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ABSTRACT 

Digital Equipment Corporation's VAX-11 Debugger, 
usually called VAX DEBUG or simply DEBUG, is an 
interactive, symbolic, and multilingual debugger 
which runs on the VAX-11 series of computers under 
the VMS operating system. The following gives an 
overview of VAX DEBUG and examines how it solves 
some of the problems inherent in the design of any 
such debugger. Particular attention is paid to how 
its command language is designed, how it distin- 
guishes between addresses and values in command 
input, how it solves the problem of accessing and 
organizing symbol table information, and how it 
exercises control over the user program. 

I. GENERAL OVERVIEW 

VAX DEBUG is interactive, symbolic, and multi- 
lingual. These attributes are central from the 
user's point of view and deserve a brief de- 
scription. DEBUG is interactive in the sense that 
the user program to be debugged is run interactive- 
ly at a terminal under DEBUG control. When the 
program starts up, DEBUG gets control first and 
prompts for DEBUG commands. These commands may set 
up breakpoints, for example, and are normally 
followed by the GO command, which causes the user 
program to start executing. 

The user program then executes until a breakpoint 
of some sort is encountered or an exception 
condition arises, at which point DEBUG again gets 
control and prompts for more command input. The 
user can then examine the state of the computation, 
alter it if so desired, and either continue program 
execution or simply exit the debugging session. In 
short, the user interactively follows the execution 
of the program and can examine or alter its state 
anywhere along the way. 
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VAX DEBUG is symbolic in the sense that program 
locations can be referred to by their symbolic 
names. The contents of a variable called X is thus 
examined by the command EXAMINE X; the actual 
address of X need, not be specified. Similarly, a 
breakpoint is set on a routine called FOG by the 
command SET BREAK FOG; DEBUG itself determines 
what absolute address goes with the symbol FOG. 
Output is also symbolic wherever possible. Pascal 
enumeration-type values are displayed as enumera- 
tion-literal names, and program addresses are 
displayed as routine names and listing line 
numbers. Now symbol information is accessed is 
described in Section 4 below. 

VAX DEBUG is strictly an object program debugger 
which debugs programs at run time after they have 
been compiled and linked. It can thus only be used 
to debug compiled languages, not interpreted ones. 
It is a multilanguage debugger, however, supporting 
seven languages at present: assembly language, 
Fortran, Bliss, Basic, Cobol, Pascal, and PL/I. 
Being multilingual means that it understands the 
following for each supported language: 

Bow symbol names are composed in  the  
l anguage ,  I t  knows how i d e n t i f i e r s  a re  
formed and how compound names are c o n -  
s t r u c t e d .  For example,  i t  accep ts  A(2) ->B 
as v a l i d  PL / I  syn tax  and A [ 2 ] ^ . B  as v a l i d  
Pascal  s y n t a x .  

Bow language  e x p r e s s i o n s  are i n t e r p r e t e d .  
I t  knows what o p e r a t o r s  are a l l owed  and 
what t h e i r  syn tax  and semant i cs  a r e .  

Bow and when t ype  c o n v e r s i o n s  a re  done in  
the  l anguage ,  Th is  i s  p a r t  o f  u n d e r s t a n d -  
ing  how to  i n t e r p r e t  e x p r e s s i o n s  and i s  
needed to  do ass igoments  p r o p e r l y .  

Bow v a l u e s  in  the  language are  d i s p l a y e d .  
For example ,  how ent~nera t ion  type  v a l u e s  
are d i s p l a y e d  in  Pascal  and how numer ic  
v a l u e s  a re  d i s p l a y e d  in  Cobo l .  

How the  language scope r u l e s  work .  I t  
knows how t o  l o o k  up a symbol name in  a 
s p e c i f i e d  scope a c c o r d i n g  t o  language 
rules . 
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Basically, symbol names and expressions entered as 
part of DEBUG commands are parsed and understood in 
source language terms, and data values are dis- 
played in source language terms. All other capa- 
bilities, including the rest of the DEBUG command 
language, are language independent; they do not 
vary with the source language of the program being 
debugged. 

