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Abstract—Multithreaded programs often exhibit erroneous behavior because of unintended interactions between concurrent threads.

This paper focuses on the noninterference property of atomicity. A procedure is atomic if, for every execution, there is an equivalent

serial execution in which the actions of the atomic procedure are not interleaved with actions of other threads. This key property makes

atomic procedures amenable to sequential reasoning techniques, which significantly facilitates subsequent validation activities such as

code inspection and testing. Several existing tools verify atomicity by using commutativity of actions to show that every execution

reduces to a corresponding serial execution. However, experiments with these tools have highlighted a number of interesting

procedures that, while intuitively atomic, are not reducible. In this paper, we exploit the notion of pure code blocks to verify the atomicity

of such irreducible procedures. If a pure block terminates normally, then its evaluation does not change the program state and, hence,

these evaluation steps can be removed from the program trace before reduction. We develop a static typed-based analysis for

atomicity based on this insight, and we illustrate this analysis on a number of interesting examples that could not be verified using

earlier tools based purely on reduction.

Index Terms—Atomicity, purity, reduction, concurrent programs.
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1 INTRODUCTION

MULTIPLE threads of control are widely used in software
development because they help reduce latency and

provide better utilization of multiprocessor machines.
However, reasoning about the correctness of multithreaded
code is complicated by the nondeterministic interleaving of
threads and the potential for unexpected interference
between concurrent threads. Since exploring all possible
interleavings of the various threads is clearly impractical,
techniques for specifying and controlling the interference
between concurrent threads are crucial for the development
of reliable multithreaded software.

Previous work has addressed this problem by devising

type systems [1], [2] and other static [3] and dynamic [4]

checking tools for detecting race conditions. A race condition

occurs when two threads simultaneously access the same

data variable, and at least one of the accesses is a write.
Unfortunately, the absence of such race conditions is not

sufficient to ensure the absence of errors due to unexpected

thread interactions. To illustrate this point, consider the

procedure bad_increment (Fig. 1) in which the data

variable x is protected by the lock m and t is a thread-local

variable.
This code does not have any race conditions, a property

that can be easily verified with existing tools. However,

executing this code fragment may not have the intended

effect of atomically incrementing x by 1. For example, if

n such code blocks execute concurrently, the variable x may
be incremented by any number between 1 and n.

A stronger noninterference property is required to
ensure proper behavior, namely, atomicity. A procedure
(or code block) is atomic if, for every (arbitrarily inter-
leaved) program execution, there is an equivalent execution
with the same overall behavior where the atomic procedure
is executed serially, that is, the procedure’s execution is not
interleaved with actions of other threads.

The notion of atomicity provides several benefits for
multithreaded software development:

. The noninterference guarantee provided by atom-
icity reduces the challenging problem of reasoning
about an atomic procedure’s behavior in a multi-
threaded context to the simpler problem of reasoning
about the procedure’s sequential behavior. The latter
problem is significantly more amenable to standard
techniques such as manual code inspection, dynamic
testing, and static analysis.

. Atomicity is a natural methodology for multi-
threaded programming, and experimental results
indicate that many existing procedures and library
interfaces already follow this methodology [5].

. Many synchronization errors can be detected as
violations of atomicity.

The notions of atomicity and race-freedom are closely
related, and both are often achieved in practice using
synchronization mechanisms such as mutual-exclusion
locks, reader-writer locks, or semaphores. However, as the
example above illustrates, race-freedom is not, by itself,
sufficient to ensure atomicity.

1.1 Verifying Atomicity via Reduction

Recently, a number of analyses have been developed for
verifying atomicity, using techniques such as theorem
proving [6], static type systems [7], [8], dynamic analysis
[5], [9], and model checking [10]. All of these approaches
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use reduction [11], [12], which is based on the notion of right
and left movers.

An action a is a right mover if, whenever a is followed by
any action b of a different thread, the actions a and b can be
swapped without changing the resulting state. Similarly, an
action a is a left mover if, whenever a follows an action b of a
different thread, the actions a and b can be swapped, again
without changing the resulting state.

