
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 5 Dec 1982 Page 155 

MOTIVATION 

APPROACHES TO EXECUTABLE SPECIFICATIONS 

Stephen W. Smoliar 
Schlumberger-Doll Research 

Old Quarry Road 
P. 0. Box 307 

Ridgefield, 'connecticut 06877 

At the final panel discussion of the 5th International Conference 
on Software Engineering, the following obr~rvations were offered by 
Robert Balzer (summarized by Peter Neumann): 

The specification must be the basis for program
ming. All modifications must begin there, with 
the program being rederived therefrom. Thus the 
specification becomes a rudimentary program, and 
all transformations are from one program form to 
another. 

If specifications are executable, then the orig
inal specification and all derived versions are 
programs, and all transforms are from programs to 
programs. Further, the executable specification 
can and should be used as the prototype. A pro
totype is then simply an incomplete implemen
tation. 

There is a suggestion of oxymoronic incongruity in the term "executable 
specification." Much of the pioneering work in software specification 
would invoke the metaphor of the blueprint or similar engineering 
drawing, but "hard" engineers certainly never expected these diagramatic 
abstractions to exhibit any form of behavior. Why should software 
specifications be different from other engineering specifications? 

This question just begs to be answered with the obvious question: 
Why not? As software projects get more complex, the need for rapidly 
available prototypes becomes more essential. The obvious source for 
such a prototype lies in the specification, a statement which should 
constitute a formal agreement between the party who desires the software 
and the party who undertakes to provide it. If that specification can 
be formulated in a language which has operational semantics, then, de 
facto, the specification becomes the prototype; and the behavior of that 
prototype may be scrutinized to determine if it is, in fact, the 
behavior of the desired software product. 

What constitutes operational semantics for a specification 
language? This is essentially the key question of this paper, which 

will consider a variety of approaches to specification languages, each 
of which supports an operational interpretation.. One may proceed 
according to the following rule of thumb: A specification should be 
expressed in a notation which serves as a valid lang.uage for some 
(probably virtual) processor. One may then invoke rules which transform 
processor languages into processor languages. Thus, the specification 
will go through a series of stages of articulation as programs for a 
sequence of (again probably virtual) processors. The goal of this 
transformational undertaking is to end the sequence with a program for 
the target processor (the host for the software being developed). 

This transformational approach to software development is by no 
means new. A fair amount of 2 research in this area has already been 
undertaken by Robert Balzer. Balzer has taken a state-oriented 
approach to sp~cification: a program is specified in terms of a goal 
state, which may be expressed in terms of constraints on the properties 
of elements of the state. These constraints serve to determine valid 
states and state transitions. These state transitions serve to trans
form the static description of the goal state into a dynamic description 
of a program based on some set of operational primitives. (The primi
tives Balzer has worked with are those of a simple sequential back
tracking language.) 

This approach is similar to that taken by the CIP (Computer-aided, 
Intuiti~n-guided Programming) project at the Technical University of 
Munich. A key element of this project is the development of a general
purpose abstract language: 

This language must incorporate a variety of con
cepts, yet still retain a manageable size. It 
covers coherently the entire spectrum from problem 
specification tools to machine-oriented languages; 
it comprises such constructs as e.g., descriptive 
expressions and choices, predicates and quanti
fication (used for abstract specifications and 
mode restrictions), recursive modes, recursive 
functions and non-deterministic conditionals (for 
the applicative formulation of algorithms), and 
variables, collective assignments, procedures, 
iteration, etc. (for the development towards 
machine language). According to different 
collections of constructs used in the formulation 
of a program, several particular languages 
"styles" (instead of different languages) can 
easily be distinguished. 

