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Abstract Keywords

The Cray X1 was recently introduced as the first in a new line of ~ UPC, X1, global address space
parallel systems to combine high-bandwidth vector processing with
an MPP system architecture. Alongside capabilities such as automatic] . |ntroduction
fine-grained data parallelism through the use of vector instructions,

the X1 offe_rs hardwar_e support for a transparent global-address space  Global Address Space (GAS) languages have recently emerged as a
(GAS), which makes it an interesting target for GAS languages. In thisy o mising alternative to the traditional message passing model for par-
paper, we describe our experience with developing a portable, open-y|ie| applications. Designed as parallel extensions for popular sequen-
source and high performance compiler for Unified Parallel C (UPC), g programming languages, GAS languages such as UBCTita-

a SF_’MD global-e}ddress space language extension of ISO C. As part ofy;;m [29, 16], and Co-Array Fortrang2] provide better programma-

our implementation effort, we evaluate the X1's hardware support for jity through the support of a user-level global address space, lead-
GAS languages and provide empirical performance characterizationsing o more flexible remote accesses through language-level one-sided
in the context of leveraging features such as vectorization and globalcommunication. GAS languages thus offer a more convenient and pro-
pointers for the Berkeley UPC compiler. We discuss several difficul- 4,ctive programming style than explicit message passing (e.g.,MB) [
ties encountered in the Cray C compiler which are likely to present 5q good performance can still be achieved because programmers re-
challenges for many users, especially implementors of libraries andain explicit control of data placement and load balancing. Another
source-to-source translators. Finally, we analyze the performance ofy;ire of GAS languages is their versatility; while it has not yet reached
our compiler on some benchmark programs and show that, while thereyye jevel of MPI's ubiquity, UPC implementations are now available on

are some limitations of the current compilation approach, the Berke- 4 gignificant number of platforms, ranging from multiprocessors to the
ley UPC compiler uses the X1 network more effectively than MPI or 40y flavors of networks of workstations.

SHMEM, and generates serial code whose vectorizability is compara-

- Meanwhile in the architectural world of supercomputing, paral-
ble to the original C code.

lel vector systems (led by the Earth Simulat@8][and the Cray X1
System [LQ]) are mounting a comeback to challenge the dominance
that superscalar microprocessors have established in the last decade.
. ) ) By effectively exploiting fine-grained data parallelism through vector
Categories and Su bject Descriptors arithmetic instructions, these vector architectures offer the potential to
narrow the growing gap between sustained and peak performance for
scientific applicationsZ3]. With its unique distinction of delivering
C.4 [Hardware]: Performance of Systems — performance attributes powerful vector processing over non-uniform shared memory hard-
ware, the Cray X1 in particular presents an interesting target platform
for GAS languages. In addition to simplifying communication op-
General Terms erations as direct reads and writes to remote memory locations, the
system’s raw performance is impressive both in terms of communica-
tion (peak memory bandwidth and low communication latency) as well
Performance, Languages, Experimentation as computation (powerful vector pipelines). Furthermore, its efficient
hardware support for strided accesses and scatter/gather memory op-
erations has the potential to substantially reduce overheads associated
with fine-grained remote accesses. Such an array of features would ap-
Permission to make digital or hard copies of all or part of this work for ~P€ar to be quite suitable for languages such as UPC that adopt a global
personal or classroom use is granted without fee provided that copies are address space memory model.
not made or distributed for profit or commercial advantage and that copies This paper describes our experiences in implementing and tun-
bear this notice and the full citation on the first page. To copy otherwise, 1o jng the portable Berkeley UPC compilet][for the Cray X1 system.
republish, to post on servers or to redistribute to lists, requires prior specific Berkeley UPC is the first open source, portable, and high-performance
permission and/or a fee. GAS language implementation on thé X1, and ’the lessons we learned
ICS’04,June 26-July 1, 2004, Malo, France. . . . !
Copyright 2004 ACM 1-58113-839-3/04/000655.00. from this language implementation study should be useful not only for



UPC but also the Global Address Space language community in gen-Single-streaming

eral. Our experiences demonstrate the potential of the X1 architecture,Processor (SSP) Multistreaming Processor (MSP)
but also expose areas where more effort is required before it can bé T : )

viewed as an ideal architecture for UPC and GAS languages in generall. @

While many of the language primitives can be implemented directly " 400

400 Mhz
using the hardware global pointer support, the absence of arich set of _%8GFlops:
user-level communication primitives, in particular the X1's lack of per- | : :
operation completion guarantees, limits the opportunities for compiler| |
optimizations and the system’s extensiblity via third-party libraries. | 800 Mz 809 Mhz - 1/
Similarly, the heavy reliance on vectorization to achieve reasonable—— - -

. ippn . . 3.2 GFlops @ 2 FP/cyc
performance also increases the difficulties of performance tuning for ~————"
compiler implementors. In particular, each layer in portable compilers — — ——— ~ 5
such as Berkeley UPC must be tuned to pay careful attention to vector- - ‘ - ‘ . \‘
ization constraints, which places a relatively heavy burden across the ‘ b ‘ :
entire software stack. As the hardware and system software matures, | !28GFlops  128GFlops 128 GFlops  12.8 GFlops
we expect to see performance improvements as well as more flexible Al Rl BRI
support for portable implementations of GAS languages. Memory

The rest of the paper is organized as the follows. Sectansd3
describe the Cray X1 system, UPC, and the Berkeley UPC compiler.
Sectiond details our implementation of the communication operations, g
which satisfy the basic requirements for a functioning UPC compiler Cray X1 Node
on the X1. Section® and 6 detail our efforts at tuning the perfor-
mance of the Berkeley UPC compiler for the X1's unique architec- Figyre 1. Cray X1 single node: Each MSP contains 4 SSPs
ture: the former summarizes our optimizations for shared memoryesch with 2 vector and 1 scalar unit
accesses, while the latter discusses our strategy for achieving good
serial performance. Sectighanalyzes the impact of the X1's tightly-
coupled design on our portable architecture and on the effectiveness of
compiler communication optimizations. Secti®evaluates our com-  that many parallel applications can achieve significant performance on
piler's parallel performance, and finally sectiodsand 10 conclude  the machine, given sufficient porting and optimization efforts. The

the paper with an evaluation of the X1's architectural support for GAS benchmark results reported in this paper are collected on a four node
languages. X1 system at Cray (a total of 48 SSBsrunning Unicos/MP version

2.4 and Cray C version 5.1.0.5.