Suppose a code block contains zero or more right movers
followed by a single atomic action (that need not commute
with steps of other threads) followed by zero or more left
movers. Then, an execution where this code block has been
fully executed can be reduced (by commuting noninterfering
actions) to yield an equivalent serial execution, where the
actions of the code block are performed contiguously.

To illustrate this notion of reduction, consider the revised
implementation of increment in Fig. 2. In this procedure,
the operation acquire(m) is a right mover because no
other thread can manipulate m after it has been acquired,
and the operation release(m) is a left mover for similar
reasons. Moreover, if all threads access x only while
holding the lock m, then reads from and writes to x are
both right-movers and left-movers since no other thread can
concurrently access the variable x. In contrast, if there may
be concurrent reads or writes when accessing x, then that
operation cannot commute since program behavior may
change when accesses to the same variable are swapped in
the execution trace.

As illustrated in Fig. 3, we can reduce any execution of
increment interleaved with arbitrary steps (“Z”) from
other threads into an equivalent serial execution and, hence,
increment is atomic.

In contrast, if we perform reduction on bad_incre-

ment, we are left with an execution trace like that shown in
Fig. 4, in which a step Z from a different thread appears in
the middle of the steps of the procedure call. That step
cannot commute to the left because the preceding release

operation is not a right-mover, and it cannot commute to

the right because the succeeding acquire operations is not

a left-mover. Therefore, bad_increment is not atomic.

1.2 Purity

Reduction suffices to verify the atomicity of many proce-

dures that use straightforward synchronization patterns,

but it is often inadequate for procedures that use more

subtle synchronization. A concrete example of this limita-

tion is the procedure busy_acquire shown in Fig. 5,
which uses a combination of busy-waiting and a compare-

and-set (CAS) operation to acquire a mutually exclusive lock

m (represented as a Boolean).
The operation CAS(m,0,1) has no effect and returns

false if m 6¼ 0. However, if m ¼ 0, then the operation

CAS(m,0,1) sets m to 1 and returns true. This CAS

operation does not commute with operations of concurrent

threads since it inspects and potentially updates the shared

variable m. Hence, any execution of busy_acquire where

the loop iterates multiple times cannot be reduced to a serial

execution, and previous tools based purely on reduction
cannot verify the atomicity of busy_acquire. In parti-

cular, our previous type and effect system for atomicity [8]

cannot verify the atomicity of irreducible procedures like

busy_acquire.
The model checking approach described in [13] can

verify the atomicity of busy_acquire, but is limited by the
state-explosion problem. Similarly, the Calvin-R checker [6]

can also verify such atomicity properties, but it focuses on

checking more complete functional specifications of con-

current programs via theorem proving. As a result, it has a

higher annotation overhead and analysis complexity than
the technique in this paper.

In this paper, we present a lightweight and scalable static

analysis for verifying the atomicity of irreducible proce-

dures such as busy_acquire. We formalize our analysis

as an effect system (essentially, a collection of syntax-

directed rules). This effect system is analogous to traditional
type systems, except that it reasons about effects (which

describe computations) as opposed to types (which describe

values).
A key novelty of our analysis is the exploitation of purity

when reasoning about atomicity. Essentially, a code block is

pure if, whenever it evaluates without interruption by other
threads and terminates normally, it does not change the

program state. This restriction does not apply when the

block terminates abruptly, for example, via a break or

return statement. The body of the while loop in

busy_acquire is pure since, if it updates m, it immediately
terminates abruptly via the break statement. Otherwise,

control is returned to the loop head without changing the

program store. We introduce the pure-while statement to
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Fig. 1. Procedure bad_increment.

Fig. 2. Procedure increment.

Fig. 3. Reduction of an execution of increment.



indicate a pure loop and rewrite the busy_acquire

procedure, as in Fig. 6.
The intuition behind the reasoning of our analysis for

busy_acquire is shown in Fig. 7. The figure shows an
execution of busy_acquire consisting of three normally
terminating loop iterations in which the CAS fails, followed
by an abruptly terminating iteration in which the CAS

operation succeeds.
Since the normally terminating iterations do not change

the program state, our verification technique essentially
removes them from the execution trace to yield a trace
containing a single loop iteration in which the CAS operation
succeeds. Every execution of busy_acquire is serializable
in this manner, and our analysis can conclude that
busy_acquire, although irreducible, is atomic.

