anywhere along the way.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission o f the Association for Computing Machinery. To copy
otherwise, or to republish, rrequires a fe¢ and/or specific permission.

1983 ACM 0-89791-111-3/83/007/0173 $00.75

VAX DEBUG is symbolic in the sense that program
locations can be referred to by their symbolic
names. The contents of a variable called X is thus
examined by the command EXAMINE X; the actual
address of X need, not be specified. Similarly, a
breakpoint is set on a routine called FOG by the
command SET BREAK FOG; DEBUG itself determines
what absolute address goes with the symbol FOG.
Output is also symbolic wherever possible. Pascal
enumeration-type values are displayed as enumera-
tion-literal names, and program addresses are
displayed as routine names and listing line
numbers. Now symbol information is accessed is
described in Section 4 below.

VAX DEBUG is strictly an object program debugger
which debugs programs at run time after they have
been compiled and linked. It can thus only be used
to debug compiled languages, not interpreted ones.
It is a multilanguage debugger, however, supporting
seven languages at present: assembly language,
Fortran, Bliss, Basic, Cobol, Pascal, and PL/I.
Being multilingual means that it understands the
following for each supported language:

Bow symbol names are composed in the
l anguage , I t knows how i d e n t i f i e r s a re
formed and how compound names are c o n -
s t r u c t e d . For example, i t accep ts A(2) ->B
as v a l i d PL / I syn tax and A [2] ^ . B as v a l i d
Pascal s y n t a x .

Bow language e x p r e s s i o n s are i n t e r p r e t e d .
I t knows what o p e r a t o r s are a l l owed and
what t h e i r syn tax and semant i cs a r e .

Bow and when t ype c o n v e r s i o n s a re done in
the l anguage , Th is i s p a r t o f u n d e r s t a n d -
ing how to i n t e r p r e t e x p r e s s i o n s and i s
needed to do ass igoments p r o p e r l y .

Bow v a l u e s in the language are d i s p l a y e d .
For example , how ent~nera t ion type v a l u e s
are d i s p l a y e d in Pascal and how numer ic
v a l u e s a re d i s p l a y e d in Cobo l .

How the language scope r u l e s work . I t
knows how t o l o o k up a symbol name in a
s p e c i f i e d scope a c c o r d i n g t o language
rules .

173

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1006142.1006185&domain=pdf&date_stamp=1983-03-20

Basically, symbol names and expressions entered as
part of DEBUG commands are parsed and understood in
source language terms, and data values are dis-
played in source language terms. All other capa-
bilities, including the rest of the DEBUG command
language, are language independent; they do not
vary with the source language of the program being
debugged.

DEBUG understands multiple languages but operates
according to the rules of only one language at a
time. This language is called the current lan-
guage. The current language is initially set to be
the source language of the main program but can be
changed at any time during the debugging session
with the SET I~NGUA(~ command. For example, the
command SET LANGUAGE PASCAL causes DEBUG to inter-
pret subsequent command input according to PASCAL
rules. This allows a user to debug a program
written in multiple source languages using a single
debugger, namely VAX DEBUG.

There are two main reasons for having a single
multilingual debugger on the VAX instead of a sepa-
rate debugger for each language. One is to support
one of the key goals of the VAX system architec-
ture: to allow each user to choose the language
best suited to his application and to freely use
packages written in other languages. Programs and
applications can be written in multiple languages
because they can call each other through a common
calling standard, they can read and write each
other's files through a common Record Management
System, and they can be debugged together using a
common debugger.

The other reason is that it is a lot cheaper to
write one debugger that handles seven languages
than it is to write seven debuggers. Most of what
a debugger has to do is in fact language indepen-
dent; the code that performs these tasks therefore
needs to be written (and maintained) only once, not
seven times. Finding the proper partitioning
between the language-dependent and -independent
parts has been a difficult problem and has required
several major design iterations (which will not be
described further here). But once a proper parti-
tioning has been found, one can indeed make the
language-speciflc parts quite localized. This
makes it relatively easy to add support for addi-
tional languages and it makes the multllanguage
debugger a very economical choice in the multllan-
guage environment.

