
Lower Bounds for Dynamic Connectivity

Mihai Pǎtraşcu
MIT CSAIL

mip@mit.edu

Erik D. Demaine
MIT CSAIL

edemaine@mit.edu

ABSTRACT
We prove an Ω(lg n) cell-probe lower bound on maintaining
connectivity in dynamic graphs, as well as a more general
trade-off between updates and queries. Our bound holds
even if the graph is formed by disjoint paths, and thus also
applies to trees and plane graphs. The bound is known
to be tight for these restricted cases, proving optimality of
these data structures (e.g., Sleator and Tarjan’s dynamic
trees). Our trade-off is known to be tight for trees, and the
best two data structures for dynamic connectivity in gen-
eral graphs are points on our trade-off curve. In this sense
these two data structures are optimal, and this tightness
serves as strong evidence that our lower bounds are the best
possible. From a more theoretical perspective, our result is
the first logarithmic cell-probe lower bound for any problem
in the natural class of dynamic language membership prob-
lems, breaking the long standing record of Ω(lg n/ lg lg n). In
this sense, our result is the first data-structure lower bound
that is “truly” logarithmic, i.e., logarithmic in the problem
size counted in bits. Obtaining such a bound is listed as
one of three major challenges for future research by Mil-
tersen [13] (the other two challenges remain unsolved). Our
techniques form a general framework for proving cell-probe
lower bounds on dynamic data structures. We show how
our framework also applies to the partial-sums problem to
obtain a nearly complete understanding of the problem in
cell-probe and algebraic models, solving several previously
posed open problems.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.2 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity

General Terms
Theory, Performance, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Keywords
Dynamic connectivity, dynamic graph problems, partial
sums problem, cell-probe complexity, lower bounds for data
structures

1. INTRODUCTION
This paper builds a new framework for proving amortized

lower bounds on online dynamic data structures in the pow-
erful cell-probe model of computation. The cell-probe model
[19] measures running time as the number of memory words
accessed (read or written) by the algorithm. Thus any lower
bound in the cell-probe model also holds in the word-RAM
model most commonly used by data structures, as well as
weaker models such as pointer machines. Our framework
extends previous work by the authors [15], enabling us to
obtain lower bounds for a wider class of problems in which
the answer to each query carries little information (e.g., a
single bit). In addition, we show how to obtain trade-off and
adaptive lower bounds.

We apply our framework to obtain new, often optimal
lower bounds for several problems including dynamic con-
nectivity, dynamic minimum spanning forest, and partial
sums. These applications and results are summarized in the
next three subsections.

1.1 Dynamic Graph Problems
The dynamic-connectivity problem is one of the most im-

portant and well-motivated dynamic graph problems, and
has been the focus of a large body of research. Formally,
the problem asks to maintain an undirected graph with a
fixed set of n vertices subject to the following operations:

insert(u, v): insert an edge (u, v) into the graph.
delete(u, v): delete the edge (u, v) from the graph.
connected(u, v): test whether u and v lie in the same

connected component.

We prove an Ω(lg n) amortized lower bound per operation on
any data structure for this problem. In addition, we show a
more general trade-off between updates and queries. Let tu

be the amortized running time of an update operation, and
let tq be the amortized running time of a query. We prove
that tq · lg(tu/tq) = Ω(lg n) and tu · lg(tq/tu) = Ω(lg n).
The first bound is relevant when tq < tu, and the second
when tu < tq. Our bounds apply in the powerful cell-probe
model with cells of size O(lg n), and hold for the average-
case of a certain probability distribution. The best previous
lower bound was Ω(lg n/ lg lg n), discovered independently
by Miltersen et al. [14] and Fredman and Henzinger [6].

Our bound holds even if the graph is always formed by dis-
joint paths, and thus also applies to forests and plane graphs.
For forests, a logarithmic upper bound is given by Sleator
and Tarjan’s classic data structure for dynamic trees [17].
A trade-off result matching ours for the case tq < tu can
be obtain using Euler Tour Trees [9]. For plane graphs, a
logarithmic upper bound is given by Eppstein et al. [3]. For
general graphs, the best known upper bound is only slightly
worse: Thorup [18] gives a data structure supporting up-
dates in O(lg n(lg lg n)3), and queries in O(lg n/ lg lg lg n).
Previously, Holm, de Lichtenberg, and Thorup [10] gave a
data structure supporting updates in O(lg2 n) and queries in
O(lg n/ lg lg n). These two solutions are not directly com-
parable, because each sacrifices one running time in order
to improve the other. Indeed, both of these data structures
are optimal in the sense that they are both on the trade-off
curve described above, so it is impossible to obtain a better
query time given the update time of each algorithm. This
optimality gives strong evidence that our lower bound is the
best possible. In addition, we feel that our trade-off result
might provide key insight for constructing an optimal data
structure.

We can show that our lower bound holds even if Monte
Carlo randomization is allowed, and the data structure need
only give correct answers with high probability. In addition,
we can prove a lower bound of Ω(logB n) in the external
memory model with pages of size B. In a sense, this is the
first true lower bound of this magnitude for the external
memory model, because most previous lower bounds of this
type are for the comparison model. These two results will
be described in the full version of the paper.