1.3 Abstraction via Purity

A more interesting example of our analysis technique is the
procedure alloc of Fig. 8, which searches for a free disk
block. The flag free[i] indicates whether the ith disk
block is currently unused, and this flag is protected by the
mutually exclusive lock l[i]. When alloc identifies a free
block, it allocates the block by setting the appropriate bit to
false and returns the index of that block. The alloc

procedure returns �1 if it fails to find a free block.
This procedure is not actually serializable since there

exist some nonserial executions of this procedure that are
not equivalent to any serial executions. In particular, a
concurrent thread could ensure that there is always at least
one free block at any point in time, yet the sequential search
performed by alloc could still fail to find a free block.
Thus, the concrete implementation of alloc is not atomic,
and this lack of atomicity significantly complicates reason-
ing about the behavior or correctness of alloc. However,
alloc is atomic in an abstract sense because any execution
performs the atomic action of either allocating a block or
returning �1 if no free block was found.

In order to facilitate sequential reasoning for nonatomic
procedures such as alloc, this paper introduces the notion
of abstract atomicity and shows that the procedure alloc is
atomic under a more permissive or abstract semantics. Recall
that a pure block is not allowed to modify the program state
during normal execution. Under the abstract semantics,
normal execution of a pure block is not allowed to read the

program state either. Specifically, any read of a shared
variable within a normally terminating pure block returns
an arbitrary value rather than the variable’s true value. (This
notion of abstraction generalizes our eariler approach [43].)
Thus, the abstract semantics introduces additional nonde-
terminism and admits additional execution sequences that
could occur if the code is interleaved with threads that make
arbitrary updates to shared variables.

Consider an uninterrupted (serial) execution of the pure

block in the ith iteration of the loop in alloc. Under the
concrete semantics, such an execution may terminate
normally only from a state in which free[i] is false.
But, under the abstract semantics, such an execution is
allowed to terminate normally from any program state since
the read of free[i] returns an arbitrary value. Despite this
additional nondeterminism, every serial execution of
alloc under the abstract semantics satisfies the correctness
specification of returning either �1 or the index of a free
block. This correctness property can be verified using
sequential reasoning techniques.

Given that every serial abstract execution of alloc is
correct, the contribution of our analysis is to verify that
every possible interleaved abstract execution of alloc yields
the same behavior as some serial abstract execution, thus
allowing us to conclude that all interleaved executions of
alloc are also correct. Thus, our analysis enables sequen-
tial reasoning about behavior and correctness of abstractly
atomic (though not atomic) procedures such as alloc. In
contrast, previous techniques achieved this goal (of
enabling sequential reasoning) only for procedures that
are both atomic and reducible.

The central intuition behind the reasoning performed by
our analysis to verify abstract atomicity is illustrated
graphically in the execution traces for alloc shown in
Fig. 9. The first trace contains an execution of alloc that
succeeds on the second loop iteration, interleaved with
arbitrary actions “Z” of concurrent threads. We show only
steps of alloc that access shared variables. By reduction,
we can prove that each individual loop iteration is
reducible. Since the first execution of the pure block is
normally terminating and, hence, does not read or modify
any shared variable, we replace it with skip in the
execution sequence. The skip command does not modify
or read the program state. At this point, we apply reduction
a second time to create an equivalent serial execution.
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Fig. 4. Reduced execution of bad_increment.

Fig. 5. Procedure busy_acquire. Fig. 6. Procedure busy_acquire with a pure loop.



Note that our analysis facilitates the verification of
correctness properties that hold in both the standard and
abstract semantics, but is not applicable to correctness
properties that do not hold in the abstract semantics.

1.4 Abstraction via Instability

Our analysis also supports unstable variables, such as
performance counters, which do not affect program
correctness. These variables are typically not protected by
locks and have race conditions on them. Consequently,
accesses to these variables do not commute. Our analysis
verifies atomicity with respect to an abstract semantics in
which every write to an unstable variable writes a
nondeterministic value and every read returns a nondeter-
ministic value. Under this abstract semantics, reads and
writes of unstable variables both right and left commute.
For example, a program may use an unstable packet-

Count variable to record the number of packets received
for tracking performance. Operations on that variable do
not affect the abstract atomicity of the code in which they
appear. We present a complete example in Section 4.4.