2. FEATURES AND C(~4MAND LANGUACE

The VAX DEBUG command language defines the capabil-
ities of this debugger and constitutes the user
interface. It therefore merits a short exposition.
The intent here is not to give a complete descrip-
tion of the DEBUG command language (the reference
manual [2] does that), but to give a brief synopsis
outlining the main features of DEBUG and illustrat-
ing the flavor of the command language. The fol-
lowing are some of the more important commands
accepted by DEBUG:

EXAMINE addr-expr
DEPOSIT addr-expr = lang-expr
EVALUATE lang-expr
SET SCOPE scope-spec
SET BREAK addr-expr
SET TRACE addr-expr
SET WATCH addr-expr
STEP
SHOW CALLS
GO

Here command language keywords are in upper case.
The exact meanings of the constructs addr-expr
(address expression) and lang-expr (language ex-
pression) are discussed in Section 3 below.

The EXAMINE command retrieves and displays the
contents of a specified program location. The
location is typically a variable and the display is
formatted according to the variable's type. This
is probably the most frequently used of all com-
mands. The DEPOSIT command stores a new value Into
a specified location, again usually a variable.
The EVALUATE command permits expresslo~s in the
current language to be evaluated and the results
displayed. Together, these three commands are the
primary means whereby a user examines or alters the
state of his data areas.

Since variable names are not necessarily unique
across a program with many compilation units
(called "modules" in DEBUG terminology} or multiple
routines, the SET SCOPE command is provided. This
command specifies the scope in which subsequent
symbol references are to be looked up. It can also
specify a sequence of scopes to be searched. A
scope specification is usually a module or routine
name or the name of some other lexical entity (such
as a Cobol section). The scope can also be defined
to be whatever lexical entity contains the next
instruction to be executed; this is the default
scope. Given a scope, DEBUG looks up variable
names from commands in that scope using the scope
rules of the current language.

For a specific symbol, the user can override the
current scope setting by prefixing the symbol name
with a "pathnmne". MOD\ROOT\X, for example, means
variable X in routine ROUT in module HOD; here
MOD\ROOT\ is the pathname that defines the desired
scope of this specific reference to X.

VAX DEBUG offers several ways to stop program
execution on specified events. The SET BREAK
command causes the program to stop when a specified
instruction location is r e a c h e d . The SET WATCH
command causes execution to stop when a specified
data location is written to. The STEP command
stops the program when the next instruction or the
next source line is reached; it is used to single-
step the program. All these events cause DEBUG to
gain control and to announce the event to the user.
It then solicits DEBUG commands. The SET TRACE
command is a variant of SET BREAK Which announces
events but does not stop to solicit commands. It
thus "traces" these events.

The SHOW CALLS command displays the current state
of the VAX call stack. First it shows at what
routine and llne number the program is currently
stowed. Then it shows where that routine was

174

called in terms of a second routine name and line
number, and then where that second routine was
called, and so on. In short, SHOW CALLS shows the
execution state (as opposed to the data state) of
the process in symbolic terms. As such, it is a
frequently used command.

The remaining control function is provided by the
GO command, which starts or continues program
execution. Control can optionally be transferred
to a specified address, thus redirecting the
execution stream, but the normal case is of course
to start the program where it last stopped.

One remaining feature also deserves mention:
source line display. DEBUG can display the source
text associated with the current program location
when single-stepplng the program or when stopping
at some event. There are also a TYPE command that
types out (displays) a specified segment of the
source text and a SEARCH command that searches the
source text for a specified string. The source
line display capability has proved very useful (and
very attractive); it frequently eliminates the
need for a source listing and thus takes the user
one step closer to "paperless programming".

The above synopsis omits many significant features
and of course nearly all detail, but hopefully
gives an idea of what VAX DEBUG offers its users.
The philosophy behind the DEBUG command language
differs markedly from that of the DISPEL language
described by Johnson [3]. DISPEL provides a number
of low-level primitives from which a user can
compose whatever high-level constructs he desires
to do his debugging. DEBUG's design, on the other
hand, attempts to predict what high-level debugging
commands a user will typically want and provides
those.