12.8 GFlops /w 4 SSPs J

16 MChips + 16 1.0GB MBanks

2. The Cray X1 3. Unified Parallel C

The X1 [10] is a supercomputer system developed by Cray which
combines powerful vector processors with high memory and network

interconnect bandwidth. In order to sustain high bandwidth vector m_ing_language aimed at supporting high performanc_e scientific ap-
processing, the X1 is based on previous MPP Cray designs that emP!ICations. The language adopts the SPMD programming mode, such

phasized memory bandwidth, and features some more recent vectotlhat every thread runs the same program but keeps its own private local

concepts such as multi-streaming and vector caching. The system us&ata' In addition to each thread's private address space, UPC provides

a network interconnect reminiscent of the Cray T3E to connect Cray;ShaJed m(;emory area to facilitate tlmprl]lmt gorE_mutnl(t:stlon r?rtr;ongst f
nodes in order to unite long, latency-tolerant vector computations withthreah S adn tprograrr}_rpers C‘;r: c(rjea € st ari 0 O{ec N roug” et_use 0
the scalability to be expected from MPPs. eshared type qualifier or the dynamic shared memory allocation

Figurel illustrates the architecture of a single Cray X1 node, the library functions. While a private object may only be accessed by its
basic building block of the system. Each node consists of four rﬁulti- owner thread, all threads can read or write objects in the shared address

streaming processors (MSPs) and a flat, shared 16GB physical menzPace- Because the shared memory space is logically divided among

ory. Each MSP in turn is composed of four single-streaming proces-a" threads, from a thread’s perspective the shared space can be fur-

sors (SSPs), each with two vector pipelines and one scalar processoﬁher divided into a local shared memory and remote one. Data located

The four SSPs also share a 2MB data “E-Cache”, which helps sup-" @ thread's local portion of the shared space are said to have “affin-
ply enough memory bandwidth to saturate the vecior units. As is theity" W?th the threa_d, gnd °°F“p”.ers can utilize affinity informati_on to
case with many vector platforms, applications whose critical paths doepr0|t data locality in applications and help reduce communication

not vectorize tend to exhibit poor performance; in addition to oper- ove&iegd._ direct control hared data pl th h
ating at twice the clock speed, the ability of the vector units to over- gives users airect controf over shared data placement throug

lap memory operations with computation makes the Cray X1's vec- Q'Str'%lnei arrays. Vgg.‘i.n crteatlrr:géa_ shargd arraé/, r;rogrartntmers spgc-
tor units significantly more powerful than the scalar pipeline. The lfﬁ' a ct)c size mtr? : |?n ? det _|tr)nt:‘nst|r?n and e ?men ty%?’ T(nb
X1 offers two configurations for program execution. Explicit paral- € system uses this value to distribute the array elements block by

lelism is achieved in the SSP mode by treating each SSP as a separalPé?Ck mfahroundd-rgbl_n IaSh'i)g over allttkilre?ﬁs. For glxarppleil, a dtecla-
processor, such that each node essentially behaves as a 16-way S igtion ofshared [2] int ar[10] etis the comprier to aflocate

The alternative MSP mode maps each execution thread to an MSFféhe first It;/vt(;elﬁlmests_cﬂr_ on th.rt'?a(;j t?1 the Inex:jtvxf/o (I)tn tthread L anlo_l
and utilizes compiler-directeghulti-streamingtransformations to ac- o on. e block size is omitted the value defaults to one (cyclic

: . o : layout), while a layout of] or [0] indicates indefinite block size,
complish automatic parallelization of computational loops across the. . ;
P A P P e., that the entire array should be allocated on a single thread. A

constituent SSP hardware. The multi-streaming process divides eithe}©: . )
vectorized inner loops or unvectorized outer loops into four indepen_pomter-to-shared thus needs three logical fields to fully represent the

dent segments, and assigns them to different SSPs to be executed ﬁ.gdress of a shared objeaddress, thread  .id, andphase .
parallel. An early performance evaluation of the Cray X2 suggests *one node is reserved for system tasks

UPC (Unified Parallel C) is a parallel extension of the C program-




Thethread _.id indicates the thread that the target has affinity to, design by showing that, in spite of the modularity used to support
theaddress field stores some representation of the object’s “local” portability, the Berkeley UPC compiler performs well on today’s high-

address on the thread, while tphase field gives the offset of the  performance clusters. However, our compilation strategy finds an in-
target within the current block. Other notable UPC features include ateresting challenge in the X1, whose compiler and application software
upc _forall  parallel loop, block transfer library functions, synchro- is very tightly integrated with the hardware. The next sections under-
nization constructs, and flexible language-level control of the memoryline how the major components of our architecture were adapted in
consistency model; consult the UPC language specification for moreorder to maintain our goals of both portability and high performance

details [L5]. on the X1.
3.1 The Berkeley UPC Compiler 4. Porting the Berkeley UPC Compiler to the Cray
X1

Prior to our work, the only UPC implementation for the X1 was the
Cray C compiler's UPC extensions, which currently only provide sup-
port for a subset of the UPC language specification. Important miss-

m%l fe?turei mc:jude block cl?/cllct_pomtergpc ,Io_r?ll Ioz?[[r)]s,br;onl; .__simplifies the porting process for supporting new architectures; gen-
coliective snared memory aflocation, and restrictions on the bloc SIzeerally no changes are required for the translator, whose code gener-
of shared arrays. While some of the deferred features merely offer.

tacti ; id tial functionality for UPC ation is entirely platform-independent, with the exception of a few
syntactic convenience, many provide essential functiona ity or general architectural parameters such as register size and the integral
applications and have no easy workarounds without impacting pro-

. . . > type width. The implementation of the communication operations is
gram design. Their exclusion thus severely limits the usefulness of the[he system component which is generally most sensitive to platform