Outline. The presentation of our results proceeds as
follows: The following section introduces an idealized
language that we use for studying atomicity. Section 3
presents the effect system for atomicity, and Section 4
illustrates this analysis on a number of example programs.
Section 5 discusses how to handle thread-local variables.

We discuss related work in Section 6 and conclude with a
discussion of future directions in Section 7. The Appendices

contain a formal definition of an effect system for checking

purity, the operational semantics of our idealized language,
and a sketch of the correctness proof for our analysis.

2 THE LANGUAGE CAP

We formalize our ideas in terms of CAP, a small,

imperative, multithreaded language with higher-order
functions and dynamic thread creation. In essence, CAP is

a restricted subset of C, extended with facilities for

reasoning about atomicity and purity.
CAP expressions include values, variable reference and

assignment, primitive and function applications, condi-

tionals, and let-expressions: See Fig. 10. The fork e

expression creates a new thread for the evaluation of e.
Values are constants and function definitions. Constants

must include integer constants, but are otherwise unspeci-

fied. The definition fð�xxÞ e introduces a function named f .

The formal parameters �xx are bound within the body e, and
they may be �-renamed in the usual fashion. For generality,

we leave the set of primitives unspecified, but they might

include, for example, synchronization primitives that
create, acquire, and release mutual exclusion locks. We

assume the set of primitives also include arithmetic

operations and assert.
In addition to terminating normally and yielding a

resulting value, the evaluation of a CAP expression can also

terminate abruptly via the break construct, which transfers

control from the current expression to the end of the closest
dynamically enclosing block construct. The construct

loop e repeatedly evaluates e until e break’s to an

enclosing block.
To facilitate our atomicity analysis, expressions can be

annotated with the keyword pure. The keyword pure states
that, when the expression e is evaluated and terminates

normally, that evaluation does not change the program

state. (Only abruptly terminating evaluations of a pure
expression are allowed to change the program state.) If a

pure expression temporarily changes the program state, for

example, by acquiring a lock, then it must restore the state
by releasing the lock before terminating normally. Under

the abstract semantics, pure expressions are not allowed to

read shared variables either. If a pure block attempts to read
a shared variable, an arbitrary value is returned. To simplify

our correctness proof, we also require a pure block to

evaluate to a constant (rather than a function).
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Fig. 7. Execution trace for busy_acquire.

Fig. 8. Procedure alloc.



The language CAP supports unstable variables, so the set
of variable names is divided into stable and unstable
variables. By convention, unstable variable names begin
with “_”. The formal semantics of CAP is defined in
Appendix B.

We introduce syntactic shorthands for some common
constructs.

e1; e2 � let x ¼ e1 2 e2 for x not free in e2
while e1 e2 � block loop fif e1 e2 breakg

pure-while e1 e2 � block loop pure fif e1 e2 breakg

Note that if e1 and e2 are pure, then while e1 e2 and
pure-while e1 e2 are semantically equivalent (that is, repla-
cing pure-while e1 e2 in a program with while e1 e2 does
not change the observable behavior of the program).

To simplify our presentation, the CAP effect system does
not reason about race conditions, control flow, or purity
since these topics can be addressed by other analyses.
Instead, we assume the program has already been anno-
tated and checked by alternative analyses as follows:

1. Each variable access (read or write) has a conflict tag,
which is � if that access may be involved in a race
condition on a stable variable and is � otherwise.
Thus, all accesses to unstable variables or correctly
synchronized stable variables will have conflict tag �.
Existing analysis techniques [2], [3], [14], [15], [16]
can be used to infer these conflict tags.

2. Each function call eF ðeÞ has a call tag F denoting the
set of functions that may be invoked by that call.
These call tags can be computed by a standard flow
analysis.

3. Each pure e expression is side-effect-free when e
evaluates normally. We present an effect system to
check purity in the Appendix. Nielson et al. [17]
provide a general overview of other effect-based
techniques for tracking side effects, and these may
be extended for our purposes as well.