The transformational aspect of this approach is involved with automating 
the-transition between these different styles. Thus, one may begin with 
a specification articulated in the style of a purely descriptive expres
sion and invoke a sequence of transformations which will ultimately 
represent the program in the style of a machine-oriented language. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1006259.1006285&domain=pdf&date_stamp=1982-04-19


ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 5 Dee 1982 Page 156 

A somewhat dift0rent approach is that provided by the specifica
tion language OBJ-T. OBJ is a formal language for the expression of 
algebraic specifications; that is, the specifications are described in 
L.C:.L&UQ of sets (sorts); operations over those sets, and invariant 
equations which characterize the properties of the operations. OBJ is 
also an applicative, non-procedural programming language. OBJ-T 
provides an implementation of OBJ. The implementation is again a 
transformational one, now defined in terms of rewrite rules based on the 
equations which comprise the specification. Thus, an execution consists 
of tracing the implications of operations applied to some given sort 
object, initially represented as a closed expression. 

In general, it would appear that expression-oriented representa
tions are more conducive to transformation than are machine-oriented 
representations. This is because an expression-oriented representation 
is generally a static embodiment of dynamic behavior, as opposed to a 
prescription forasequence of state transitions. This paper will 
survey a variety of expression-oriented representations which may serve 
as executable specifications. These representations include the \ambda 
calculus, expressions in the functional style of John Backus, the 
constructs of data flow languages, and algebraic approaches. This 
survey will be preceded by a brief digression on similarities between 
hardware specifications and software specifications. 

2 SOFTWARE AND HARDWARE 

The examples cited in Section 1 were concerned strictly with the 
specification of software. However, the current levels of complexity 
which arise in computer architecture make it obvious that specifications 
are also necessary for hardware. Here there is more of a tendency to 
think in terms of the blueprint metaphor. However, between the poten
tial increase of functional capabilities afforded by VLSI and the 
control capabilities provided by microprogramming, it is no longer 
possible for hardware design to circumvent certain levels of description 
which are essentially algorithmic in nature. Hardware design is much 
more than the development of the appropriate circuit topology. It is 
the realization of a functional behavior in terms of some assumed set of 
functional primitives, and the circuit topology is simply the specifi
cation of how those primitives interact. 

A variety of computer hardware descripS{on languages (CHDLs) have 
led a "double life" as simulation languages. A specification encoded 
in one of these languages serves to drive a hardware simulation system, 
and the behavior of that simulation then serves as the operational 
interpretation of the specification. Unfortunately, most of these 
languages are structured as register transt'er languages. The register 
transfer statement specifies how a given register is loaded with a given 
value; its semantics are essentially those of the traditional assignment 
statement. For this reason, most CHDLs bear a greater resemblance to 
conventional programming languages, augmented to accommodate some sort 

of topological declaration, than they do to specification languages. 
Furthermore, by tying the interpretation of the hat;dware specification 
down to the behavior of a simulator, such langua'ges tend to evade one of 
the more useful properties of software specification languages, the fact 
that the static stru~ture of the spccific~ticn embodies irr so~e sieni
ficant way the dynamic nature of the specified behavior. 

There have been a few attempts to transcend the limitations of 
register transfer statements and arrive at a more powerful and general 
hardware specification language. One such attempt has pursued the 
algebraic approach of OBJ, interpreting the i?dividual hardware regis
ters as sorts, rather than program variables. This approach has the 
advantage of readily accommodating a hierarchic decomposition of the 
hardware being specified, but it has the disadvantage of concealing the 
basic topological description of the circuit being described. This 
information is kept implicit in the function compositions which are 
expressed in the equational identities. 

An approach which addresses topological description more directly 
is one in which the hardware is represented by an expresSion in a 
functional programming language (such as a Backus FP system ). In this 
notation the use of functionals essentially embodies necessary topo
logical information regarding the connectivity of the functions on which 
they operate. A more general discussion of the possible relations 
between such funC{5-onals and network connectivity has been provided by 
Elliott Organick. 

A final approach which is also in the spirit of applicative and 
functional programm\']il involves hardware specification in terms of a 
data flow notation. The use of data flow constructs for software 
specifications will be discussed in Section 5. At this point it is 
sufficient to note that the principles discussed in that Section are as 
applicable to hardware specifications as they are to software specifi
cations. 