Cfrahy UNF;CScSLngiLer, Wr?iCh Ikn Olé)r experilmerllts fails_ to ::ompile several characteristics, and therefore this functionality has been encapsulated
ofthe enchmarks. Our goal is thus to implement an 0pen-g iy within the GASNet implementation for each platform. Con-

source and portable compiler that performs comparably to Cray UPC tlv. despite the fact the X1’ hitecture diff bstantiall
and is fully compliant with the latest UPC 1.1.1 specification. sequently, despite the fact e 2. S archilectiire Ciiers sups:ania’y

i > sh h I f the Berkeley UPC from other systems we have targeted, we were able to build a working
_ rigure 2 Shows t. € overa structure of the Berkeley com- implementation of the Berkeley UPC compiler on the system in about
piler [2], which is divided into three components: the UPC-to-C trans-

lator, the UPC runtime system, and the GASNet communication sys-One week.
tem [4]. During the first phase of compilation, the Berkeley UPC com- 4
piler preprocesses and translates UPC programs into ISO-compliant C
code in a platform-independent manner, with many UPC-related par- The main purpose of GASNet is to provide a portable, language-

allel features converted into calls to the runtime library. The trans- independent and high-performance communication interface. Designed

:?“Ed dci C(t)ﬁe IS t?_en comfned uil_n%the ]Earget _syts_t?_m st_C ctomlfller ap‘(i)rimarily as a compilation target, GASNet incorporates a set of net-
INked 1o the runtime system, which performs initialization tasks such g communication primitives crafted to provide high levels of per-

as i_hreag gljenetratlon and s_ha:_ed data atl_locattlor;h Tch;eAISBﬁI;eley up ormance and expressiveness tailored for code generation, in contrast
runtime delegates communication operations to the el commus, eng-user library interfaces such as MPI that prioritize other design

n|cat.|ont.|ayer,. W.rt‘.'Ch prowﬁesta unll(form interface for low-level com- goals such as interface generality/minimality, code readability and uni-
munication primitives on ail Networks. versal interoperability. As a result, GASNet delivers communication
performance very close to the native hardware peak across many sys-

E tems, while leveraging platform and network-specific features (such as
RDMA support and/or block transfer engines).

Platform-
independent Translator Generated C Code

Network-
independent

This section describes our initial efforts in porting the Berkeley
UPC compiler to the X1. The modular design of our compiler greatly

.1 The GASNet Communication Layer

Compiler-
independent
Language-

independent

Berkeley UPC Runtime System

Compiler-specific runtime system

Network Hardware

GASNet Core API
Figure 2. Architecture of the Berkeley UPC compiler

We believe this three-layer design has several advantages. First, b
cause of the choice of C as our intermediate representation, our COMgjgyre 3. GASNet communication system: the narrow, AM-
piler can be made available on any UNIX platform that has an ISO- pased Core API is sufficiently general to implement the en-
compliant C compiler; most other currently available UPC compilers tjre system, but can also be bypassed to implement func-

generate assembly language and therefore only support systems witfipnality from the Extended API directly on the underlying
specific CPU architectures. Second, both the UPC runtime system angetwork to exploit available hardware support

GASNet implement a well-defined public interface: the runtime offers

a flexible pointer-to-shared abstraction with the option of running mul-

tiple threads per node and GASNet implements network-independent Figure3illustrates the basic abstraction stack of the Berkeley UPC
global-address space communication primitives. This two-tier approacand Titanium compilers over GASNet. The existing GASNet infras-
can be tailored to move more or less functionality into the runtime or tructure greatly simplifies the porting effort for new platforms. Build-
GASNet based on how close either layer can target native commu-ng upon a provided “fill-in-the-blanks” template framework, imple-
nication primitives. In a previous work7], we have validated our = mentors are encouraged to proceed in a two-stage porting process. A



complete working GASNet implementation can be obtained entirely quickly prototyping a functional GASNet Core, we encountered sev-
in the first phase by implementing the intentionally narrow but gen- eral deficiencies ishmemwhile considering it for implementing the
eral GASNet Core API, whose design is based heavily on Active Mes-Extended API primitives — specificallghmemoffers only blocking
sages 19. The wider and more expressive interface of GASNet, the versions of theget operation, lacks some expressiveness in its syn-
Extended AP, is already available as a reference implementation writ-chronization mechanisms and presents an additional source of library
ten solely in terms of the Core and can be used to provide full GASNetcall overhead for small messages. More importantly, wstemeni-
functionality over the ported Core. Second, primitives available in brary calls appear in any loop structure, the Cray C compiler turns
the reference implementation of the Extended API can be selectivelyoff automatic vectorization optimizations. This weakens the utility of
replaced with more efficient network primitives offered by the under- shmemas a programming interface for any interesting programming
lying networking software or hardware. Based on prior experience in style other than bulk synchronous MPI-style, where communication is
porting GASNet to five other networks, we have found this approach toreduced to moving large amounts of data between processing elements
be very effective in quickly obtaining a working conduit and gradually and carrying out computation exclusively over local data. Obviously,

refining it with more efficient primitives. we would like to leverage the expressive power of GAS languages and
the support for fast remote accesses and global non-unit stride accesses
4.2 Porting GASNet to the X1 on the X1, without requiring programmers to adopt a clumsy bulk syn-

chronous programming style in order to achieve vectorization.