Our result implies lower bounds of the same magnitude for
several important dynamic graph problems: dynamic min-
imum spanning forest (even in plane graphs, and even if
all edges have unit costs); dynamic planarity testing; test-
ing whether the entire graph is connected; dynamic bipar-
titeness testing; dynamic 1-center and dynamic diameter.
These reductions are deferred to the final version of this pa-
per. All of these problems have polylogarithmic solutions.
In particular, dynamic minimum spanning forests in plane
graphs can be maintained in O(lg n) time [3], matching our
lower bound. In [3], a logarithmic lower bound for maintain-
ing the minimum spanning forest was argued by a reduction
to sorting. However, such a reduction is not relevant in the
powerful RAM and cell-probe models, where we can sort
must faster. Our lower bound essentially shows that it is
not the costs, but rather the structure of the graph, that is
hard to maintain.

1.2 Dynamic Language Membership Problems
Given a language L that is polynomial-time decidable,

the dynamic language membership problem is defined as fol-
lows. For any fixed n (the problem size), maintain a string
w ∈ {0, 1}n under two operations: flip the i-th bit of w,
and report whether w ∈ L. It is not hard to see that the
dynamic-connectivity problem can be expressed as a dy-
namic language membership problem. The idea is to let
strings w encode adjacency matrices and define the language
L as the set of strings representing undirected graphs for
which two special (fixed) nodes are in the same connected
component. The size of the problem is now quadratic in the
number of nodes, but this affects our logarithmic bound by
only a constant factor.

Dynamic language membership problems are advocated
by Miltersen [13] as an effective way to gauge the power of
lower-bound techniques. For many problems, it is possible
to obtain good bounds in terms of a central parameter n,
by letting the word size be a large function of n (superex-
ponential universe sizes are not uncommon). This assump-
tion makes lower bounds easier to obtain because updates
and queries usually receive a word as a parameter, so the
bigger the word size, the more information the data struc-
ture has to digest. While lower bounds obtained in this
way are interesting in themselves, they usually reflect a bet-
ter understanding of the particular problem as opposed to
a development in lower-bound techniques in general. Dy-
namic language membership problems are immune to such
effects because of the minimal set of operations—bit flips
and queries taking no input—and because the size of the
problem is counted in bits, so a higher word size makes ob-
taining a lower bound only harder.

In previous work [15], we obtained an Ω(lg n) lower bound
for reporting partial sums in a dynamic vector with elements
from {1, . . . , n}. That result, however, depends on the high
entropy of the output of each query (Θ(lg n) bits), and thus
is not quite satisfactory. The main contribution of this pa-
per is to extend that technique to prove logarithmic lower
bounds even if the output to each query is a single bit. In
the partial-sums context, this is equivalent to verifying that
a given partial sum in correct, rather than computing a par-
tial sum from scratch.

1.3 Partial-Sums Problem
The partial-sums problem is a classic data-structure prob-

lem with applications to list indexing and dynamic rank-
ing [7, 2], dynamic arrays [16], histogram maintenance [5],
and frequency tables for arithmetic coding [4]. The partial-
sums problem has also been very relevant to the lower-bound
community because it led the development of several impor-
tant techniques; see [15] for a comprehensive list of previous
results. Formally, the problem asks to maintain an array
A[1..n] subject to the following operations:

update(k, ∆): modify A[k]← A[k] + ∆.

sum(k): returns the partial sum
Pk

i=1 A[i].
select(σ): returns an index i satisfying sum(i − 1) <

σ ≤ sum(i). For this operation to be meaningful, the
elements of A should come from an ordered set (usually
the integers), and we must have all A[i] > 0.

Our framework enables us to prove several new lower
bounds on the partial-sums problem. These bounds give
a nearly complete understanding of the problem in the cell-
probe and algebraic models, and solve several previously
posed open problems. In particular, we obtain matching
trade-off upper and lower bounds for update and sum in
the group model, adaptive entropy bounds in the group
model, tight lower bounds for update and select in the cell-
probe model, matching trade-off upper and lower bounds for
update and sum in the cell-probe model, and trade-off lower
bounds for update and select in the cell-probe model. We
describe these results in the appendix.

2. GENERAL FRAMEWORK
We now present the framework for our lower bounds in

general terms. Consider a sequence of data-structure oper-

ations A1, A2, . . . , Ak, where each Ai incorporates all infor-
mation characterizing operation i, i.e., the operation type
and any parameters for that type of operation. Upon re-
ceiving request Ai, the data structure must produce an ap-
propriate response; for operations other than queries, the re-
sponse is empty. In this paper, our hard sequences of opera-
tions will have a fixed response, and the data structure need
only confirm that the answer is correct. Such predictable
answers for the hard sequence do not trivialize the problem:
the data structure has no guarantee about the sequence of
operations, and the information it gathers during a query
(by probing certain cells) must provide a certificate that the
predicted answer is correct. In other words, the probed cells
must uniquely identify the answer to the query, and thus
must encode sufficient information to do so. As a conse-
quence, our lower bounds hold even if the algorithm makes
nondeterministic cell probes, or if an all-powerful prover re-
veals a minimal set of cells sufficient to show that a certain
answer to a query is correct. One possible framework for
nondeterministic computation in the context of online data
structures is defined in [12]. Our bounds also hold in this
framework.