3 LAMBDA CALCULUS 

Dialects of the lambda calculus, such as LISP, have proved their 
worth as programming languages many times over. More recently, the use 
of such languag~ for purposes of specification has also yielded 
fruitful results. From this point of view, the prime virtue of such 
languages is that their semantics are strictly concerned with the 
behavior of functions. These functions may ultimately be considered 
simply as mappings from some domain space to some range space. Such a 
form of expression is excellent for the articulation of what a system is 
to do without bringing in the details of how it is to do it, a charac
teristi2 which Balzer regards as being essential to a good specifi
cation. 



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 5 Dec 1982 Page 157 

Such languages also have the advantage of the utmost structural 
simplicity, There is only a single control structure: the application 
of a function to its arguments. Generally, there is' also only one data 
structure, some variation on the S-expressions of LISP I"hich combines 
atomic elements into an embedded list structure. This general purpose 
list structure may then serve as a representation of specific data 
structures. which must be specified. Data structuring information may 
essentially be captured by predicates which determine whether any given 
list structure has the properties of the desired data structure. These 
predicates then serve to control the conditional expressions which 
constitute the body of most function definitions. From a more general 
point of view, functions are defined in terms of their operations on 
different abstract syntactic entities; and these entities are realized 
concretely by those S-expressions whish satisfy the predicate associated 
with that given,abstract entity type. 

Just as S-expressions provide a simple foundation for the elabora
tion of more complex data structures, so may more complex control 
structures be elaborated in terms of functional application. The basic 
mechanism for this elaboration is composition, whereby the operands of a 
function arise as a result of other functional applications. This 
mechanism, combined with the fact that functions may, themselves, serve 
as parameters and values of functions, endows lambda calculus dialects 
with the full power of Turing computability. Thus, the one notation 
serves as both an abstraction of relationships among functional com
ponents and a full-fledged programming language. 

The operational semantics under which a lambda calculus specifi
cation becomes executable are essentially the reduction rules of lambda 
conversion. From an abstract point of view, even the basic LISP 
interpHter is nothing more than an implementation of these reduction 
rules. However, some of the more recent lambda calculus dialects have 
employed much more powerful implementations of these rules. The basic 
approach to reduction taken by the LISP interpreter is that the expres
sions of a function's operands are reduced to normal form before 
reduction of the application of that {ijnction is undertaken. This is 
known as applicative order reduction. The interpreter for the SASL 
language, on the other hand, performs normal order reduction. In this 
case, attempts are made to apply the reduction rules to the "outermost" 
applications of an expression fi"rst; and the more embedded expressions 
are not reduced unless such reductions cannot be performed. 

Of course, the Church-Rosser Theorem proves that if both these 
reduction strategies term~nate in a normal form, then they will ter
minate in the same form. However, there are cases in which normal 
order reduction will yield a normal form; but applicative order reduc
tion will not. In particular, an interpreter which supports normal 
order redu<J_tgJ-on will also support the manipulation of infinite data 
structures. Such a facility seems particularly appropriate for issues 
of specification. Real-time systems, for example, may be modeled as 

transducers which map the infinite streams of signals received f6 
sensors into the infinite streams of commands dispatched to effectors. 
From this point of view, the operational semantics of a lambda calculus 
language may actually be more powerful than those of the more conven
tional sequential programming languages. 

4 FUNCTIONAL EXPRESSIONS 

As was observed in Section 3, one of the powerful elements of the 
lambda calculus is the ability of functions to serve as parameters and 
values of other functions. The functional style of John Backus essen
tially pursues the power of this approach to the development of an 
expression-based language which differs significantly from the lambda 
calculus. The crux of this difference concerns the elimination of the 
need for lambda variables, This is achieved through a notation which 
draws a distinction between functions, which map data objects into data 
objects, and functional forms (also known as functionals or operators), 
which synthesize functions through the combination of functions and dfta 
objects. A language based on such a notation is called an FP system. 