DEBUG understands multiple languages but operates 
according to the rules of only one language at a 
time. This language is called the current lan- 
guage. The current language is initially set to be 
the source language of the main program but can be 
changed at any time during the debugging session 
with the SET I~NGUA(~ command. For example, the 
command SET LANGUAGE PASCAL causes DEBUG to inter- 
pret subsequent command input according to PASCAL 
rules. This allows a user to debug a program 
written in multiple source languages using a single 
debugger, namely VAX DEBUG. 

There are two main reasons for having a single 
multilingual debugger on the VAX instead of a sepa- 
rate debugger for each language. One is to support 
one of the key goals of the VAX system architec- 
ture: to allow each user to choose the language 
best suited to his application and to freely use 
packages written in other languages. Programs and 
applications can be written in multiple languages 
because they can call each other through a common 
calling standard, they can read and write each 
other's files through a common Record Management 
System, and they can be debugged together using a 
common debugger. 

The other reason is that it is a lot cheaper to 
write one debugger that handles seven languages 
than it is to write seven debuggers. Most of what 
a debugger has to do is in fact language indepen- 
dent; the code that performs these tasks therefore 
needs to be written (and maintained) only once, not 
seven times. Finding the proper partitioning 
between the language-dependent and -independent 
parts has been a difficult problem and has required 
several major design iterations (which will not be 
described further here). But once a proper parti- 
tioning has been found, one can indeed make the 
language-speciflc parts quite localized. This 
makes it relatively easy to add support for addi- 
tional languages and it makes the multllanguage 
debugger a very economical choice in the multllan- 
guage environment. 

2. FEATURES AND C(~4MAND LANGUACE 

The VAX DEBUG command language defines the capabil- 
ities of this debugger and constitutes the user 
interface. It therefore merits a short exposition. 
The intent here is not to give a complete descrip- 
tion of the DEBUG command language (the reference 
manual [2] does that), but to give a brief synopsis 
outlining the main features of DEBUG and illustrat- 
ing the flavor of the command language. The fol- 
lowing are some of the more important commands 
accepted by DEBUG: 

EXAMINE addr-expr 
DEPOSIT addr-expr = lang-expr 
EVALUATE lang-expr 
SET SCOPE scope-spec 
SET BREAK addr-expr 
SET TRACE addr-expr 
SET WATCH addr-expr 
STEP 
SHOW CALLS 
GO 

Here command language keywords are in upper case. 
The exact meanings of the constructs addr-expr 
(address expression) and lang-expr (language ex- 
pression) are discussed in Section 3 below. 

The EXAMINE command retrieves and displays the 
contents of a specified program location. The 
location is typically a variable and the display is 
formatted according to the variable's type. This 
is probably the most frequently used of all com- 
mands. The DEPOSIT command stores a new value Into 
a specified location, again usually a variable. 
The EVALUATE command permits expresslo~s in the 
current language to be evaluated and the results 
displayed. Together, these three commands are the 
primary means whereby a user examines or alters the 
state of his data areas. 

Since variable names are not necessarily unique 
across a program with many compilation units 
(called "modules" in DEBUG terminology} or multiple 
routines, the SET SCOPE command is provided. This 
command specifies the scope in which subsequent 
symbol references are to be looked up. It can also 
specify a sequence of scopes to be searched. A 
scope specification is usually a module or routine 
name or the name of some other lexical entity (such 
as a Cobol section). The scope can also be defined 
to be whatever lexical entity contains the next 
instruction to be executed; this is the default 
scope. Given a scope, DEBUG looks up variable 
names from commands in that scope using the scope 
rules of the current language. 