As a portable communications interface with well-defined seman-
tics, GASNet'’s ability to provide an optimal implementation for a par-
ticular platform depends mostly on what the target system exposes in .
terms of network features and how these features can be leveragel-2-2 Hardware Global Pointers as a GASNet target
using existing target software interfaces. Since loosely coupled plat- In considering another possible target for GASNet, we modified the
forms are typically based on a some form of messaging, higher-levelExtended API to take advantage of the properties of the X1 global vir-
software layers often have much more control over initiation and com- tual addresses and memory centrifuge (illustrated in figlréVhen
pletion of remote memory operations than on platforms where globalglobal memory is allocated on the X1 symmetric heap using a col-
memory reads and writes are transparent to the user. The Cray X1lective memory allocation call, the memory segment returned to each
with its transparent global memory support falls into the latter cat- caller contains the caller’s processing element (PE) number in the high-
egory, which constitutes a departure from previous messaging-basedrder bits of the pointer representation and is mapped at corresponding
Cray hardware. In the previous family of Cray MPP designs, the Cray virtual memory locations in each PE’s address space. Since GASNet
T3D and T3E systems provided programmers with user-level commu-allocates a segment on each node at initialization, the segment can
nication primitives. Communication on the T3D could be performed be allocated from the symmetric heap and the resulting segment ad-
using three mechanisms: a prefetch queue for individual loads anddresses can be globally published to GASNet clients and used with-
stores, anemory centrifugdacility for global memory access, and a out indirection or translation. Most importantly, by allowing GAS-
block transfer engine for large asynchronous transfers. The T3E proNet put/get operations to be fully inlined, this newer version of the
vided these communication mechanisms as well as extended suppotxtended API side-steps the limitation the vectorizer imposes on the
for synchronization and collective operations, encompassed in a set opresence of function or library calls. We believe that this refined ap-
general-purpose user-level network registers (E-regist2®) These proach is reasonable for our portable system, as it tailors the GAS-
systems were successful in part because of their high performance andet implementation to the platform without changing the interface and
their support for programming models characterized by low cost asyn-gains the most from our mismatch with the Cray compilation strategy.
chronous communication enabled by E-registers or lower-level pro-Although we were able to overcome some of the constraints imposed
gramming interfaces such ahmem[26]. Although these systems Dby the vectorizer, we could not sufficiently integrate GASNet and X1
predate the Berkeley UPC compiler, their user-level messaging inter-communication to our satisfaction due to the lack of support for in-
face would allow GASNet to exploit much of their functionality for line assembly in the Cray C compiler. GASNet's current major clients
efficient fine-grained control over communication. In contrast, the X1 are source-to-source GAS language translators that do not participate
adopts an approach akin to shared memory platforms whereby comin any platform-specific code generation, and are thus dependent on
munication, whether scalar or vector, is enabled exclusively throughthe amount of functionality that existing compilation and system soft-
assembly-generated load/store instructions. This hardware interfacgare infrastructures are willing to expose. We expect other third-party
offers arguably better programmability to end users, but it unfortu- software packages that integrate a fair amount of complexity in their
nately prevents code generators and communication software layersuntime and communication components to suffer from this limitation
from maximizing hardware utilization by explicitly controlling the as well.
specific parts of communication scheduling that involve initiation and ~ The performance results of our tuning efforts are compared to other
synchronization. Many of the standard high-level communication op- X1-specific communication libraries in figurdsand 5 for individ-
timizations for hiding network latencies through communication over- ual one-sided put and get operations. Since puts are translated into
lap are difficult to achieve without more explicit control over the com- store instructions, the put message gap corresponds to the amount

munication hardware. of time during which the processor is tied up injecting each global
store into the network. Furthermore, the get operations correspond to
4.2.1 shmemas a GASNet target blocking library calls undeshmembut are compiled to simple assem-

As the first stage of the GASNet porting strategy, we have targetedbly load instructions under GASNet, which gives the processor more
the shmenmcommunication interface as a general mechanism for im- opportunities to overlap outstanding loads in its load queue. Aside
plementing the GASNet Core. After sufficiently experimenting with from 1-byte sized messages that necessitate read-modify-write opera-
the system, we were able to complete the Core and use GASNet'ions, the GASNet performance significantly exceeds that of MPI and
Extended reference implementation to obtain a complete GASNet X1trims roughly two microseconds ofhmenperformance for latency-
implementation in a matter of days. While tuning the X1 port of the sensitive small message operations. The performance improvement
GASNet Extended API, we again consideredsheneninterface asa  over shmem is primarily due to the removal of address translation and
potential target, because Cray has been promoting the interface as bdibrary call overheads from the critical path. For larger messages (start-
ing the best communication interface for low latency and high band- ing at 80 bytes), thbcopy() library call provided by Cray gives the
width communication24]. While we have foundshmenuseful for best performance, and is used by both layers.
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Berkeley UPC pointer-to—shared (optional phase)
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“PE 3 Phase Thread Address
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\

N . PE (Thread) Address
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Figure 7. Cray global pointer and Berkeley UPC pointer-to-
Thread 0 PE 1 > Thread 2 shared representations
]°0x0011...00°
5.1 Pointer-to-shared representation for the Cray X1

0x0010...00-

i Given the success of our phaseless pointer optimization, we nat-
e - urally want to exploit some of the properties common to our pointer
Figure 6. The Cray X1 memory centrifuge representation and X1 global pointers. The first step in tuning UPC’s

shared memory accesses is to ensure that the pointer-to-shared repre-
sentation deviates from the Cray X1's global pointers as little as possi-
5. Tuning the UPC Runtime System for the X1 ble. For multi-node applications, Cray’s notion of processing elements
exactly matches that of UPC threads, whereby each thread is given a
Having described our implementation of an efficient communica- distinct address space and the Cray symmetric heap can be used to pro-
tion layer for GAS languages on the X1, we now discuss our strategyVide per-thread UPC global shared and local heaps. As previously ex-
for implementing UPC’s shared memory accesses. Compared to reguPlained, the UPC thread id or virtual PE number can easily be extracted
lar C pointers, a generic UPC pointer-to-shared logically contains two from each Cray global virtual address, which allows this representa-
additionalthread _id andphase fields. Both fields are generally ~tion of UPC phaseless pointers to exactly match the hardware’s global
updated while manipulating a pointer-to-shared, making such operaP0inters. This approach eliminates the overhead of a pointer trans-
tions inevitably slower than local pointer arithmetic. To overcome this 1ation step, and additionally allows the Cray C compiler to optimize
overhead, the Berkeley UPC compiler implements an optimization for 0Ur generated shared accesses to cyclically and indefinitely distributed
the important special case of “phaseless” pointers, namely those wittflata as if they were regular C pointer dereferences. Generic pointers-
a cyclic distribution where the block size is 1 element (and the phase!0-shared present more obstacles, as UPC semantics require that phase
field is always zero) or an indefinitely blocked distribution where the information can be extracted from arbitrary pointers-to-shared to per-
pointer always has affinity to a single thread (and the phase is definednit €asy indexing into the beginning of a block. The phase field is
to be zero). Cyclic and indefinite pointers are thus “phaseless’, anthus an intrinsic component of pointers to block-cyclically distributed
important static property that allows our compiler to generate signifi- Shared data, and must be explicitly stored in the pointer construct. The
cantly more efficient pointer manipulation arithmetic for these types. 'epresentations for phased and phaseless pointers-to-shared as well as
Experimental results7] show this approach to be effective in improv-  Cray global pointers are shown in figure
ing the performance of pointer-to-shared arithmetic, removing 50%
of the overhead from cyclic pointer arithmetic and making indefinite 5.2 Vectorizing Shared Memory Accesses
pointers almost as fast as regular C pointers for pointer-integer addi-
tion. Once the appropriate representations for pointer-to-shared were cho-