We also assume programs being checked have passed a

conventional type checker to catch basic type errors, such as

performing an arithmetic operation on nonnumeric argu-

ments. Factoring these other issues enables us to focus on

the key aspects of this work without the added complexity

of these other analyses. The core focus of our analysis is on

verifying that every expression or procedure that is

annotated as atomic is, in fact, serializable.

3 EFFECT SYSTEM

We formalize our static analysis for abstract atomicity as an

effect system. Previous type and effect systems [8], [7] could

only verify the atomicity of procedures that are reducible.

By introducing optionally executed pure blocks and

unstable variables, our effect system can also verify many

interesting irreducible procedures, such as those in

Sections 1 and 4, are still abstractly atomic.
Each expression in our language can terminate either

normally (by evaluating to a value) or abruptly (via break).

For each termination mode, our effect system assigns to

each expression an atomicity from the following set:

a; b; c 2 Atomicity ¼ fR;L;B;?; A;>g:

This atomicity identifies whether the evaluation of the

expression

. right-commutes with operations of other threads (R),

. left-commutes with operations of other threads (L),

. both right and left-commutes (B),

. cannot terminate in that mode (?),

. can be viewed as a single atomic action (A), or

. exhibits none of these properties (>).
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Fig. 9. Execution trace for alloc.

Fig. 10. Syntax.



Atomicities are partially ordered by the relation v , as
follows:

Let t denote the join operator based on this ordering. If
atomicities a1 and a2 reflect the normal-termination
behavior of expressions e1 and e2, respectively, then the
sequential composition a1; a2 reflects the normal-termination
behavior of e1; e2 and is defined by the following table. For
example, the Sequential composition of a right mover
operation and an atomic operation is atomic.

Similarly, if atomicity a reflects the normal-termination
behavior of e, then the iterative closure a� reflects the normal-
termination behavior of executing e zero or more times and
is defined by

?� ¼ B
A� ¼ >
a� ¼ a for a 2 fB;L;R;>g:

Note that

1. sequential composition is associative and B is the left
and right identity of this operation,

2. iterative closure is idempotent, and

3. sequential composition distributes over joins.

An effect environment � maps each function name to a

pair of atomicities ha; bi that describe the function’s

behavior under normal and abrupt termination. In addition,

� also maps each primitive operation to a corresponding

atomicity (note that primitives never terminate abruptly):

� : ðFnName ! Atomicity�AtomicityÞ
[ ðPrim ! AtomicityÞ:

The atomicity of some common primitives are shown

below. The operations assert, +, and new_lock do not

interfere with steps of other threads and, so, have

atomicity B. The operation CASðm; v1; v2Þ is atomic (non-

mover) because if it updates m, that update could be

observed by a preceding or succeeding operation of

another thread.

�ðassertÞ ¼ B
�ðCASÞ ¼ A
�ðþÞ ¼ B

�ðnew lockÞ ¼ B
�ðacquireÞ ¼ R
�ðreleaseÞ ¼ L:

The core of our effect system is a set of rules for

reasoning about the judgment:

� ‘ e : a " b

This judgment states that the expression e has atomicity a

under normal termination and atomicity b under abrupt

termination. The rules defining these judgments shown in

Fig. 11 are mostly straightforward. For example, the

“evaluation” of a constant terminates normally, does not

interfere with other threads, and cannot terminate abruptly.
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Fig. 11. Effect system.



½EXP CONST�

� ‘ c : B " ?

The atomicity of a variable read xr depends on the conflict

tag r. If r ¼ �, then this read commutes with steps of other

threads and, so, has normal atomicity B. If r ¼ �, then this

read has normal atomicity A, indicating that it is an atomic

action that may not commute with steps of other threads.

The rules for variable writes are similar.

½EXP READ� ½EXP READ RACE�

� ‘ x� : B " ? � ‘ x� : A " ?

The rule ½EXP LET� states that the normal atomicity of a let

expression let x ¼ e1 in e2 is the sequential composition

a1; a2 of the normal atomicities of e1 and e2. The abrupt

atomicity of a let expression reflects the places where the let

expression could break.