For a specific symbol, the user can override the 
current scope setting by prefixing the symbol name 
with a "pathnmne". MOD\ROOT\X, for example, means 
variable X in routine ROUT in module HOD; here 
MOD\ROOT\ is the pathname that defines the desired 
scope of this specific reference to X. 

VAX DEBUG offers several ways to stop program 
execution on specified events. The SET BREAK 
command causes the program to stop when a specified 
instruction location is r e a c h e d .  The SET WATCH 
command causes execution to stop when a specified 
data location is written to. The STEP command 
stops the program when the next instruction or the 
next source line is reached; it is used to single- 
step the program. All these events cause DEBUG to 
gain control and to announce the event to the user. 
It then solicits DEBUG commands. The SET TRACE 
command is a variant of SET BREAK Which announces 
events but does not stop to solicit commands. It 
thus "traces" these events. 

The SHOW CALLS command displays the current state 
of the VAX call stack. First it shows at what 
routine and llne number the program is currently 
stowed. Then it shows where that routine was 
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called in terms of a second routine name and line 
number, and then where that second routine was 
called, and so on. In short, SHOW CALLS shows the 
execution state (as opposed to the data state) of 
the process in symbolic terms. As such, it is a 
frequently used command. 

The remaining control function is provided by the 
GO command, which starts or continues program 
execution. Control can optionally be transferred 
to a specified address, thus redirecting the 
execution stream, but the normal case is of course 
to start the program where it last stopped. 

One remaining feature also deserves mention: 
source line display. DEBUG can display the source 
text associated with the current program location 
when single-stepplng the program or when stopping 
at some event. There are also a TYPE command that 
types out (displays) a specified segment of the 
source text and a SEARCH command that searches the 
source text for a specified string. The source 
line display capability has proved very useful (and 
very attractive); it frequently eliminates the 
need for a source listing and thus takes the user 
one step closer to "paperless programming". 

The above synopsis omits many significant features 
and of course nearly all detail, but hopefully 
gives an idea of what VAX DEBUG offers its users. 
The philosophy behind the DEBUG command language 
differs markedly from that of the DISPEL language 
described by Johnson [3]. DISPEL provides a number 
of low-level primitives from which a user can 
compose whatever high-level constructs he desires 
to do his debugging. DEBUG's design, on the other 
hand, attempts to predict what high-level debugging 
commands a user will typically want and provides 
those. 

Of these, the DEBUG approach is probably the more 
practical one for most users. Just as most users 
are best served by high-level programming lan- 
guages, they are best served by a high-level 
debugging language where the most frequently needed 
operations are provlded ready-made. Still, the 
DEBUG approach has its drawbacks: It leads to fre- 
quent requests for new commands to handle special- 
ized debugging s i t u a t i o n s .  An i d e a l  debugging l a n -  
guage should p r o b a b l y  combine both p h i l o s o p h i e s ;  
i t  should p r o v i d e  both h i g h - l e v e l  debugging com- 
mands and ex tens ion  mechanisms whereby the user can 
d e f i n e  h i s  own specialized commands to  handle spe-  
c i a l i z e d  debugging s i t u a t i o n s ,  

3. ADDRESS EXPRESSIONS AND LANGUA(~ EXPRESSIONS 

In a debugger, there is a need to specify both 
addresses and values in the command language. A 
DEPOSIT command, for example, must specify both a 
value to deposit and an address to deposit into. 
In a symbolic object-tlme debugger llke VAX DEBUG, 
it turns out to be particularly important to 
provide generalized ways to specify both addresses 
and values. Early in DEBUG's development, this 
point was not fully appreciated, but it eventually 
led to the de%,elopment of two distinct kinds of 
expressions: address expressions and language ex- 
pressions. These notions require some explanation 
as they  are q u i t e  impo r t an t  in  the command l a n -  
guage. 