sen, we carefully tuned the shared memory access primitives to exwritten in language very similar to ordinary C code, and therefore
clude constructs that could interfere with vectorization. All function uniprocessor execution time is an important criteria in evaluating a
calls to the runtime and GASNet which occur in critical paths are ei- UPC compiler’s performancelfl]l. From previous work 7] we have
ther fully inlined or replaced with macros, and GASNet translates the discovered that despite a source-to-source translation from UPC to C,
common case of 4/8 byte transfers into simple pointer assignments andur compiler still delivers good serial performance on conventional su-
dereferences. Since the runtime supports running UPC threads oveperscalar architectures. Cray X1's dramatically different architectural
hierarchical node configurations, such as clusters of SMPs, it is alsapproach, however, challenges this observation by making vectoriza-
responsible for translating operations on a pointer-to-shared’s threadion the dominant factor for achieving high performance. Although
affinity into local or remote accesses. However, the carefully-designedour translator preserves the semantics of the sequential portions of the
infrastructure of the runtime allows the execution-time cost for deter- program, the output will not be syntactically identical to the program
mining local or remote affinity to be eliminated entirely for platforms source, due to optimizations performed by the translator and the lack
such as the X1 that feature global address space hardware. of a one-to-one mapping between its intermediate representation and
An interesting issue for vectorizing shared memory accesses arise€. Furthermore, the Cray C compiler’s vectorizer is highly sensitive to
in implementing blocking put operations, whose semantics require thatsmall changes in inner loop expressions; our experiments have identi-
the value being stored be completely written to the destination addressied several constructs that tend to inhibit a loop’s vectorization, such
prior to returning. The Cray X1, however, does not provide hardware as function calls, type casts, and access to global variables in the pres-
support that polls for the completion of remote writes, and the only ence of pointer arithmetic. One important topic in optimizing UPC
alternative for mimicking this behavior is to issue a global memory application performance for the Cray X1 thus involves investigating
barrier that enforces global ordering of all prior references before all if our code generation process can be extended to minimize interfer-
subsequent references. Not only is the global memory barrier overkillences with the C compiler’s ability to automatically vectorize applica-
when all that is needed is the guarantee of the completion of a singletion code.
access, but the presence of such a barrier immediately inhibits all au-
tomatic vectorization of the enclosing code. Our solution is to take 6.1 Implementation Approach
advantage of UPC's relaxed consistency model to eliminate the mem-
ory barrier altogether for relaxed writes. UPC supports both a strict ~ Our goal in this section is to evaluate the serial performance of the
and a relaxed memory model, and relaxed shared memory accesséerkeley UPC compiler, concentrating on its ability to maintain the
can be freely reordered as long as local data dependencies are still prerectorizability of the sequential portion of the program. With full opti-
served R8]. Since the Cray X1 maintains the program order for two mizations enabled, the Cray C compil6} performs automatic vector-
scalar references to overlapping locations, correct local data depenization on expressions inside a loop that it detects to be free of cycles
dencies will be maintained, and there is therefore no need for explicitof dependences, after applying vectorization-enabling transformations
instructions to enforce the completion of a put operation. This allows such as inlining, loop splitting, and loop interchange. The compiler
the Cray C compiler to freely vectorize scalar memory references andalso vectorizes certain special recurrences such as reduction and scat-
schedule synchronizations as necessary. While strict accesses requiter/gather. Cray C provides two program-level techniques to assist the
stronger ordering guarantees and thus do not benefit from this opticompiler's alias and dependence analysisstrict pointers and
mization, they occur with significantly lower frequencies in real appli- the pragmas that declare a loop to be free of vector dependences or

cations and therefore are much less performance-critical. recurrences between array accesses. As such, our strategy is to keep
the translated output as syntactically similar as possible to the origi-
5.3 Scalar Performance Microbenchmarks nal source. The level of the intermediate representation is kept suf-

ficiently high such that C loops are preserved in their original form.

In order to examine the execution overheads of the system, we meaSimilarly, array expressions are recognized and handled specially by
sured the scalar overhead of various UPC shared memory operationd1€ translator, both to allow for more aggressive transformations by its
for both the Berkeley UPC and Cray UPC compilers. The numbers©Ptimizer and to provide the C compiler with more precise informa-
reported here represent an upper bound on communication overhealPn- Multidimensional array accesses are preserved in their original
for applications whose fine-grained remote accesses could not be vedorm instead of being linearized into one dimensional arrays. Because
torized. Figure8 presents the execution time of the pointer-to-shared the Berkeley UPC compiler complies with the ISO C99 standgjrdt]
manipulation functions, while Figur@ presents the respective mem- already supporteestrict  -qualified pointers, and additionally UPC
ory access time. source-level vectorization pragmas are accepted by the translator and

As the results show, the Berkeley UPC compiler offers competitive @PPear unchanged in the same relative location in the generated C out-
performance on pointer-to-shared arithmetic; block cyclic (generic) Put- We are also currently implementing optimizations in the translator
pointers, in particular, demonstrate overhead comparable to that ofhat will leverage the semantic information available at UPC source
cyclic pointers, indicating there is little performance incentive for Cray level to identify some vectorizable loops and automatically generate
UPC to omit support for block cyclic pointers. The execution time the appropriate pragmas in the output.
of UPC shared remote accesses is very close to GASNet's get/put la- .
tencies, signifying the overhead incurred by the runtime layer is very 6.2  Livermore Kernels
low. A substantial difference in performance is also observed between
blocking and non-blocking remote puts, which can be attributed to the ~ We chose the C version of the Livermore Kernél§][to evaluate
cost of the global memory barrier that is included with each block- the serial performance of our compiler. The Livermore Loops consist

ing put operation, but can be amortized over many non-blocking putof 24 sequential computation loops extracted from common scientific
operations. applications, and should closely reflect the sequential computational

performance offered by our compiler. In particular, the X1's reliance
. on the vector unit to achieve both fast computation and high mem-
6. Sequential Performance ory bandwidth means that application performance will often hinge on
whether the main computation loops can be efficiently vectorized. In
The popular GAS languages are designed as parallel extensionthis test, we do not supply any vectorization pragmas and do not per-
of sequential programming languages, and UPC is no exception; gorm any manual transformations, as our goal is to test if the transla-
thread’s local computation in its private address space is generallytion process interferes with Cray C’s automatic vectorization. Table
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Figure 8. Performance of pointer-to-shared arithmetic — re- Figure 9. Execution time of UPC shared memory access

sults for generic pointers are missing for Cray UPC, since it
does not support block cyclic pointers-to-shared