½EXP LET�
� ‘ e1 : a1 " b1 � ‘ e2 : a2 " b2

� ‘ let x ¼ e1 in e2 : ða1; a2Þ " ðb1 t ða1; b2ÞÞ

Similarly, in the ½EXPIF� rule, the abrupt atomicity reflects

all the ways in which an expression may break.

½EXP IF�
� ‘ e : a " b � ‘ ei : ai " bi

� ‘ if e e1 e2 : ða; ða1 t a2ÞÞ " ðb t ða; ðb1 t b2ÞÞÞ

The rule ½EXP LOOP� states that the normal atomicity of the

loop is ? since it never terminates normally. The abrupt

atomicity for a loop reflects the fact that the loop body could

terminate normally many times before terminating

abruptly.

½EXP LOOP�
� ‘ e : a " b

� ‘ loop e : ? " ða�; bÞ

A block e expression never terminates abruptly. Either the

body e terminates normally, or it executes a break

expression that terminates e early. In the latter case, we

still consider block e to exit normally. A break expression

only terminates abruptly and is a both mover.

½EXP BLOCK� ½EXP BREAK�
� ‘ e : a " b

� ‘ block e : ða t bÞ " ? � ‘ break : ? " B

A key innovation of our effect system is our treatment of

pure blocks. The rule ½EXP PURE� for pure e states that the

normal atomicity of the body of a pure block must be at

most A. This requirement ensures that any temporary side

effects during the evaluation of e are not visible to other

threads. Since, under normal termination, the pure block

has no observable effect, our effect system “optimizes” the

normal atomicity of a pure block to a both-mover B.

½EXP PURE�
� ‘ e : a " b a v A

� ‘ pure e : B " b

Finally, the normal and abrupt atomicities of the body of an
atomic construct are required to be at most A.

½EXP ATOMIC�
� ‘ e : a " b a; b v A

� ‘ atomic e : a " b

Our effect system is sound in the sense that any abstract
execution trace of a well-typed program is equivalent to a
serial abstract execution of that program. In this serial
abstract execution, the steps of each atomic block are
executed sequentially, without steps interleaved from other
threads. To verify this serializability property, we first
reduce each normally terminating pure block into a
sequence of contiguous steps and we replace that sequence
with a single skip step. We then reduce atomic blocks in
the modified execution to obtain an equivalent serial
abstract execution. This correctness property is formalized
and proven in Appendix C.

4 APPLICATIONS

In this section, we present several examples to illustrate the
expressiveness of our effect system for atomicity. In these
examples, we sometimes enclose expressions in parentheses
or braces and use additional constructs such as return for
clarity.

4.1 Double-Checked Initialization

We start by considering the double-checked initialization
pattern, commonly used to ensure that a shared variable is
initialized exactly once [18].1 To avoid excessive synchro-
nization overhead, the variable x in Fig. 12 is initially tested
without holding its protecting lock l. If the first test fails,
the lock is acquired and, if x is still null, then it is
initialized. Note that the read x� is not a conflicting access
since it commutes with concurrent reads, but the write x�
may conflict with reads of other threads. Since the
procedure consists of an atomic operation (the first read
of x) followed by a right-mover operation (acquireðlÞ), the
procedure is not reducible and cannot be verified as atomic
using previous analyses.

FLANAGAN ET AL.: EXPLOITING PURITY FOR ATOMICITY 7

1. Our analysis assumes a sequentially consistent memory model.
Double-checked initialization may not work correctly under other memory
models.

Fig. 12. Double-checked locking.



Our approach exploits the fact that the first test of x is
both pure and optional; omitting this test does not affect the
correctness of the program, only its performance and, thus,
we can enclose this test in a pure construct. If the first test
succeeds, the procedure returns via a reducible trace. If the
first test fails, then that test has no effect on the program
store and we replace it by skip in the trace (just as for
alloc), yielding a reducible trace through the function
init. By this reasoning, our effect system verifies that each
possible abstract execution of init has an equivalent serial
abstract execution and, hence, init is abstractly atomic.

There are other ways to code the double-checked locking
idiom for which our analysis is not immediately applicable.
One area for future work is to explore techniques to
generalize our approach to handle additional programming
patterns, possibly through refactoring rules, as illustrated in
Section 4.3.