VAX DEBUG accepts language expressions in the 
EVALUATE and DEPOSIT commands and in array sub- 
scripts. Such expressions are expressions in the 
c u r r e n t  source language.  They are scanned and 
parsed accord ing  to  source language ru l es  and the 
o p e r a t o r s  are i n t e r p r e t e d  accord ing  to  source 
language semant ics .  They are some~t~at r e s t r i c t e d  
(no f u n c t i o n  c a l l s ,  f o r  example) bu t  o the rw ise  
mimic the computa t ions  the language i t s e l f  would 
per form. 

More technically, language expressions are consid- 
ered to consist of three Minds of entities: 
primary symbols, constants, and language operators. 
Primary symbols are symbol names but include all 
record component selection, pointer dereferencing0 
and subscrlpting. (Pointer dereferenclng refers to 
operators llke -> in PL/I and ^ in Pascal.) ABC 
and A.B[2][3] are thus primary symbols in Pascal 
while A-B-C and B OF A(2,3) are primary symbols in 
Cobol. Primary symbols are allowed in address 
expressions as well and are therefore considered to 
be distinct entities even though the operators 
within them are language speciflc. The term 
"language operators" thus refers to all operators 
in the current language that are not parts of 
primary symbols. In language expressions, language 
operators and constants are of course parsed and 
interpreted according to language rules. Constants 
can be numeric or string constants. 

Language operators operate on the current values of 
their operands. The expression X+Y, where X and Y 
are variables in the user progr~am, thus adds the 
current value of X to the current value of Y. 

Language expressions serve two primary purposes. 
Most frequently, they compute array subscripts. In 
a simple command such as EXAMINE X(I), the I is a 
language expression that defines the subscript 
value. This expression may of course be arbitrari- 
ly complex. Language expressions also allow DEBUG 
to be used as a calculator during the debugging 
session. The command EVALUATE Z+25 computes the 
value of X+25 and displays it. Similarly, DEPOSIT 
Y = X+25 computes a value to be deposited into Y. 

Being able to evaluate language expressions while 
debugging is obviously useful, but the user fre- 
quently needs to compute the address, as opposed to 
the value, of something. For this reason DEBUG 
accepts "address expressions" in many commands. In 
an address expression, the operands are primary 
symbols or integer constants. Primary symbols are 
language dependent and may include component selec- 
tion, pointer dereferencing, and subscripting as 
indicated above. However, the expression operators 
are language independent and perform address, not 
value, computations. The following operators are 
accepted: prefix "@" or "." (indirection through 
an address), "+" (addition), "-" (negation or sub- 
traction), "*" (multiplication), and "/" (divi- 
sion). Of these, multiplication and division are 
seldom used but are sometimes applied to constants 
to compute offsets from addresses. 

The operators in address expressions always operate 
on the addresses of the symbols and the values of 
the constants. Thus the address expression X+2 
tames the byte address of X and adds 2 to it, 
yielding another address. Had this been a language 
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expression, 2 would have been added to the value 
(not the address) of X. In the address expression 
X(I-2)+4, the I-2 is a language expression yielding 
the subscript value. However, the "+" is an 
address operator which adds 4 bytes to the byte 
address of array element X(l-2). 

Address expressions are used in DEBUG commands that 
do something to locations in the user program. 
They are thus accepted on the EXAMINE command 
(which displays the contents of a specified 
location) and the SET BREAK command (which sets a 
breakpoint on a specified code location), among 
others. They also specify the target locations of 
DEPOSIT commands. 

The problem being addressed here is that addresses 
and values must both be specified to an object-time 
debugger and that generalized ways of specifying 
each are often needed. VAX DEBUG solves this prob- 
lem by accepting two distinct kinds of expressions, 
address expressions and language expressions, each 
of which is parsed and evaluated by its own 
distinct rules to yield its own distinct kinds of 
results, namely addresses or values. 