To establish the lower bounds of this paper, we establish
lower bounds for a simpler type of problem. Consider two
adjacent intervals of operations: Ai, . . . , Aj−1 and Aj , . . . , Ak.
At all times, conceptually associate with each memory cell
a chronogram [7], i.e., the index t of the operation At dur-
ing which the memory cell was last modified. Now consider
all read instructions executed by the data structure during
operations Aj , . . . , Ak that access cells with a chronogram
in the interval [i, j − 1]. In other words, we consider the set
of cells written during the time interval [i, j − 1] and read
during the interval [j, k] before they are overwritten. Our
intent is to show that the set of locations probed, together
with the values read from these locations, must encode a lot
of information. Indeed, all the information necessary to an-
swer the queries in the interval [j, k] must come from these
cell probes, because an update happening during [i, j − 1]
cannot be reflected in a cell written before time i. Such
bounds will stem from an encoding argument, in conjunc-
tion with a simple information-theoretic analysis.

It remains to explain how we can use such lower bounds
to show a lower bound for the data-structure problems we
are considering. Consider a binary tree whose leaves rep-
resent the entire sequence of operations in time order. For
every node in the tree, we consider the “information trans-
fer” through that node as follows. Let i and j − 1 be the
indices of the leftmost and rightmost leaves in the subtree
of the node’s left child, and let j and k be the indices of the
leftmost and rightmost leaves in the subtree of the node’s
right child. Thus, [i, j − 1] and [j, k] are two adjacent inter-
vals of operations as described above. We can use the kind
of lower bound described above to obtain a lower bound on
the number of read instructions executed in the subtree of
the right child that read data from the subtree of the left
child—we call such read instructions information transfer
through our node. To get a lower bound for the number of
cell probes performed during the entire execution, we simply
sum up these lower bounds of information transfer through
each node.

To show that this sum of individual lower bounds is in-
deed an overall lower bound, we must make two important
points. First, we claim that we are not double counting

any read instructions. Any read instruction is characterized
by the time when it occurs and the time when the location
was last written. Such a read instruction is counted by only
one node, namely, the lowest common ancestor of the read
and write times, because the write must happen in the left
subtree of the node, and the read must happen in the right
subtree. The second point concerns the correctness of sum-
ming up individual lower bounds. This approach works for
the arguments in this paper, because all lower bounds hold
in the average case under the same probability distribution
for the operations. Therefore, we can use linearity of ex-
pectation to break up the total number of read instructions
performed on average into these distinct components. Need-
less to say, worst-case lower bounds could not be summed
in this way.

This line of argument has two important generalizations
that we will use. Instead of considering binary trees, we can
consider trees of arbitrary degree. Then, we may consider
the information transfer either between any node and all its
left siblings, or between any node and all its right siblings.
It is easy to see that neither of these strategies double counts
any read instruction, because a read instruction is counted
only for a node immediately below the lowest common an-
cestor of the read and write times.

3. LOGARITHMIC LOWER BOUND FOR
DYNAMIC CONNECTIVITY

We first describe the shape of the graphs we use; refer
to Figure 1. The vertices of the graph form an integer grid
of size

√
n by

√
n. Edges only connect vertices from adja-

cent columns. Each vertex is incident to at most two edges,
one edge connecting to a vertex in the previous column and
one edge connecting to a vertex in the next column. These
edges do not exist only when they cannot because the vertex
is in the first or last column. The edges between two adja-
cent columns of vertices thus form a perfect matching in the
complete bipartite graph K√

n,
√

n, describing a permutation
of order

√
n. More precisely, point (x, y1) is connected to

point (x + 1, y2) precisely when πx(y1) = y2 for a permu-
tation πx. Another way to look at the graph is in terms of
permutation networks. We can imagine that the graph is
formed by

√
n horizontal wires, going between permutation

boxes. Inside each permutation box, the order of all wires
is changed arbitrarily.

Our graph is always the disjoint union of
√

n paths. This
property immediately implies that the graph is plane, be-
cause any embedding maintains planarity (though the edges
may have to be routed along paths with several bends).

We define the sequences of operations we consider in terms
of macro-operations. Macro-operations are of two types,
queries and updates, and all receive as parameters a permu-
tation and the index x of a permutation box. To perform an
update, all the edges inside the named permutation box are
first deleted, and then reconstructed according to the new
permutation. Queries on box x test that point (1, y) is con-
nected to point (x+1, π(y)), for all y ∈ {1, 2, . . . ,

√
n}. The

conjunction of these tests is equivalent to testing that the
composition of π1, π2, . . . , πx (the permutations describing
the boxes to the left) is identical to the given permutation π.
A macro-operation can thus be implemented by O(

√
n) ele-

mentary data-structure operations of the same type (update
or query).

π
√

n
π2π1

√

n

Figure 1: Our graphs can be viewed as a sequence of permutation boxes (dashed). The horizontal edges
between boxes are in fact contracted in the actual graphs.

The sequence of macro-operations we consider is gener-
ated by a memoryless random process. For each macro-
operation, we toss a fair coin to decide whether the oper-
ation is a query or an update. Then we choose the index
of a permutation box uniformly at random. If the macro-
operation is an update, we select a random permutation and
execute the update. If the macro-operation is a query, we
pass in the permutation formed by the composition of the
permutations in all the boxes to the left. This means that
the data structure will be asked to prove a tautology, involv-
ing the composition of all permutation to the left of some
box.

Similar to the framework discussion, we consider a bal-
anced binary tree but with one leaf per macro-operation.
For every node that is a right child of its parent, we analyze
the read instructions executed in its subtree that access cells
with a chronogram in the subtree of its left sibling. Let L
be the number of leaves in each of these two subtrees. (For
simplicity, we assume that the two subtrees are of equal size,
because we can always ignore operations from the larger sub-
tree.) The rest of this section is devoted to proving lower
bounds for any pair of adjacent intervals of length L.