: Geo. Mean| Avg. Rate | Har. Mean| Max | Min
Livermore Loops C 160 756 58.7 6561 9.0
UPC [ 161.9 762 59.6 6652 9.0

11 T Table 1. Aggregate performance of the Livermore Loops (in
MFLOPS)
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similar performance to the C code for most of the kernels, we expect
the Berkeley UPC compiler to offer competitive serial performance on
0.95[- § a vector platform like the X1. Finally, we note that Cray C has failed to
vectorize a substantial number of the benchmarks, even though many
of them do not contain any vector dependences. This suggests that au-

C time / UPC time

0.9 8
tomatic vectorization alone is not sufficient for good absolute compu-
tational performance, due to the inherent limitations of static analysis

0851 ) —in general, vectorization directives, code reorganizations, and algo-
rithm changes may all be required for achieving good performance

08 when porting applications to the X1. Furthermore, some algorithms
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Figure 10. Performance of the individual Livermore kernels

are inherently not amenable to vectorization, and applications whose
performance hinges on such algorithms are unlikely to ever perform
well on the machine.

presents the aggregate performance for both the original C source and.  Potential for UPC Parallel Compiler Optimiza-
the translated output with th@©3 flag, while Figurel0 displays the tions
normalized performance of the individual kernels.

As Tablel shows, Berkeley UPC's translated output performs al-
most identically to the original C source code. Performance results Inan earlier papef7], we identified several compiler optimizations
from the individual benchmarks confirm this observation; the ratio that prove valuable for implementing GAS languages such as UPC in
of UPC running time versus C running time is within 5% for nearly a distributed memory environment: communication and computation
all of the kernels (and the remaining differences can be attributed tooverlap, prefetching of remote data, message aggregation, and priva-
measurement noise). One notable exception occurs in kernel 8, wherézation of local shared data. The performance characteristics of the
Berkeley UPC's output surprisingly outperforms the C code by about Cray X1 that we have observed thus far, however, raise questions about
10%. Examination of the translated output suggests that its perforthe appropriateness of these optimizations for this machine, whose
mance benefits from the Berkeley UPC translator recognizing severatightly-coupled architecture delivers impressive peak performance but
three dimensional array accesses in the loop as common subexpresdso limits the opportunities for GAS language implementations to ex-
sions and replacing them with stack temporaries. The introduction ofploit alternative techniques in reducing communication overhead. In
the stack variables does not affect vectorization, and saves three adhis section, we evaluate the effectiveness of two important optimiza-
dress calculations per iteration. Because the translated output exhibitdon techniques on the Cray X1.



7.1 Message Coalescing and Aggregation bulk-synchronous style of one-sided coarse-grained communication,
through the use ofipc _memget library calls. The sparse matrix-

The widely used LogGP network performance modéldpeaks vector multiplication in both versions was tuned to ensure that the
volumes about the effectiveness of message coalescing and aggreginer loops were vectorized. Both are compiled in SSP mode and ex-
tion; by Combining small puts and gets into |arge messages, not Onlyecuted such that the UPC threads are eVenIy distributed among the
does one save on the per-message startup overheads, but one can atg@ nodes. Performance results from the MPI Fortran version of the
exploit the higher bandwidth offered by modern high-performance net-benchmark were also included for comparisoAs Figure11 shows,
works for large messages. The most common realization of this opti-Performance of the shared memory style version lags behind that of
mization, callednessage vectorizatipsignificantly improves the per- ~ code with coarse-grained parallelism. Much of the performance ad-
formance of a fine-grained loop by fetching all the remote values it vantage offered by the coarse-grained version can be attributed to a
needs in a single bulk transfer instead of issuing fine-grained read oplighter inner loop for the matrix-vector product, as the boundary infor-
erations in every iteration. Other similar techniques include copying Mmation for each thread can be precomputed due to explicit partitioning
an entire object when accessing its fields, and packing together mesof the sparse matrix. In summary, although the Cray X1's tightly-
sages bound for the same destination node. coupled shared memory interface lowers the communication overhead,

Our benchmarking of the Cray X1's memory and communication & coarse-grained communication pattern is likely to still outperform a
performance, however, raises doubt about the relevance of convertingfne-grained access pattern, even for applications with irregular and
fine-grained accesses into coarse-grained bulk transfers on this pladynamic parallelism. This also suggests that UPC's hybrid program-
form. If the latency and bandwidth of a remote memory access areMing model can be well-suited for the Cray X1; fine-grained accesses
comparable to those of a local access, it may not make sense to bulkrough pointers-to-shared can deliver acceptable performance if they
fetch remote data into local buffers, since one still has to pay for thecan be vectorized, while performance critical sections of the code can
overhead of moving data from the main memory into cache. Further-be further optimized into a bulk synchronous programming style.
more, hardware support for vectorized loads can alleviate much of the
communication overhead for small messages. On the other hand, i7.2 Communication/Computation Overlap
a remote shared object is to be referenced multiple times, it might
be beneficial to copy the object locally (as permitted by UPC's re-  compiler-controlled overlapping of communication and computa-
laxed consistency model) so that its value resides in cacheable locjion is a crucial optimization for parallel programs on conventional
memory, because X1 nodes do not cache remote memory locationsyistributed-memory systems, as it can effectively hide communication
Essentially, we seek to evaluate the impact of a shared memory protatencies by keeping the processor busy with independent local com-
gramming paradigm for UPC application performance on the Cray X1 pytation while waiting for remote data to arrive. This capability is
if the X1's transparent global loads and stores can efficiently supportespecially relevant for UPC programs; unlike other parallel program-
fine-grained accesses to remote data, programmers can enjoy both thging paradigms such as MPI or Split-@1], UPC currently offers
simplicity offered by a shared memory programming style and appli- no non-blocking communication operations at the language level and
cation performance comparable to programming with coarse-grainednstead expects compilers to perform all such optimizations automati-
bulk-synchronous style communication. cally. The straightforward approach to applying this transformation is

to convert one-sided blocking get/put operations into an initiation call
and a corresponding synchronization call, then perform code motion

NAS CG Performance to separate the two as far as possible while inserting independent com-
120 ‘ "TE UPC (OpentiP sii) putation or communication code in between. Several stugi@sl[,
B e (up ste) 6] have proposed global communication scheduling techniques that

attempt to find an optimal arrangement for all non-blocking memory
accesses. Other variants of this optimization such as message strip
mining [27] and software prefetchindLB] are also useful in reducing

an application’s stall times due to communication latencies.