4. SYMBOL TABLE ACCESS 

Because DEB[~ is a symbolic debugger, it must have 
access to the symbol tables of the user program's 
compilation units. This information is passed from 
the compiler through the linker to DEBUG as fol- 
lows: 

The compiler generates Debug Symbol Table 
(~) records and inserts them into the 
relocatable object file it produces. 
These records describe the program's sym- 
bol table in a language-independent way. 

The linker passes the DST records from the 
object file into the executable image 
file. The linker does relocation and 
global symbol resolution on the DST text 
but does not otherwise interpret or under- 
stand any of the information in the DST. 

DEBUG picks up the Debug Symbol Table from 
the executable image file at run time. 
Through a pointer left in the image header 
by the linker, the DST is mapped into 
DEBUG's virtual address space. 

Since the E~bug Symbol Table can increase the size 
of an object file or executable image file many- 
fold, its emission is optional at both compile time 
and link time. (The image file for a large BLISS 
program can easily become six to eight times larger 
when the DST is included.) 

One of the appealing properties of this scheme is 
that the propagation of the symbol table informa- 
tion is transparent to the user; it happens auto- 
matically as part of the compilation and linking 
process. [~ere are no extra symbol table files to 
be handle(| by the user (when copying object files, 
for example), and debugging is a well integrated 
part of the operating system. 

In the I~T, each symbol is described by a DST 

record. In general, each such record contains 
three things: the symbol name, the symbol type, 
and the symbol address or value. (Variables have 
addresses while named constants have values.) The 
type of the symbol can be described at various 
levels of complexity. A single byte will do fDr an 
atomic data type such as integer, while much more 
elaborate type descriptions are used for complex 
types such as record, array, or enumeration types. 
Similarly, the symbol address or value can be 
described by as little as five bytes (one byte of 
control information and 32 bits of address or 
value) or by arbitrarily complex specifications of 
how the address or value is to be computed. In 
addition, each DST record contains its own length 
so that the location of the next record can be 
found. 

Nesting in the symbol table is indicated by beg in 
and end records bracketing the nested symbols. 
Thus a Routine Begin DST record and a Routine End 
DST record bracket the DST records for all symbols 
declared within that routine. They also give the 
start address and length of the routine. Similar- 
ly, Block Begin and Block End records bracket the 
symbols declared within a lexical block and Record 
Beg in and Record Ehd records bracket the DST 
records for record (structure) comlx~nents. In 
addition, the DST for each independently compiled 
and linked unit (a "module" in DEBUG terminology) 
must begin with a Module Begin record and end with 
a Module End record. 

The mapping between program counter values and 
listing llne numbers is given by DST records which 
specify this information in a very compact encod- 
ing. This allows DEBUG to convert line numbers to 
program addresses and vice versa. Other DST 
records specify the mapping between listing line 
numbers and source file records. These lIST records 
are able to describe a source stream as coming from 
multiple source files, including INCLUDE files. 
They allow DEBUG to display the source text for a 
specified range of line numbers or to go directly 
from a program address to the correslx>nding source 
text. 

The Debug Symbol Table representation was designed 
to be very compact and relatively easy for compil- 
ers to generate. In this it succeeds reasonably 
well. }bwever, the price paid for these advantages 
is that symbol information in the DST cannot be 
easily accessed--the only way is to make a linear 
scan of the DST from beginning to end. If done 
frequently, this is unacceptably slow. 

Consequently, DEBUG builds a Run-Time Symbgl Table 
(RST) which it then uses to do symbol icx>kups. The 
RST is hashed for fast iookups and has all the 
links needed to show the nesting structure of the 
symbol table. Each RST entry also has a Ix)inter to 
the corresponding DST record. All symbol accesses 
are made through the RST even though specific 
attributes of a symbol (such as its name) remain 
resident only in the DST. 