From the point of view of specification, an FP system is a 
fulfillment of the primary virtue of the lambda calculus--a represen
tation of system behavior strictly in terms of functions. If one 
regards the postulation of lambda variables as an initial commitment to 
storage allocations, then the need for that commitment has been elimin
ated, Furthermore, the generalization of the lambda calculus to the 
accommodation of infinite streams, cited in Section 3 as valuable to the 
specification of real-time systems, may also be applied to FP systems. 
FQL is a functional style language which accommodates such streams; and 
this aspect of it has been used in the l'Wecification of a real-time 
ballistic missile defense (BMD) construct. 

Like LISP, FQL is an interpreted language. 6 It also provides a 
flexible environment for function definition, not unlike the environment 
afforded by APL. Consequently, specifications written in FQL are 
readily executable; and unspecified detail may be accommodated by 
functions defined to serve as stubs. 

5 DATA FLOW CONSTRUCTS 

One of the major critical issues of specification concerns the 
need to represent concurrency. One of the reasons that Balz'2r empha
sized the significance of the "what" over that of the "how" was to 
avoid a specification which would impose constraints of sequential 
execution, particularly if the target environment consisted of multiple 
processing facilities. Both the lambda calculus and functional style 
languages tend to be essentially sequential in nature, glthough they may 
be interpreted in ways which may allow for parallelism. 

An alternative form of specification is one in which possibilities 
for parellelism are implicit in the notation. Tnis is one of the 



ACM SIGSOFT SOFTWARE ENGINEERING. NOTES Vol 7 No 5 Dec 1982 Page 158 

virtues claimed by data flow languages such as VAL. 13 Such languages 
serve to represent a computation as a network of functions. The network 
serves to define the communication of message packets among the com
ponent functions= ThP~e message packets provide the means for the 
propagation of input parameters to a function and output values yielded 
by a function. Because the com~onents are functions, each one may, at 
least in theory, be assigned to a distinct processor; and the network 
defines how these processors must be interconnected. 

The actual VAL notation, however, is much more like a programming 
language than a specification language. The "internal" description of 
an individual function is still given in essentially sequential con
structs. Consequently, the language does not lend itself to any sort of 
abstract representation which may be filled out through hierarchical 
refinement. Thus, VAL is primarily , concerned with the "how" of a 
system; however, this "how" is defined with sufficient generality to 
allow for a varity of implementations on multiple processing resources. 

A notation which is more conducive to abstractions which may be 
subsequently "fleshed out" by stepwise rffinement is the language 
developed by Gilles Kahn and David ~~cQueen. This language provides a 
reconfiguration construct, by which a given node in a dataflow graph may 
be refined into a representation as a subgraph. All that reconfigura
tion demands is that those edges which were previously directed into and 
out of the node be suitably attached in the subgraph structure. This 
means that one may provide a specification in terms of one of these 
networks in which the individual function nodes are interpreted by 
stubs, and an implementation is achieved when one eventually arrives at 
a graph all of whose nodes are realized by executable code. 

6 ALGEBRAIC REPRESENTATIONS 

As was observed in Section 1, an algebraic specification involves 
a description in terms of sets, functions over those sets, and invariant 
equations over the functions. In many ways such a specification may be 
regarded as the ultimate embodiment of the "what." It provides a 
representation of those properties which must be satisfied without 
necessarily imposing any commitment as to how they be satisfied. The 
absence of such a commitment, however, would seem to imply that such a 
representation does not lend itself to execution. 

The fallacy of this respaing has been admirably dispatched by the 
OBJ-T specification language. The basic approach to the execution of 
OBJ-T is the same as that of the lambda calculus: the invariant 
equations which comprise a specification may be interpreted as reduction 
rules. Thus, given an OBJ-T specification and an initial expression, 
that expression may be subject to a sequence' of rewritings determined by 
the equations of the specification. The actual implementation of OBJ-T 
is endowed with a set of rules which determine how such equations may be 
invoked in a reduction operations. These rules insure that the re-

writing process will even1~lly terminate and that the reduction will be 
as efficient as possible. Thus, even the abstraction of an algebraic 
specification may lend itself to an operational interpretation. 