The lower bound for two adjacent intervals of operations
depends on the interleaving between the indices of the boxes
accessed in the two intervals. More precisely, we care about
the indices a1, a2, . . . of the boxes updated during the left in-
terval of time, and the indices b1, b2, . . . of the boxes queried
during the right interval of time. By suitable relabeling
and discarding of duplicates, assume that these indices form
sorted sets: a1 < a2 < · · · and b1 < b2 < · · · . We define the
interleaving factor l to be the number of indices i such that,
for some index j, ai < bj ≤ ai+1. In words, the interleaving
factor measures the number of transitions from runs of a’s
to runs of b’s when merging the two lists of indices.

Lemma 1. Consider two adjacent intervals of operations,
each of length L. If L ≤ 1

4

√
n and the operations are gener-

ated by the random process described above, then the inter-
leaving between the two intervals satisfies E[l] = Θ(L), and,
with constant probability, no box is updated twice.

We omit the proof, because we shall later prove a gener-
alization in Lemma 5 below. We are now ready to state the
relation between the interleaving factor and the lower bound
we are seeking:

Lemma 2. Consider two adjacent intervals of operations,
generated by the random process described above, and con-
dition on the same box not being updated twice within these

intervals. Let l be the interleaving factor between these in-
tervals. Let w be the number of write instructions executed
by the data structure during the first interval, and let r be
the number of read instructions executed during the second
interval. Finally let c be the number of read instructions ex-
ecuted during the second interval that read cells last written

during the first interval. Then E[c] = Ω
“

E[l]
√

n− E[m]
lg n

”

,

where m = lg
`

r+w
r

´

.

For the purposes of this section, it will suffice to note that
m ≤ r + w. The tighter bound given by the lemma will
become relevant for our trade-off lower bound in Section 4.
Before we embark on a proof of this key lemma, we describe
its application to our lower bound for dynamic connectivity:

Theorem 3. Any data structure for dynamic connectiv-
ity must perform Ω(lg n) cell probes where each cell has size
O(lg n). This lower bound holds in the average case of a
certain probability distribution, even if amortized over a se-
quence of at least n operations, and even if the graph is
always a disjoint family of paths.

Proof. Consider a sequence of k ≥ 1
2

√
n macro-

operations, and let T be the total running time of the data
structure. We construct a balanced binary tree over these
macro-operations, and analyze the 1

2
lg n − 1 bottommost

levels. Consider a node that is a right child, and let L be the
number of leaves in its subtree. Because L ≤ 2(1/2) lg n−2 =
1
4

√
n, we can apply Lemma 1, and obtain that the inter-

leaving between the node and its left sibling is, on average,

Θ(L). Then, by Lemma 2, we have E[c] = Ω(L
√

n− E[m]
lg n

),
where c is the number of cell probes associated with this
node. However, Lemma 2 applies only if we condition on
the same box not being updated twice. Fortunately, by
Lemma 1, this event happens with constant probability, so
the lower bound can decrease by only a constant factor. As
explained above, m is bounded by the number of read in-
structions in the node’s subtree, plus the number of write
instructions in the subtree of node’s left sibling. Summing
for all nodes on a level, m counts all read and write instruc-

tions at most once, so we obtain E[
P

ci] = Ω(k
√

n− E[T]
lg n

).
As explained in the framework discussion, we can sum up
the lower bounds for each level to obtain a lower bound on
E[T]. We obtain that E[T] = Ω

“

k
√

n · lg n− lg n · E[T]
lg n

”

,

which means that E[T] = Ω(k
√

n · lg n). This result im-
plies an average-case amortized lower bound per elementary

operation of E[T]

k
√

n
= Ω(lg n).

3.1 An Encoding Argument
This section proves Lemma 2. We consider two ad-

jacent intervals of macro-operations, the first spanning
macro-operations [i, j − 1] and the second spanning macro-
operations [j, k]. First we condition on arbitrary choices
for the types of the macro-operations in the two intervals.
Next we condition on arbitrary assignments of box indices
to macro-operations in [i, k], subject to the already imposed
condition in the lemma that the box indices of updates are
all distinct. After conditioning on these quantities, the in-
terleaving factor l becomes a deterministic quantity. The
macro-operations occurring outside the time interval [i, k]
will be irrelevant to our analysis, so we can also condition
on some arbitrary choices for these operations. Finally, the
updates from the interval [j, k] will be irrelevant, so we con-
dition on an arbitrary choice of input permutation for each
of these macro-updates. Because the lower bound we obtain
does not depend on any of our choices for conditioning in any
other way than through l, we can remove the conditioning
by the law of iterated expectation: E[x] = EY [E[x | y = Y]].

Crucial to our analysis is that the permutations passed
to the macro-updates in the interval [i, j − 1] are chosen
independently and uniformly at random. Let U denote the
set of indices for the boxes modified by these macro-updates.
By the definition of the interleaving factor l between the left
and right interval, there must exist l queries q1 < q2 < · · · <
ql in the right interval such that U ∩ [qt−1 + 1, qt] 6= ∅ for
each t > 1.