The RST is initialized When DEBUG starts up but is 
actually built one module (compilation unit) at a 
time in response to the SET MODULE command. This 
command thus defines the extent of the active sym- 
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bo l  t a b l e .  I d e a l l y  the  user  shou ld  a u t o m a t i c a l l y  
have access t o  a l l  symbols i n  h i s  program, b u t  i n  
practice it is much too time consuming to construct 
an RST for the entire DST if the program is very 
large. Hence DEBUG lets the user control how much 
of the symbol table to make accessible and builds 
an RST for only those parts. 

5. CONTROLLING THE USER PROGRAM 

To fulfill its purpose, an interactive debugger 
must have a way of controlling the user program 
being debugged. This means stopping execution at 
specified breakpoints, slngle-stepplng over in- 
structions or source lines, tracing the program's 
execution, monitoring data locations, and taking 
control when error conditions occur in the user 
program. To provide the needed control, VAX DEBUG 
relies primarily on the the VAX/VMS exception- 

handling mechanism. 

The VAX-11 architecture [I] provides an exception- 
handling mechanism whereby exceptions detected by 
the hardware or signalled by the user program 
itself are handled by user-specified exception 
handlers. (A handler is simply a routine which is 
called when an exception has occurred. It receives 
the exception information through a well-defined 
calling sequence.) A routine can declare an excep- 
tion handler dynamically by putting the handler's 
entry address into a reserved location in the 
routine's call frame on the VAX call stack. Such a 
handler is called a stack handler because its 
address is found in the call stack. This handler 
then receives control when an exception occurs 
within that routine or within any routine called by 
that routine. When the routine returns, its call 
frame is popped and the handler is no longer 

deelared. 

When there are multiple call frames on the execu- 
tion stack and an exception occurs, VMS searches 
the call stack for a call frame with a declared 
exception handler. The search starts at the top of 
the stack (i.e., at the call frame for the most 
recently called routine) end proceeds toward the 
bottom (i.e., toward the call frame for the main 
program) until a handler address is found. That 
handler is then called. If that handler decides it 
cannot handle this exception, it "resignals" the 
exception and VMS continues the search until it 
finds another handler to call. When a handler is 
found which does want to handle the exception, it 
may continue program execution after taking the 
appropriate action. No other handler gets to see 
the exception in this case. A handler may also 
"unwind" the call stack (force the return of some 
routine on the stack) or terminate program execu- 

tion. 

When activating a user program, VMS always creates 
a call frame at the bottom of the stack, that is, 
below the call frame for the main program. In this 
frame it stores a pointer to a handler called the 
final handler. When DEBUG is not used, this 
handler handles every exception by printing the 
corresponding error message and giving the error 
location. After that it terminates the program. 
This handler is thus what guarantees that the 
search for a handler in the call stack will 

terminate. The final handler will of course never 
see exceptions handled by the user's handlers since 
they are all declared higher in the call stack. 

In a d d i t i o n ,  t h r e e  s p e c i a l  h a n d l e r s  can be d e c l a r e d  
through system service calls: the primary, secon- 
dary, and last chance handlers. If declared, the 
primary handler is always called first when an 
exception occurs. Then the secondary handler is 
called and after that the search for stack handlers 
begins. The last chance handler is called only if 
the call stack itself is corrupted or destroyed. 

So, how does DEBUG c o n t r o l  the  user  p rog ram 's  
e x e c u t i o n ?  I t  does so by d e c l a r i n g  the  p r i m a r y  
h a n d l e r  and the  l a s t  chance h a n d l e r  and by chang ing  
the  f i n a l  hand le r  address  to  p o i n t  t o  i t s  own f i n a l  
h a n d l e r .  Th is  means t h a t  a l l  e x c e p t i o n s  w i l l  go 
through DEBUG's primary h a n d l e r  first. DEBUG can 
thus cause exceptions, such as breakpoint faults, 
which it then intercepts and never reslgnals to the 
userls handlers. However, exceptions not caused by 
DEBUG are resignalled by the primary handler. The 
user's handlers (if any) can thus handle these 
exception just as they would if DEBUG were not 
present. However, if no user handler handles a 
given exception, DEBUG still gets control through 
its final handler when the handler search reaches 
the very bottom of the call stack. 