Of these, the DEBUG approach is probably the more
practical one for most users. Just as most users
are best served by high-level programming lan-
guages, they are best served by a high-level
debugging language where the most frequently needed
operations are provlded ready-made. Still, the
DEBUG approach has its drawbacks: It leads to fre-
quent requests for new commands to handle special-
ized debugging s i t u a t i o n s . An i d e a l debugging l a n -
guage should p r o b a b l y combine both p h i l o s o p h i e s ;
i t should p r o v i d e both h i g h - l e v e l debugging com-
mands and ex tens ion mechanisms whereby the user can
d e f i n e h i s own specialized commands to handle spe-
c i a l i z e d debugging s i t u a t i o n s ,

3. ADDRESS EXPRESSIONS AND LANGUA(~ EXPRESSIONS

In a debugger, there is a need to specify both
addresses and values in the command language. A
DEPOSIT command, for example, must specify both a
value to deposit and an address to deposit into.
In a symbolic object-tlme debugger llke VAX DEBUG,
it turns out to be particularly important to
provide generalized ways to specify both addresses
and values. Early in DEBUG's development, this
point was not fully appreciated, but it eventually
led to the de%,elopment of two distinct kinds of
expressions: address expressions and language ex-
pressions. These notions require some explanation
as they are q u i t e impo r t an t in the command l a n -
guage.

VAX DEBUG accepts language expressions in the
EVALUATE and DEPOSIT commands and in array sub-
scripts. Such expressions are expressions in the
c u r r e n t source language. They are scanned and
parsed accord ing to source language ru l es and the
o p e r a t o r s are i n t e r p r e t e d accord ing to source
language semant ics . They are some~t~at r e s t r i c t e d
(no f u n c t i o n c a l l s , f o r example) bu t o the rw ise
mimic the computa t ions the language i t s e l f would
per form.

More technically, language expressions are consid-
ered to consist of three Minds of entities:
primary symbols, constants, and language operators.
Primary symbols are symbol names but include all
record component selection, pointer dereferencing0
and subscrlpting. (Pointer dereferenclng refers to
operators llke -> in PL/I and ^ in Pascal.) ABC
and A.B[2][3] are thus primary symbols in Pascal
while A-B-C and B OF A(2,3) are primary symbols in
Cobol. Primary symbols are allowed in address
expressions as well and are therefore considered to
be distinct entities even though the operators
within them are language speciflc. The term
"language operators" thus refers to all operators
in the current language that are not parts of
primary symbols. In language expressions, language
operators and constants are of course parsed and
interpreted according to language rules. Constants
can be numeric or string constants.

Language operators operate on the current values of
their operands. The expression X+Y, where X and Y
are variables in the user progr~am, thus adds the
current value of X to the current value of Y.

Language expressions serve two primary purposes.
Most frequently, they compute array subscripts. In
a simple command such as EXAMINE X(I), the I is a
language expression that defines the subscript
value. This expression may of course be arbitrari-
ly complex. Language expressions also allow DEBUG
to be used as a calculator during the debugging
session. The command EVALUATE Z+25 computes the
value of X+25 and displays it. Similarly, DEPOSIT
Y = X+25 computes a value to be deposited into Y.

Being able to evaluate language expressions while
debugging is obviously useful, but the user fre-
quently needs to compute the address, as opposed to
the value, of something. For this reason DEBUG
accepts "address expressions" in many commands. In
an address expression, the operands are primary
symbols or integer constants. Primary symbols are
language dependent and may include component selec-
tion, pointer dereferencing, and subscripting as
indicated above. However, the expression operators
are language independent and perform address, not
value, computations. The following operators are
accepted: prefix "@" or "." (indirection through
an address), "+" (addition), "-" (negation or sub-
traction), "*" (multiplication), and "/" (divi-
sion). Of these, multiplication and division are
seldom used but are sometimes applied to constants
to compute offsets from addresses.