7 CONCLUSIONS 

Each of the four approaches considered in the preceding sections-
lambda calculus, functional expressions, data flow constructs, and 
algebraic representations--should be viewed in terms of the limitation 
suggested by the title of this paper. An approach to specification does 
not necessarily constitute a satisfactory method. What is promising, 
however, is that all four of these approaches allow for some form of 
executable interpretation. As the complexity of software increases, it 
will become more and more desirable that a specification also serve as a 
prototype, in which case each of these four approaches should be 
considered for its ultimate applicability to specification in the 
software crises to come. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

REFERENCES 

J. Backus, "Can programming be liberated from the von Neumann 
style? A functional style and its algebra of programs," Comm. 
ACM, Vol. 21, pp. 613-641, August 1978. 

R. Balzer, "Transformational implementation: an example," 
unpublished report, USC Information Sciences Institute, August 
1979. 

M. R. Barbacci, "A comparison of register transfer languages 
for describing computers and digital systems," IEEE Trans
actions on Computers, Vol. C-24, pp. 137-150, February 1975. 

F. L. Bauer, et al., "Towards a wide spectrum language to 
support program specification and program development," in F. 
L. Bauer and M. Bray, Program Construction, Springer-Verlag, 
Berlin, 1979, pp. 543-552. 

W. H. Burge, Recursive Programming Techniques, Addison-Wesley, 
Reading, 1975. 

R. E. Frankel, "FQL-the design and implementation of a func
tional database query language." 

R. E. Frankel and S. W. Smoliar, "Beyond register transfer: an 
algebraic approach for architect4ral description," Proc. 4th 
International Symposium on Computer Hardware Description 
Languages, Palo Alto, California (October 1979), PP• 1-5. 



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 7 No 5 Dec 1982 Page 159 

8. R. E. Frankel and S. w. Smoliar, "Digital systems as mathe
matical expressions," Proc. COMPCON Spring 81, San Francisco, 
California (February 1981), PP• 414-416. 

9. D. P. Friedman and D. S. Wise, "Aspects of applicative pro
gramming for parallel processing," IEEE Transactions on 
Computers, Vol. C-27, pp. 289-296, April 1978. 

10. J. A. Goguen and J. J. Tardo, "An introduction to OBJ: a 
language for writing and testing formal algebraic program 
specifications," Proc. Specifications of Reliable Software, 
Cambridge, Massachusetts (April 1979), PP• 170-189. 

11. G. Kahn and D. B. MacQueen, "Coroutines and networks of 
parallel processes," Information Processing 77 (IFIP pro
ceedings), Toronto, Ontario (August 1977), pp. 993-998. 

12. J. McCarthy, "Recursive functions of symbolic expressions and 
their computation by machine, Part I," Comm. ACM, Vol. 3, pp. 
184-195, April 1960. 

13. J. R. McGraw, "Data flow computing--software development," IEEE 
Transactions on Computers, Vol. C-29, pp. 1095-1103, December 
1980. 

14. P. G. Neumann and S. Gerhart, "Some reflections on the 5th 
ICSE," Software Engineering Notes, Vol. 6, pp. 5-7. April 1981. 

15. E. I. Organick, "New directions in computer systems architec
ture," EURO MICRO Journal, Vol. 5, PP• 190-202, July 1979. 

16. S. W. Smoliar, "Using applicative techniques to design dis
tributed systems," Proc. Specifications of Reliable Software, 
Cambridge, Massachusetts (April 1979), pp. 150-161. 

17. S. W. Smoliar, "Simulating distributed systems: a two-level 
approach," Proc. AIAA Computers in Aerospace Ill Conference, 
San Diego, California (October 1981), to appear. 

18. S. W. Smoliar, "Applicative and functional programming," in C. 
R. Vick and C. V. Ramamoorthy, Handbook on Software Engine
ering, Van Nostrand Reinhold, to appear, pp. 11-1 - 11-55. 

19. D. A. Turner, "A new implementation technique for applicative 
languages," Software -Practice and Experience, Vol. 9, PP• 31-
49, January 1979. 