Now let us look at the state of the data structure imme-
diately before operation j. Define Pt to be the composition
of all permutations in the boxes qt−1 + 1 through qt. Some
of these permutations were set before time i or during [j, k],
so they are fixed quantities. However, in each Pt, there is
at least one random factor from a macro-update that oc-
cured during time [i, j − 1]. An update for a box in the
range qt−1 + 1 through qt must have occured in order to
define the interleaving, and this random permutation re-
mains in the expression of Pt because, by assumption, no
box was updated twice. In conclusion, each Pt is a compo-
sition of some independent and uniformly random permu-
tations (updates from time [j, k]) and optionally some fixed
permutations, in any order. It follows easily that each Pt

is a uniformly random permutation, because conditioning
on all but one of the random factors still leaves the result
uniformly random. In addition, the Pt’s are independent
because the random permutations in the compositions are
disjoint: the ranges qt−1 + 1 to qt are disjoint. Therefore,
the information-theoretic complexity (the conditional Kol-
mogorov complexity) of the sequence of l permutations Pt is
lg
`

(
√

n!)l
´

−O(1) = l(
√

n · lg√n−O(
√

n)). In other words,
any encoding for the sequence of Pt’s must use Ω(l

√
n · lg n)

bits on average.
Let w be the number of write instructions executed dur-

ing the interval [i, j − 1]. Let r be the number of read in-
structions executed during the interval [j, k]. Finally, let c
be the number of read instructions performed by the data
structure in the interval [j, k] that access cells last written
during the interval [i, j− 1]. Note that all of w, r, and c are
random variables, because the data structure can behave
differently depending on the permutations passed to the up-
dates. We give an encoding for the sequence of Pt’s that uses
O(lg n) + c · O(lg n) + O(m) bits, where m = lg

`

r+w
r

´

. Be-
cause the expected size of our encoding must be Ω(l

√
n·lg n),

we obtain that E[c]+ E[m]
O(lg n)

= Ω(l
√

n) and therefore E[c] =

Ω
“

l
√

n− E[m]
O(lg n)

”

.

Our encoding consists of three parts. The first part stores
the quantities r, w, and c using O(lg n) bits. The second
part encodes the interesting cell probes. For each read in-
struction executed during [j, k] that reads a cell last written
during [i, j−1], we encode the address probed and the value
read from that cell. This encoding uses c ·O(lg n) bits. For
this bound, we assume that addresses fit in a word, so they
have O(lg n) bits; a more careful analysis can observe that

the state of the graph depends only on the past nO(1) up-
dates with high probability, and avoid this restriction. Fi-
nally, the third part of the encoding is concerned with the
uninteresting cell probes. Let A be the set of cells written
during [i, j − 1] that are never read during [j, k]. Let B be
the set of cells read during [j, k] that were last written before
time i. The information in the third part certifies that A
and B are disjoint. To efficiently encode this fact, we need
the following result:

Lemma 4. For any integers a, b, u satisfying 0 < a ≤ b
and a + b ≤ u, there exists a system of sets S with lg |S| =
O(a lg(b/a) + lg lg u) such that, for all A, B ⊂ {1, 2, . . . , u}
with |A| = a, |B| = b, A ∩ B = ∅, there exists an S ∈ S

satisfying A ⊂ S and B ⊂ S̄.

Proof. We use the probabilistic method to show that
such a set system exists. Select a set S randomly, by letting
every element x ∈ {1, 2, . . . , u} be in the set with probability
p = a

a+b
. Then, for any pair A, B, the probability that A ⊂

S and B ⊂ S̄ is pa(1− p)b. The system S will be formed of
sets chosen independently at random, so the probability that

there is no good S for some A and B is
`

1− pa(1− p)b
´|S| ≤

exp
`

−pa(1− p)b|S|
´

. The number of choices for A and B is
`

u
a

´`

u−a
b

´

≤ ua+b. So the probability that there is no good

set in S for any A, B is at most ua+b exp
`

−pa(1− p)b|S|
´

=

exp
`

(a + b) ln u− pa(1− p)b|S|
´

. As long as this probabil-
ity is less than 1, such a system S exists. So we want

(a + b) ln u < pa(1 − p)b|S| =
“

a
a+b

”a “
b

a+b

”b

|S|. We want

to choose a system of size greater than (a+b)a+b+1 ln u

aabb . Then
lg |S| = Θ((a+b+1) log2(a+b)+lg lg u−a log2 a−b log2 b) =
Θ
`

lg lg u + a log2(b/a) + a · b
a

log2

`

1 + a
b

´´

. Elementary cal-

culus shows that b
a

log2

`

1 + a
b

´

= Θ(1), so our result sim-
plifies to lg |S| = Θ(lg lg u + a lg(b/a)).

We apply this lemma with a = min(|A|, |B|), b = max(|A|,
|B|), and u = nO(1). The encoding and decoding algorithms
can simply iterate through all possible systems S, and choose
the first good one. Given this unique choice of a system, the
proof that A and B are disjoint is the index of an appropriate
set in the system. This index will occupy O(a lg(b/a) +
lg lg u) bits, where min(r, w) ∈ [a, a + c] and max(r, w) ∈
[b, b + c]. Elementary asymptotics shows that this quantity
is O(m + lg lg n).