The operators in address expressions always operate
on the addresses of the symbols and the values of
the constants. Thus the address expression X+2
tames the byte address of X and adds 2 to it,
yielding another address. Had this been a language

175

expression, 2 would have been added to the value
(not the address) of X. In the address expression
X(I-2)+4, the I-2 is a language expression yielding
the subscript value. However, the "+" is an
address operator which adds 4 bytes to the byte
address of array element X(l-2).

Address expressions are used in DEBUG commands that
do something to locations in the user program.
They are thus accepted on the EXAMINE command
(which displays the contents of a specified
location) and the SET BREAK command (which sets a
breakpoint on a specified code location), among
others. They also specify the target locations of
DEPOSIT commands.

The problem being addressed here is that addresses
and values must both be specified to an object-time
debugger and that generalized ways of specifying
each are often needed. VAX DEBUG solves this prob-
lem by accepting two distinct kinds of expressions,
address expressions and language expressions, each
of which is parsed and evaluated by its own
distinct rules to yield its own distinct kinds of
results, namely addresses or values.

4. SYMBOL TABLE ACCESS

Because DEB[~ is a symbolic debugger, it must have
access to the symbol tables of the user program's
compilation units. This information is passed from
the compiler through the linker to DEBUG as fol-
lows:

The compiler generates Debug Symbol Table
(~) records and inserts them into the
relocatable object file it produces.
These records describe the program's sym-
bol table in a language-independent way.

The linker passes the DST records from the
object file into the executable image
file. The linker does relocation and
global symbol resolution on the DST text
but does not otherwise interpret or under-
stand any of the information in the DST.

DEBUG picks up the Debug Symbol Table from
the executable image file at run time.
Through a pointer left in the image header
by the linker, the DST is mapped into
DEBUG's virtual address space.

Since the E~bug Symbol Table can increase the size
of an object file or executable image file many-
fold, its emission is optional at both compile time
and link time. (The image file for a large BLISS
program can easily become six to eight times larger
when the DST is included.)

One of the appealing properties of this scheme is
that the propagation of the symbol table informa-
tion is transparent to the user; it happens auto-
matically as part of the compilation and linking
process. [~ere are no extra symbol table files to
be handle(| by the user (when copying object files,
for example), and debugging is a well integrated
part of the operating system.

In the I~T, each symbol is described by a DST

record. In general, each such record contains
three things: the symbol name, the symbol type,
and the symbol address or value. (Variables have
addresses while named constants have values.) The
type of the symbol can be described at various
levels of complexity. A single byte will do fDr an
atomic data type such as integer, while much more
elaborate type descriptions are used for complex
types such as record, array, or enumeration types.
Similarly, the symbol address or value can be
described by as little as five bytes (one byte of
control information and 32 bits of address or
value) or by arbitrarily complex specifications of
how the address or value is to be computed. In
addition, each DST record contains its own length
so that the location of the next record can be
found.

Nesting in the symbol table is indicated by beg in
and end records bracketing the nested symbols.
Thus a Routine Begin DST record and a Routine End
DST record bracket the DST records for all symbols
declared within that routine. They also give the
start address and length of the routine. Similar-
ly, Block Begin and Block End records bracket the
symbols declared within a lexical block and Record
Beg in and Record Ehd records bracket the DST
records for record (structure) comlx~nents. In
addition, the DST for each independently compiled
and linked unit (a "module" in DEBUG terminology)
must begin with a Module Begin record and end with
a Module End record.

The mapping between program counter values and
listing llne numbers is given by DST records which
specify this information in a very compact encod-
ing. This allows DEBUG to convert line numbers to
program addresses and vice versa. Other DST
records specify the mapping between listing line
numbers and source file records. These lIST records
are able to describe a source stream as coming from
multiple source files, including INCLUDE files.
They allow DEBUG to display the source text for a
specified range of line numbers or to go directly
from a program address to the correslx>nding source
text.