DEBUG thus ensures its control by surrounding the 
user program on both ends with its own handlers. 
In addition, , DEBUG's last chance handler gets 
control if the call stack is corrupted, and an 
"exit handler" is declared which gets control when 
the user program exits (i.e., terminates). In 
effect, DEBUG is nothing more than a collection of 
exception handlers. 

While the final and last chance handlers catch 
errors in the user program, most control functions 
are exercised through the primary handler. Single- 
stepping over instructions is acc~oplished by DEBUG 
setting the trace bit (T;bit) in the user program's 
Processor Status Word. When control is returned to 
the user program, the T-bit causes one instruction 
to be executed, after which a "T-bit fault" is 
generated. DEBUG's primary handler intercepts this 
exception, prints the appropriate trace informa- 
tion, and then solicits DEBUG commands. Stepping 
over source lines is handled similarly except that 
several instructions must typically be stepped over 
before stopping and announcing the trace informa- 
tion. 

Breakpo~nts are implemented as follows. When the 
user enters the SET BREAK command to DEBUG, a BPT 
(breakpoint) instruction is deposited into the 
specified program location. A later GO command 
transfers control from DEBUG to the user program. 
When the specified location is reached, the planted 
BPT instruction is executed, causing a "breakpoint 
fault". Again VMS looks for an exception handler 
and DEBUG's primary handler is called first. This 
handler checks that DEBUG in fact planted this 
particular BPT instruction, and if so announces the 
breakpoint. It then solicits DEBUG eommands from 
the user. 

If it turns out that DEBUG had not planted this 
particular BPT instruction, the primary handler 
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resignals the breakpoint fault. This means that 
user handlers get a chance to handle the exception. 
If no user handler is declared or they all resignal 
too, then DEBUG's final handler eventually gets 
called. This handler handles all exceptions by 
printing the error message associated with the 
exception condition and then soliciting DEBUG 
commands from the user. 

In short, DEBUG's primary handler only handles 
exceptions caused by DEBUG's intervention in the 
user process. (The user can explicitly request 
that it should catch all exceptions regardless of 
cause, but this is not the normal mode of opera- 
tion.) Other exceptions are reslgnalled so that 
user handlers can handle them just as if DEBUG were 
not present. Only if they all fall to do so will 
DEBUG reclaim these exceptions through its final 
handler. 

Another control function also illustrates this 
principle. The VAX architecture provides no expli- 
cit support for monitoring accesses to data loca- 
tions, but It does provide a memory page protection 
mechanism. A user who wishes to catch all write 
operations to a specified data location enters a 
SET WATCH command, which in DEBUG terminology sets 
a watchpoint. 

DEBUG implements the watchpoint bywrite-protecting 
the page containing the watched data location. The 
user program can then rLm until a write access to 
that page occurs. The write access causes a memory 
"access y iolation" fault, and DEBUG's primary 
~andler gets control. DEBUG then determines if the 
faulting address points to one of the watched mem- 
ory locations on the page. If so, DEBUG announces 
the write access and prints the current value of 
the location. It then removes the page write 
protection and single-steps over the writing in- 
struction by  setting the trace bit, giving control 
to the program, and catching the resultin E T-bit 
fault, again through the primary handler. The page 
protection is again restored, If the data location 
was watched, DEBUG now prints its new value and 
stops to =)licit DEBUG commands. If the location 
was not watched, the user program is simply given 
control again without anything being announced to 
the user. 

If a memory access violation occurs that was not 
caused by DEBUG's setting a watchpoint, then it is 
simply resignalled by the primary handler. Such an 
access violation is presumably a program error. It 
can be handled by the user's own handlers or it can 
fall through to the final handler, which will 
announce it as a program error and then solicit 
DEBUG commands. 