It remains to show that this information is enough to en-
code the sequence of Pt’s. Remember that all the remaining
randomness consists of the random permutations passed to
updates in the interval [i, j − 1]. The decoding algorithm
proceeds by testing all possible choices of random permuta-
tions for these updates, and simulating the data structure

for every case. For each such possible computation history,
the decoder tests whether the encoding that would result
is identical to the encoding it receives as input. Once it
finds such a possible computation history, it can compute
the sequence Pt based on this particular instance. Assume
for contradiction that two computation histories H and H ′

generate the same encoding and yet the sequences of Pt’s dif-
fer. Take the sequence of macro-operations [i, j−1] from H ′,
and append the sequence of macro-operations [j, k] from H.
We argue by induction that the data structure has the same
behavior during time [j, k] of this hybrid execution as dur-
ing execution H. For every read instruction executed during
time interval [j, k], we can have three cases:

1. The cell probed was written after time j. By the induc-
tion hypothesis, the contents of the cell are the same
as during execution H.

2. The cell probed was written during time [i, j−1]. The
cell appears in the encoding, and the encoding is the
same for H and H ′, so nothing changes.

3. The cell probed was written before time i. The third
part of the encoding is the same for both H and H ′.
This means that the set of cells read by H, which were
written before time i, is disjoint from the set of cells
written by H ′ during [i, j − 1]. So the cell probed
was not overwritten by the H ′ segment of this hybrid
execution, so the contents are still what was written
before time i.

Remember that, during a normal execution, all queries
should be answered in the affirmative. Because the data
structure behaves in the same way for the hybrid instance
of the problem, all queries from time [j, k] continue to get
affirmative answers. However, if the sequences of Pt’s for H
and H ′ differ, then the compositions of the permutations to
the left of some queried box actually change. This means
that the data structure behaves erroneously for an instance
of the problem, which is our contradiction.

4. TRADE-OFF LOWER BOUNDS FOR
DYNAMIC CONNECTIVITY

We now show how our lower-bound framework can be used
to derive trade-off lower bounds. In a nutshell, we bias the
random process to generate the cheaper operation more fre-
quently, so that the total cost of queries matches the total
cost of updates. Then, we analyze the sequence of opera-
tions by considering a tree with a higher branching factor.
To prove our lower bound, we assume there exists a data
structure with amortized running times bounded by tu for
updates and tq for queries.

We begin by modifying the random process generating
the hard instances of the problem. Instead of letting ev-
ery macro-operation be a query or an update with equal
probability, we define the probability of a macro-operation
being an update as p =

tq

tq+tu
. Remember that a macro-

update is implemented using 2
√

n elementary updates (in-
sertion and deletion of edges) and a macro-query is im-
plemented using

√
n elementary queries. Then the amor-

tized average-case cost of a macro-operation must be p(tu ·
2
√

n) + (1 − p)(tq
√

n) =
tutq

tu+tq
· 3√n. We we will prove

below that the amortized cost of a macro-operation must
also be Ω(

√
n log1/p(1−p) n). This implies that

tutq

tu+tq
=

Ω(log1/p(1−p) n) = Ω
“

lg n/ lg
“

(tu+tq)2

tutq

””

. This is equiv-

alent to min(tu, tq) lg
“

max(tu,tq)

min(tu,tq)

”

= Ω(lg n), which is our

desired trade-off lower bound.
To show our lower bound, we develop the following

stronger version of Lemma 1:

Lemma 5. Consider two adjacent intervals of operations,
randomly generated such that any particular operation is an
update with probability 0 < p. Assume the left interval has
length L and the right interval has length R, satisfying p·L =
(1 − p)R and L + R ≤ 1

2

√
n. Then the interleaving factor

between the two intervals satisfies E[l] = Θ(p ·L), and, with
constant probability, no box is updated twice.

Proof. The number of indices touched by the operations
is L+R ≤ 1

2

√
n, so the probability that all indices are unique

is at least 1
2
. If we show that E[l | unique] = Θ(p · L), we

will have proved our claim, because l ∈ [0, min(L, R)] and
min(L, R) ≤ 2pL. Condition on there being U ≤ L updates
in the left interval, and Q ≤ R queries in the right interval.
Further condition on the set of indices being an arbitrary
set of size U +Q. What remains is to randomly designate Q
of these indices to be queries. Then the interleaving l is the
number of transitions from updates to queries, as we read
the indices in order. The probability that a transition hap-
pens on any fixed position is U

U+Q
· Q

U+Q−1
, so by linearity

of expectation E[l | Q, U] = (U + Q − 1) U
U+Q

· Q
U+Q−1

=
UQ

U+Q
. But Q is a binomial with probability 1 − p, so we

have Q = Θ((1 − p)R) = Θ(pL) with high probability (in
(1−p)R = pL). This claim remains true even after we condi-
tion on all indices being unique, because that event happens
with constant probability. Similarly, U is a binomial with
probability p, so U = Θ(pL) with high probability (still in
pL). Thus, E[l] = Θ(pL) with high probability.

To use this lemma, consider a balanced tree with branch-
ing factor B = 2

p(1−p)
in which the leaves correspond to

the macro-operations in order. We will only analyze nodes
on the 1

2
logB n bottommost levels, ensuring that there are

at most B
1
2

logB n−1 = 1
2

√
n leaves in a node’s subtree, as

required by Lemma 5.
Let us now analyze the case tu ≥ tq, or p ≤ 1

2
. In this

case, we are interested in the information transfer between
a node and its left siblings. The subtree of the node defines
the right interval of macro-operations, and the union of the
subtrees of all left siblings defines the left interval. We make
a claim only regarding nodes that are in the right half of
their parent’s children. This means that the sizes of the two
intervals are related by L ≥ B

2
R, which means pL ≥ (1 −

p)R ≥ R/2. Thus, by Lemma 5, the expected interleaving is
Ω(R) – clearly, having more indices in the left interval never
decreases the interleaving factor. Now we apply Lemma 2,
and get that the number of cell probes associated with this

node is Ω(R
√

n− E[m]
lg n

). As before m = lg
`

r+w
r

´

, where r is
the number of cells read in the right interval, and w is the
number of cells written in the left interval.