The Debug Symbol Table representation was designed
to be very compact and relatively easy for compil-
ers to generate. In this it succeeds reasonably
well. }bwever, the price paid for these advantages
is that symbol information in the DST cannot be
easily accessed--the only way is to make a linear
scan of the DST from beginning to end. If done
frequently, this is unacceptably slow.

Consequently, DEBUG builds a Run-Time Symbgl Table
(RST) which it then uses to do symbol icx>kups. The
RST is hashed for fast iookups and has all the
links needed to show the nesting structure of the
symbol table. Each RST entry also has a Ix)inter to
the corresponding DST record. All symbol accesses
are made through the RST even though specific
attributes of a symbol (such as its name) remain
resident only in the DST.

The RST is initialized When DEBUG starts up but is
actually built one module (compilation unit) at a
time in response to the SET MODULE command. This
command thus defines the extent of the active sym-

176

bo l t a b l e . I d e a l l y the user shou ld a u t o m a t i c a l l y
have access t o a l l symbols i n h i s program, b u t i n
practice it is much too time consuming to construct
an RST for the entire DST if the program is very
large. Hence DEBUG lets the user control how much
of the symbol table to make accessible and builds
an RST for only those parts.

5. CONTROLLING THE USER PROGRAM

To fulfill its purpose, an interactive debugger
must have a way of controlling the user program
being debugged. This means stopping execution at
specified breakpoints, slngle-stepplng over in-
structions or source lines, tracing the program's
execution, monitoring data locations, and taking
control when error conditions occur in the user
program. To provide the needed control, VAX DEBUG
relies primarily on the the VAX/VMS exception-

handling mechanism.

The VAX-11 architecture [I] provides an exception-
handling mechanism whereby exceptions detected by
the hardware or signalled by the user program
itself are handled by user-specified exception
handlers. (A handler is simply a routine which is
called when an exception has occurred. It receives
the exception information through a well-defined
calling sequence.) A routine can declare an excep-
tion handler dynamically by putting the handler's
entry address into a reserved location in the
routine's call frame on the VAX call stack. Such a
handler is called a stack handler because its
address is found in the call stack. This handler
then receives control when an exception occurs
within that routine or within any routine called by
that routine. When the routine returns, its call
frame is popped and the handler is no longer

deelared.

When there are multiple call frames on the execu-
tion stack and an exception occurs, VMS searches
the call stack for a call frame with a declared
exception handler. The search starts at the top of
the stack (i.e., at the call frame for the most
recently called routine) end proceeds toward the
bottom (i.e., toward the call frame for the main
program) until a handler address is found. That
handler is then called. If that handler decides it
cannot handle this exception, it "resignals" the
exception and VMS continues the search until it
finds another handler to call. When a handler is
found which does want to handle the exception, it
may continue program execution after taking the
appropriate action. No other handler gets to see
the exception in this case. A handler may also
"unwind" the call stack (force the return of some
routine on the stack) or terminate program execu-

tion.

When activating a user program, VMS always creates
a call frame at the bottom of the stack, that is,
below the call frame for the main program. In this
frame it stores a pointer to a handler called the
final handler. When DEBUG is not used, this
handler handles every exception by printing the
corresponding error message and giving the error
location. After that it terminates the program.
This handler is thus what guarantees that the
search for a handler in the call stack will

terminate. The final handler will of course never
see exceptions handled by the user's handlers since
they are all declared higher in the call stack.

In a d d i t i o n , t h r e e s p e c i a l h a n d l e r s can be d e c l a r e d
through system service calls: the primary, secon-
dary, and last chance handlers. If declared, the
primary handler is always called first when an
exception occurs. Then the secondary handler is
called and after that the search for stack handlers
begins. The last chance handler is called only if
the call stack itself is corrupted or destroyed.