The Cray X1's choice to hide the messaging layer and instead rely
on vectorization for communication performance makes it a less-than-
. ideal target for GAS language implementations that wish to explic-
itly overlap communication and computation. As Sectib@ men-
tions, the Cray X1 offers only a load/store based interface for re-
§ mote accesses. While limited overlapping between scalar loads may
be achieved with code scheduling to exploit instruction-level paral-
lelism, such assembly-level optimizations are generally not applica-
ble for implementations relying on source-to-source transformation, at
least not in a portable manner. The X1 ISA also provides limited soft-
ware prefetching support with a scalar data prefetch instruction, but

4 8 12 the lack of inline assembly support in the C compiler prevents portable
Threads (SSP mode on two nodes) implementations from accessing the feature. Stores are inherently non-
blocking, and as mentioned in Sectibnwe pipeline outstanding re-
laxed scalar puts and eliminate the individual synchronization calls
that block for their completion, taking advantage of hardware memory
ordering guarantees on scalar conflicting accesses. However, this code

) generation strategy hinges on the automatic vectorizor’s ability to vec-
To answer these questions, we compared the performance of tWQqi,e these fine-grained writes in the inner loops in order to achieve
versions of the NAS conjugate gradient (CG) benchmark 8 [ qfficient communication.

The firstis derived from an OpenMP-style shared memory implemen- rpig heavy reliance on vectorization to effectively utilize the high
tation, with the exception that the column vector is replicated to avoid
repeated random indexing into it. The second version is written in the T The MPI Fortran code only works for threads in powers of 2.
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Figure 11. NAS CG (class B): fine-grained vs. coarse-
grained




memory bandwidth is a major reason the Cray X1 can achieve a highsion written with MPI in C. Both versions were compiled with full
percentage of the peak hardware performance, butimposes unfortunatgptimizations enabled, and we do not distinguish between SSP and
limitations for portable parallel language compilers or libraries seeking MSP mode, as the benchmark contains no loops that can profit from
to exercise detailed control over communication optimizations. Com- multi-streaming. As Figur&3 shows, Berkeley UPC achieves similar
piler and library developers have no direct control of an application’s performance to MPI, with both scaling well, even in the presence of
parallel performance, other than to apply transformations that resultinter-node communication. In terms of absolute performance, how-
in the most vectorization; our experiences with UPC benchmarks sug-ever, both versions are quite inefficient, achieving only 1% of peak
gest that vectorization directives and code modifications are generallyperformance on the X1. This is due to the fact that loops in the bench-
necessary for good performance. While the amount of reengineeringnark have true recurrences and thus do not benefit from vectorization,
required for vectorization will likely decrease as Cray’s compiler ma- but instead must be executed on the slower scalar processor. This sup-
tures, a fundamental problem is that C makes a poor compilation tarports our argument in Section?2 that questions the elimination of

get for vectorization, due to the lack of language-level vector opera-split-phase remote gets from the X1; whereas vectorization has failed
tions and the conservatism introduced into data dependence analysit® optimize the IS benchmark, split-phase operators could still be used
by pointer aliasing. Portable implementations for Fortran-based GASto convert the remote bulk transfers into non-blocking operations and
languages such as Co-Array Fortra Wil likely fare better on the overlap the communication time with independent computation.

X1, due to the relative ease of vectorizing Fortran 90 code. However,
programs with distributed pointer-based data structures are unlikelyg
to benefit from vectorization at all, whereas compiler-controlled data
prefetching transformations using split-phase operations could be an
effective approach.

. Analysis

Superficially, the X1 is an ideal machine for GAS languages, be-
cause the global memory operations are directly supported in hard-
ware. However, we found several features of the X1 present challenges
for our compilation approach, and we believe this experience may be
useful for the designers of future GAS language compilers and system

The NAS Multigrid (MG) benchmark was used to evaluate our architects.

compiler’s parallel performance, as the program contains a good bal-

8. Parallel Performance

e Heavy reliance on vectorization: The performance gap between

ance of computation and communication. Running in both SSP and
MSP mode, we compared two configurations: UPC compiled with
Berkeley UPC versus Fortran MPI with Cray Fortran. The Cray C
compiler fails to automatically vectorize the computation loops in the
UPC code, and we had to explicitly insert pragmas to enable vector-
ization and multistreaming. As Figufe? shows, both UPC and MPI
Fortran perform well in the absolute sense, with performance in the
giga-flops range. This resultis expected, as both the UPC and MPI ver-
sion use coarse-grained communication, and their computation code is
very similar. A more interesting comparison is between the relative
performance of the MSP and SSP configurations; in MSP mode the
Cray compilers determine (with help from programmer annotations)
how to distribute loop iterations among the four SSPs, while the SSP
mode introduces more parallelism at the program level by mapping ap-
plication threads to each individual SSP. The measured performance of
one MSP is approximately three times of that of a single SSP while it
uses four times the amount of hardware, which would seem to suggest
that the SSP mode makes more efficient use of the available hardware.
Performance data from executing more than four SSPs on the same
node, however, contradicts this hypothesis. Regardless of the program-
ming model used, a significant performance degradation was observed
when scaling from 4 to 8 threads under SSP mode. Our investigation
reveals the cause to be increased cache miss traffic in the two-way set-
associative E-cache shared by the four SSPs in an MSP. The X1 cur-
rently does not grant users control of SSP placement across the MSPs
under SSP mode, and the scheduler attempts to allocate application
threads to all four SSPs in the same MSP. Four independent threads
therefore share a two-way set-associative ca@dg and due to the
SPMD model all have the same memory layout; as the four proces-
sors execute in parallel, the private objects owned by different threads
map to the same cache entry due to identical offsets in the low bits of
the virtual address, resulting in a significant, pathological increase in
cache misses from conflict interferences for memory intensive bench-
marks. The MSP mode, on the other hand, is not susceptible to this
phenomenon, as there is only one process image (and hence one copy
of the private objects) per MSP/E-cache.