We want to sum the lower bounds for all nodes on a cer-
tain level. To do that, we must first understand

P

mi =
lg
Q
`

ri+wi

ri

´

in terms of T , the total running time for the

entire sequence of operations. Note that
P

ri ≤ T , be-
cause each read instruction is counted at most once, on a

level of the tree. Also note that
P

wi ≤ T · B, because
each write instruction is counted at most once for every
sibling of the node it is under. The quantity

Q
`

ri+wi

ri

´

counts the total numbers of ways to choose ri elements
from a set ri + wi, where we have a different set for each
i. This is bounded from above by the number of ways to
choose

P

ri elements from a single set of
P

(ri + wi) ob-
jects. Because T ≤ 1

2
(B + 1)T , we can use the unimodality

of the binomial coefficients, and obtain the upper bound
P

mi ≤
`

(B+1)T
T

´

= O(T lg B). Because this upper bound
holds in any random instance, it also holds in expectation:
E[
P

mi] = O(E[T] lg B). Now we can sum the lower bounds
for all nodes on a level and obtain that the number of cell
probes associated with that level is Ω(k

√
n− E[T] lg B

lg n
).

For the case tu < tq (p ≥ 1
2
), we apply a symmetric ar-

gument. We analyze the information transfer between any
node, giving the left interval, and all its right siblings, giv-
ing the right interval. For nodes in the first half of their
parent’s children, R ≥ B

2
L, which means (1 − p)R ≥ pL ≥

L/2. By Lemma 5, the expected interleaving is Ω(L). By
Lemma 2, the number of cell probes associated with this

node is Ω(L
√

n − E[m]
lg n

). The same bound for
P

mi holds,
with the roles of ri and wi are switched. Thus, the number of

cell probes associated with a level is again Ω(k
√

n−E[T] lg B
lg n

).

Summing for all levels, we get the lower bound E[T] =

Ω(k
√

n · logB n − E[T] lg B
lg n

logB n) = Ω(k
√

n logB n − E[T])

and, rearranging terms, E[T] = Ω(k
√

n · logB n). Combined
with the analysis from the beginning of this section, this
completes the proof of our trade-off lower bound.

Theorem 6. Any data structure supporting insertion and
deletion of edges in amortized time tu and supporting dy-
namic connectivity queries in amortized time tq must satisfy
tq lg(tu/tq) = Ω(lg n) and tu lg(tq/tu) = Ω(lg n).

Acknowledgments
The authors would like to thank Faith Fich, Mikkel Thorup,
and Peter Bro Miltersen for many helpful discussions.

5. REFERENCES
[1] P. Beame and F. E. Fich. Optimal bounds for the

predecessor problem and related problems. Journal of
Computer and System Sciences, 65(1):38–72, 2002.

[2] P. F. Dietz. Optimal algorithms for list indexing and
subset rank. In Proc. 1st Workshop on Algorithms and
Data Structures (WADS), pages 39–46, 1989.

[3] D. Eppstein, G. F. Italiano, R. Tamassia, R. E.
Tarjan, J. R. Westbrook, and M. Yung. Maintenance
of a minimum spanning forest in a dynamic planar
graph. Journal of Computer and System Sciences,
13(1):33–54, 1992.

[4] P. M. Fenwick. A new data structure for cumulative
frequency tables. Software: Practice and Experience,
24(3):327–336, 1994.

[5] M. L. Fredman. The complexity of maintaining an
array and computing its partial sums. Journal of the
ACM, 29(1):250–260, 1982.

[6] M. L. Fredman and M. R. Henzinger. Lower bounds
for fully dynamic connectivity problems in graphs.
Algorithmica, 22(3):351–362, 1998.

[7] M. L. Fredman and M. E. Saks. The cell probe
complexity of dynamic data structures. In Proc. 21st
ACM Symposium on Theory of Computing (STOC),
pages 345–354, 1989.

[8] H. Hampapuram and M. L. Fredman. Optimal
biweighted binary trees and the complexity of
maintaining partial sums. SIAM Journal on
Computing, 28(1):1–9, 1998.

[9] M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time
per operation. Journal of the ACM, 46(4):502–516,
1999.

[10] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. Journal of the ACM,
48(4):723–760, 2001.

[11] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct
data structures for searchable partial sums. In Proc.
14th Annual International Symposium on Algorithms
and Computation (ISAAC), pages 505–516, 2003.

[12] T. Husfeldt and T. Rauhe. New lower bound
techniques for dynamic partial sums and related
problems. SIAM Journal on Computing,
32(3):736–753, 2003.

[13] P. B. Miltersen. Cell probe complexity - a survey. In
Advances in Data Structures Workshop, Conference
on the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), 1999.

[14] P. B. Miltersen, S. Subramanian, J. S. Vitter, and
R. Tamassia. Complexity models for incremental
computation. Theoretical Computer Science,
130(1):203–236, 1994.

[15] M. Pǎtraşcu and E. D. Demaine. Tight bounds for the
partial-sums problem. In Proc. 15th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pages
20–29, 2004.