So, how does DEBUG c o n t r o l the user p rog ram 's
e x e c u t i o n ? I t does so by d e c l a r i n g the p r i m a r y
h a n d l e r and the l a s t chance h a n d l e r and by chang ing
the f i n a l hand le r address to p o i n t t o i t s own f i n a l
h a n d l e r . Th is means t h a t a l l e x c e p t i o n s w i l l go
through DEBUG's primary h a n d l e r first. DEBUG can
thus cause exceptions, such as breakpoint faults,
which it then intercepts and never reslgnals to the
userls handlers. However, exceptions not caused by
DEBUG are resignalled by the primary handler. The
user's handlers (if any) can thus handle these
exception just as they would if DEBUG were not
present. However, if no user handler handles a
given exception, DEBUG still gets control through
its final handler when the handler search reaches
the very bottom of the call stack.

DEBUG thus ensures its control by surrounding the
user program on both ends with its own handlers.
In addition, , DEBUG's last chance handler gets
control if the call stack is corrupted, and an
"exit handler" is declared which gets control when
the user program exits (i.e., terminates). In
effect, DEBUG is nothing more than a collection of
exception handlers.

While the final and last chance handlers catch
errors in the user program, most control functions
are exercised through the primary handler. Single-
stepping over instructions is acc~oplished by DEBUG
setting the trace bit (T;bit) in the user program's
Processor Status Word. When control is returned to
the user program, the T-bit causes one instruction
to be executed, after which a "T-bit fault" is
generated. DEBUG's primary handler intercepts this
exception, prints the appropriate trace informa-
tion, and then solicits DEBUG commands. Stepping
over source lines is handled similarly except that
several instructions must typically be stepped over
before stopping and announcing the trace informa-
tion.

Breakpo~nts are implemented as follows. When the
user enters the SET BREAK command to DEBUG, a BPT
(breakpoint) instruction is deposited into the
specified program location. A later GO command
transfers control from DEBUG to the user program.
When the specified location is reached, the planted
BPT instruction is executed, causing a "breakpoint
fault". Again VMS looks for an exception handler
and DEBUG's primary handler is called first. This
handler checks that DEBUG in fact planted this
particular BPT instruction, and if so announces the
breakpoint. It then solicits DEBUG eommands from
the user.

If it turns out that DEBUG had not planted this
particular BPT instruction, the primary handler

177

resignals the breakpoint fault. This means that
user handlers get a chance to handle the exception.
If no user handler is declared or they all resignal
too, then DEBUG's final handler eventually gets
called. This handler handles all exceptions by
printing the error message associated with the
exception condition and then soliciting DEBUG
commands from the user.

In short, DEBUG's primary handler only handles
exceptions caused by DEBUG's intervention in the
user process. (The user can explicitly request
that it should catch all exceptions regardless of
cause, but this is not the normal mode of opera-
tion.) Other exceptions are reslgnalled so that
user handlers can handle them just as if DEBUG were
not present. Only if they all fall to do so will
DEBUG reclaim these exceptions through its final
handler.

Another control function also illustrates this
principle. The VAX architecture provides no expli-
cit support for monitoring accesses to data loca-
tions, but It does provide a memory page protection
mechanism. A user who wishes to catch all write
operations to a specified data location enters a
SET WATCH command, which in DEBUG terminology sets
a watchpoint.

DEBUG implements the watchpoint bywrite-protecting
the page containing the watched data location. The
user program can then rLm until a write access to
that page occurs. The write access causes a memory
"access y iolation" fault, and DEBUG's primary
~andler gets control. DEBUG then determines if the
faulting address points to one of the watched mem-
ory locations on the page. If so, DEBUG announces
the write access and prints the current value of
the location. It then removes the page write
protection and single-steps over the writing in-
struction by setting the trace bit, giving control
to the program, and catching the resultin E T-bit
fault, again through the primary handler. The page
protection is again restored, If the data location
was watched, DEBUG now prints its new value and
stops to =)licit DEBUG commands. If the location
was not watched, the user program is simply given
control again without anything being announced to
the user.

If a memory access violation occurs that was not
caused by DEBUG's setting a watchpoint, then it is
simply resignalled by the primary handler. Such an
access violation is presumably a program error. It
can be handled by the user's own handlers or it can
fall through to the final handler, which will
announce it as a program error and then solicit
DEBUG commands.