Finally, the mechanism whereby infinite loops are 
stopped also uses the primary handler. To stop 
such a loop (or execution generally), the user 
presses the Control/Y key, causinK VMS to suspend 
the user ~ocess and to prompt for a VMS command. 
If the user then enters "DEBUG", VMS raises the 
"debug exception". As usual, DEBUG's primary 
handler is called first and handles this exception 
by simply sollcitin8 DEBUG commands from the user. 
The user can then enter SHOW CALLS to find out 
where execution stopped or otherwise examine the 
state of 1=he program. 

To summarize, DEBUG is in effect no more than a 
collection of exception handlers attached to the 
user process. DEBUG uses the same exception-handl- 
ing mechanisms available to any user program and a 
user could in fact write his o~ debugger u sir~E 
these mechanisms. Of course, parts of the VMS 
exception handling scheme were explicitly designed 
to accommodate the needs of the debugger. In 
particular, the provision for a primary handler and 
a final handler is essential to give DEBUG the 
means to completely control the user process. A 
way of stopping loops and transferring control to 
DEBUG is another special hook. However, it is 
interesting to note that these relatively minor en- 
hancements to an otherwise user-oriented exception- 
handling mechanism are enough to meet the full 
control needs of an interactive symbolic debugger. 

6. CONCLUSION 

In conclusion, we have seen that VAX DEBUG is an 
interactive, symbolle, and multilingual debugger 
and we have discussed how VAX DEBUG solves certain 
problems such a debugger must solve. We noted what 
is meant by being "interactive" and "symbolic" 
(namely the obvious meanings) and also what is 
meant in this case by being "multilingual", namely 
that programs written in seven separate source 
languages can be debugged with the same debugger. 
For each source language, DEBUG interprets symbol 
references and language expressions in source lan- 
guage terms and displays values as appropriate for 
that language. Also, the current source language 
can be changed at any time during the debuEKing 
session. 

It was noted that DEBUG's command language consti- 
tutes a high-level, run-time debugging language 
that aims to provide all the hlgh-level debugging 
capabilities a user typically needs. The command 
language has commands to examine and alter the 
current state of the computation, to show the call 
stack, to display program sources, and to interrupt 
and control the execution stream. It does not 
necessarily cater to every specialized situation, 
however. It was also noted that a symbolic object- 
time debugger needs generalized ways of specifying 
both addresses and values; in the VAX DEBUG com- 
mand language, this problem is solved by accepting 
two distinct kinds of expressions, namely address 
expressions and language expressions. 

Any symbolic debugger must have access to the 
symbol tables of the program being debugged. VAX 
DEBUG solves this problem by having the compilers 
output a language-independent Debug Symbol Table 
(I~ST), which is passed to DEBUG via the object and 
executable image files. The DST representation was 
chosen for compactness (to conserve file space) and 
ease of generation (to simplify compilers); ease 
of access was sacrificed, however. As a result, 
DEBUG must build a Run-Time Symbol Table (RST) 
which has the proper structure to show nesting re- 
lationships between symbols and to allow efficient 
symbol table access. 

F i n a l l y .  we d iscussed how VAX DEBUG c o n t r o l s  the  
user • program be ing  debugged. VAX DEBBGachieves 
t h i s  c o n t r o l  th rough  the  normal VAX/VMS e x c e p t i o n -  
h a n d l i n g  mechanism. By des ign  t h i s  mechanism has 
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certain features uhlch allou DEBUG to exercise the 
necessary control. The moat important of these 
features are the provisions for a primary and a 
f i n a l  except ion hand ler .  These handlers a l l ow  
DEBUG to  i n t e r c e p t  except ions both before and a f t e r  
the user program gets to  see them. This,  plus.sorae 
other  f a c i l i t i e s ,  ls  enough to a l l o w  DEBUG to  com- 
p l e t e l y  con t ro l  the execut ion o£ the user program 
being debugged. 
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