[16] R. Raman, V. Raman, and S. S. Rao. Succinct
dynamic data structures. In Proc. 7th Workshop on
Algorithms and Data Structures (WADS), pages
426–437, 2001.

[17] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

[18] M. Thorup. Near-optimal fully-dynamic graph
connectivity. In Proc. 32nd ACM Symposium on
Theory of Computing (STOC), pages 343–350, 2000.

[19] A. C.-C. Yao. Should tables be sorted? Journal of the
ACM, 28(3):615–628, 1981.

APPENDIX

A. RESULTS FOR THE PARTIAL-SUMS
PROBLEM

The partial-sums problem has been considered in sev-
eral models of computation, and open problems remained in
most models. Our techniques yield a complete understand-
ing in most of these cases, with the notable exception of the
bit-probe model. We include a discussion of our results be-
low, and defer proofs to the final version of this paper. We
trust the interested reader will not have problems filling in

these gaps, by combining the proofs from [15] with the new
ideas from this paper.

Algebraic models of computation are a natural model for
the partial-sums problem. In such models, elements of the
array are members of an abstract group or semigroup, and
the complexity of an algorithm is measured only in the num-
ber of algebraic operation performed. Despite a long history
of results, tight lower bounds have been obtained only re-
cently. Hampapuram and Fredman [8] showed an Ω(lg n)
lower bound of for the semigroup model, and the authors
[15] showed a similar bound for the more powerful group
model. In [8], the question of trade-offs between update

and sum was also raised. Using our techniques, we can show
a trade-off lower bound of the form: tq lg(tu/tq) = Ω(lg n)
and tu lg(tq/tu) = Ω(lg n). A matching upper bound for
all cases can be obtained by augmenting a B-tree with a
variable branching factor.

Hampapuram and Fredman [8] also considered the prob-
lem of adaptive bounds, assuming accesses are generated by
a random process. For the semigroup model, they charac-
terized the optimal solution in terms of optimal biweighted
binary trees, and gave an algorithm for computing the op-
timal cost if the access probabilities are known. However,
this leaves one to desire a characterization of the optimal
cost in terms of some concise and meaningful parameter. If
accesses to any element are equally likely to be queries or up-
dates, we can show that the entropy of the access sequence
is a lower bound in the more powerful group model. Our
result is especially interesting given that splay trees achieve
an upper bound in terms of the entropy, without actually
knowing the access probabilities. This shows an interest-
ing similarity to searching in the comparison model (though
the lower-bound techniques differ widely). The proof of our
claim is fairly easy, and is based on the following replace-
ment of Lemma 1:

Lemma 7. Consider two adjacent intervals of operations,
each of length L. Assume the indices accessed by each opera-
tion are generated by sampling a probability distribution with
entropy H0. If L ≤ O(

√
H0), then the interleaving factor l

between the two intervals satisfies E[l] = Θ(L).

Another natural setting for the problem is the cell-probe
model of computation. In this setting, the elements of the
array are arbitrary b-bit integers, where b is the number of
bits in a machine word and we have b ≥ lg n (so that the
memory can be addressed by words). Here it is customary to

restrict the update values ∆ to be δ-bit integers, with δ ≤ b;
this is motivated by practical applications, where δ is usually
much smaller than b. For this model, the authors [15] gave a
data structure where each operation takes O(lg n/ lg(b/δ)),
and proved a matching lower bound for sequences of sum

and select. This improved a lower bound by Fredman and
Saks [7], an upper bound for update and sum due to Dietz [2],
and an upper bound for select due to Raman et al. [16].

A natural question, posed by [15], is whether we can also
prove a matching lower bound for sequences of update and
select. We note that even though lower bounds on sum

proved easier to derive, it is the select operation that is cru-
cial for the applications listed above. In addition, this prob-
lem is quite interesting from a theoretical perspective, be-
cause it is a combination of two major data-structure prob-
lems, namely the predecessor and the partial-sums problem.
In fact, the problem has already been approached from both
directions. Hon et al. [11] noticed that the lower bound of
Beame and Fich [1] for the predecessor problem must also
hold for select, if δ = b. A stronger bound of Ω(lg n/ lg b),
which applies for any δ ≥ 1 has been established by Husfeldt
and Rauhe [12], by extending the chronogram technique of
Fredman and Saks [7]. Combining the techniques of this
paper with the proof from Section 5.2 of [15] (which gives a
similar lower bound for update and sum) yields a tight lower
bound of Ω(lg n/ lg(b/δ)) for update and select.

Another natural question is what trade-offs are possible
between updates and queries. This question is motivated by
the observation that, in many applications, updates are less
frequent than queries. This question was asked repeatedly
in [8, 16, 11], and partial answers were given in [7, 16, 11].
The techniques of this paper can be used to show a trade-off
lower bound of the form tq · (lg(b/δ) + lg(tu/tq)) = Ω(lg n),
where tu is the running time of update and tq is the running
time of a query (select or sum). We cannot prove a sym-
metric tradeoff which is relevant in the case tq > tu. When
tq < tu, a matching upper bound can be obtained for update
and sum, based on the data structure presented by the au-
thors in [15]. An analogous approach yields a trade-off for
update and select, but it is tight only for restricted ranges
of the parameters. The cases where this approach is not
tight correspond roughly to the cases where the hardness of
answering predecessor queries becomes more relevant than
the hardness of maintaining partial sums. We believe that
the lower bound needs to be strengthened in these cases;
however, this is beyond reach of current techniques.