Finally, the mechanism whereby infinite loops are
stopped also uses the primary handler. To stop
such a loop (or execution generally), the user
presses the Control/Y key, causinK VMS to suspend
the user ~ocess and to prompt for a VMS command.
If the user then enters "DEBUG", VMS raises the
"debug exception". As usual, DEBUG's primary
handler is called first and handles this exception
by simply sollcitin8 DEBUG commands from the user.
The user can then enter SHOW CALLS to find out
where execution stopped or otherwise examine the
state of 1=he program.

To summarize, DEBUG is in effect no more than a
collection of exception handlers attached to the
user process. DEBUG uses the same exception-handl-
ing mechanisms available to any user program and a
user could in fact write his o~ debugger u sir~E
these mechanisms. Of course, parts of the VMS
exception handling scheme were explicitly designed
to accommodate the needs of the debugger. In
particular, the provision for a primary handler and
a final handler is essential to give DEBUG the
means to completely control the user process. A
way of stopping loops and transferring control to
DEBUG is another special hook. However, it is
interesting to note that these relatively minor en-
hancements to an otherwise user-oriented exception-
handling mechanism are enough to meet the full
control needs of an interactive symbolic debugger.

6. CONCLUSION

In conclusion, we have seen that VAX DEBUG is an
interactive, symbolle, and multilingual debugger
and we have discussed how VAX DEBUG solves certain
problems such a debugger must solve. We noted what
is meant by being "interactive" and "symbolic"
(namely the obvious meanings) and also what is
meant in this case by being "multilingual", namely
that programs written in seven separate source
languages can be debugged with the same debugger.
For each source language, DEBUG interprets symbol
references and language expressions in source lan-
guage terms and displays values as appropriate for
that language. Also, the current source language
can be changed at any time during the debuEKing
session.

It was noted that DEBUG's command language consti-
tutes a high-level, run-time debugging language
that aims to provide all the hlgh-level debugging
capabilities a user typically needs. The command
language has commands to examine and alter the
current state of the computation, to show the call
stack, to display program sources, and to interrupt
and control the execution stream. It does not
necessarily cater to every specialized situation,
however. It was also noted that a symbolic object-
time debugger needs generalized ways of specifying
both addresses and values; in the VAX DEBUG com-
mand language, this problem is solved by accepting
two distinct kinds of expressions, namely address
expressions and language expressions.

Any symbolic debugger must have access to the
symbol tables of the program being debugged. VAX
DEBUG solves this problem by having the compilers
output a language-independent Debug Symbol Table
(I~ST), which is passed to DEBUG via the object and
executable image files. The DST representation was
chosen for compactness (to conserve file space) and
ease of generation (to simplify compilers); ease
of access was sacrificed, however. As a result,
DEBUG must build a Run-Time Symbol Table (RST)
which has the proper structure to show nesting re-
lationships between symbols and to allow efficient
symbol table access.

F i n a l l y . we d iscussed how VAX DEBUG c o n t r o l s the
user • program be ing debugged. VAX DEBBGachieves
t h i s c o n t r o l th rough the normal VAX/VMS e x c e p t i o n -
h a n d l i n g mechanism. By des ign t h i s mechanism has

178

certain features uhlch allou DEBUG to exercise the
necessary control. The moat important of these
features are the provisions for a primary and a
f i n a l except ion hand ler . These handlers a l l ow
DEBUG to i n t e r c e p t except ions both before and a f t e r
the user program gets to see them. This, plus.sorae
other f a c i l i t i e s , ls enough to a l l o w DEBUG to com-
p l e t e l y con t ro l the execut ion o£ the user program
being debugged.

REFERENCES

1. - , VAX A rch i t ec tu re Handbook, D i g i t a l Equipment
Corporat ion, 1981.

2. - , VAX-11 Symbolle Debugger Reference Manual,
AA-D026D-TE, D i g i t a l Equipment Corporat ion,
1982.

3. Johnson, Hark Scot t , "DISPEL: A Run-Time Debug-
g lng Language", Computer Languages, Vol 6, pp
79-9q, 1981.

179