In our performance study we next used the NAS integer sort (IS)
kernel, a benchmark written in a bulk synchronous style with high
communication bandwidth requirements. A UPC version of the bench-
mark compiled with Berkeley UPC was compared against another ver-

scalar and vector code is dramatic, due to the 2x factor in clock
rate and 2x factor in available functional unit parallelism. Both a
faster scalar processor and a more powerful vectorizing compiler
would help address this issue. The use of vectorization to mask
communication means that, even if the scalar processor were
faster, vectorization would still be critical for communication
overlap.

Applications whose main computation loops contain true recur-
rences (e.g., NAS IS) run very inefficiently because they do not
benefit from the computational power and memory bandwidth
offered by the vector pipelines, which are essentially wasted.
The C compiler’s ability to automatically identify candidates for
vectorization could also be further improved, as demonstrated
by the Livermore loop results and the fact that we had to manu-
ally insert multiple pragma directives to achieve acceptable per-
formance on our parallel benchmarks.

Limited forms of communication: Cray’s decision to avoid caching
remote data matches UPC'’s affinity model quite well, and allows
for a simpler hardware design and faster remote access times
— however this mandates more careful attention to the data ac-
cess locality pattern. The hardware provides fast communica-
tion between memory and registers, but no direct support for
memory to memory operations, which are important for non-
blocking bulk-synchronous communication. While the regis-
ter level operations are powerful in tightly integrated commu-
nication and computation code, they consume critical register
resources and provide only limited forms of synchronization.
For remote loads, the synchronization is automatic when a suc-
cessive operation accesses the register, but for remote stores,
explicit synchronization is often needed. The X1 architecture
provides only a single heavyweight synchronization mechanism
(gsyng¢ to wait for the completion of all outstanding remote
writes, and lacks fine-grained forms of synchronization which
could admit more general forms of communication pipelining.
The addition of memory-to-memory operations would provide
additional flexibility in code generation, especially if they were
combined with flexible synchronization primitives to synchro-
nize on sets of outstanding operations. Although memory-to-
cache operations (such as prefetches) have some advantages in
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enabling prefetching optimizations, we believe that the added The user does not pay for this generality when it is not needed, be-

complexity currently required to exploit this functionality from cause the remote memory access operations in the extended GASNet

the C source level is probably not justified. interface are implemented as macros that translate to direct loads and
stores.

e Cache structure: The mapping algorithm in the shared E-cache A remaining open issue is the vectorization of code that mixes com-
within an MSP makes it difficult to obtain high performance mynication and computation. The reliance on vectorization in the X1,
for SPMD programs in SSP mode, due to the high likelihood ot only for computational performance but also to overlap remote ac-
of cache conflicts between symmetric data objects associatettess times, means that vectorization of communication code is critical.
with each SSP thread. We believe a software workaround mayror programs with fine-grained irregular accesses, the vector instruc-
be possible by staggering allocations in memory, at the cost oftjon set supports indexed loads and stores (scatter/gather), yet the Cray
some added complexity in pointer arithmetic. A slightly smarter compiler will not vectorize loops that contain function calls (most no-
cache hashing function or a 4-way set associative E-cache wouldaply including calls toshmen)y, nor does it support inline assembly
have been a better design match to the 4 SSPs sharing the cachgystructions. This limits our ability to generate the type of mixed com-

munication and computation code that would most effectively use the
10. Conclusions hardware: We believe this is an issue for appllica.tion-level library ef-
forts, not just our own source-to-source compilation strategy, because
i i ) scientific libraries are often written with separate modules and runtime
_ We have described our implementation of the Berkeley UPC com- yhases for communication and computation. A strategy for annotating
piler on the Cray X1 architecture. We showed that the Berkeley com- o reyriting the separate communication and computation code to en-
piler performs comparably to the Cray UPC compiler, even though g vectorization may perform reasonably well, but will miss the op-
the Berkeley compiler supports the entire UPC language specificationyorynity to take advantage of Cray’s tight integration of the network
while the Cray compiler omits support for some UPC language fea- 5nq the processor, in which the basic communication mechanism is a
tures. One of the key features currently missing from Cray UPC is yansfer between local registers and remote memory. In one of these
support for arbitrary blocked cyclic data layouts. We have shown thatphased, bulk-synchronous programs, data will flow from remote mem-
static typing information can be used to specialize the generation ofOry to the local vector registers and then to local memory during com-

pointer arithmetic for the important special case of phaseless point-nnication, and from local memory back to registers when that data is
ers, ensuring that programmers only pay for the generality of blocked-needed during computation. Cray compiler support for inline assem-

cyclic pointers-to-shared when they are actually used in the applicatyy and interprocedural analyses to support the automatic vectorizer,

tion. As a concess.ion to portability and compiler deyelopment time, ¢ at least special recognition of tismemcalls, would all help to
the Berkeley compiler generates C, rather than native assembly, and yqress this issue.

reliesloln the vendor compiler to perform most sgrial optimizatiqns. On balance, our layered approach to compiler design has proven
Surprisingly, the generated C code from our compiler often vectorlzesquite effective across a wide range of architectures. GASNet has a

as well as the input code, which validates our approach. carefully designed API which is used in generating code for Titanium
Our benchmarks demonstrate that the X1's architectural global ad-55 \ye|| 'as UPC, and we are currently extending it to include strided
dress space support is used most effectively by a global address spacg, scatter/gather accesses that are important for enabling various par-
programming model that integrates communication and computation g|je| compiler optimizations and supporting Co-Array Fortran. A key
The one-sided put/get model smmenis significantly faster than the  gesign point has been the use of macros and inline expansion for sim-
two-sided MPI interface, however the use of direct loads and storesyje GASNet functions, such that despite API abstraction layering, ac-
that we leverage in our GASNet implementation is faster still. We cegses to remote values translate directly to loads and stores on ma-
built an implementation of our GASNet layer starting with the active chines that support direct remote access. Our UPC runtime layer now

message-based Core API, whose generality is exploited to provide gontains three different UPC pointer-to-shared representations, includ-
high-performance implementation of the more challenging features Ofing one designed specifically to match the memory layout on the X1.
UPC, such as the ability to non-collectively allocate remote memory.



We believe that both the pointer and GASNet work will be useful on

Appleton Laboratory, 1998.

other architectures with similar memory layout and access characterisf23] L. Oliker et al. Evaluation of cache-based superscalar and

tics (specifically including the SGI Altix), and that our analysis of the
architectural support provided by the X1 will be useful in the design
of future architectures intended to support GAS languages.
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