4.2 Caching

In the next example, the function compute (Fig. 13)
constructs the value for a given key, but is an expensive
operation, so we wish to cache previously computed
results. We assume that the cache operations cachePut

and cacheGet are atomic (for example, because they
acquire the lock protecting the cache), that cacheGet is a
pure (side-effect free) function, and that compute is a both-
mover. We would like to verify that lookup is atomic, to
ensure that it still behaves correctly even when concurrently
invoked by multiple threads.

The function lookup is irreducible since it contains
sequentially composed atomic operations, cacheGet and
cachePut. Note that the alternative implementation of
holding the cache lock throughout lookup would intro-
duce undesirable contention since compute is a long-
running operation. However, the cache lookup is clearly an
optimization and can be omitted without affecting program
correctness. We exploit this fact by enclosing the cache
lookup in a pure construct. If the cache lookup is successful,
the function lookup immediately returns via a reducible
trace. If the cache lookup fails, it has no effect on the
program store. Our analysis leverages this information

(documented by the pure keyword) to essentially “remove”
the cache lookup from the trace by replacing it with skip to
produce an equivalent, reducible trace. Thus, all abstract
executions through the function lookup have an equivalent
abstract serial execution and, so, the function lookup is
abstractly atomic.

4.3 Wait and Notify

The wait and notify routines facilitate notification
between concurrent threads. The routine wait(l) should
be called only if the lock l is held; this routine then
releases l, blocks until a concurrent thread calls
notify(l), and then returns after reacquiring l. Typi-
cally, the routine wait(l) is called inside a loop that
iterates until a desired condition holds, and concurrent
threads call notify(l) whenever a state change may
affect the desired condition. We model wait(l) and
notify(l) as {release(l);acquire(l)} and skip,
respectively. This model captures the essence that other
threads may acquire l during the execution of wait(l).
In other words, wait is not atomic.

The code fragment in Fig. 14 illustrates the use of wait
to iterate until the variable x (protected by lock l) is false,
and we assume that body is atomic. For this example, even
though wait(l) is not atomic, our type system can verify
that the entire code fragment, although irreducible, is still
abstractly atomic. Before applying our type system, we first
need to refactor this code using the equivalence rules for
program expressions illustrated in Fig. 15.

Applying these rules to the above code fragment in the
appropriate manner yields the refactored code of Fig. 16
that has equivalent behavior, but where the body of the
loop is now pure. (Note that not all uses of wait can be
refactored in this manner.)

The purity of the refactored loop allows our effect system
to verify that each loop iteration except the last has no side-
effect and can be elided from the execution sequence. The
resulting abstract execution sequence acquires the lock,
checks that x is false, executes body, and releases the lock.
This sequence is both atomic and reducible. Since every
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possible execution of the original code fragment is
equivalent to such an atomic execution, the original code
fragment is abstractly atomic.

4.4 Packet Counter

The example in Fig. 17 counts the number of packets received
in a program with the _packetCount variable, which is
used only for monitoring or performance purposes.

To avoid synchronization overhead, the program
accesses _packetCount without synchronization with
the expectation that the resulting race conditions will not
cause the resulting count to be substantially incorrect. By
marking _packetCount as unstable, we can still con-
sider procedures like receive to be abstractly atomic
despite the presence of race conditions. (We do need to
check the sequential correctness of receive under the
abstract semantics, where _packetCount may change
nondeterministically.)

4.5 Transaction Retry

The function in Fig. 18 models optimistic concurrency
control based on transaction retry. It updates a shared data
variable z according to z = f(z). However, the function f

is a long-running operation, so the transaction code does
not hold z’s protecting lock when computing f. Instead, it
acquires the lock, records the value of z, releases the lock,
applies f to the recorded value of z, then reacquires the lock
and updates z, provided z has not changed. If z has
changed, then the entire transaction is retried.

We express this computation using two pure blocks in
order to verify its abstract atomicity in our type system. The
first pure block reads the value of z while the lock is held
and returns this value, which is then stored in a temporary
variable x. Under the abstract semantics, this first pure
block may return an arbitrary value, but this arbitrary value
may only cause inefficient but not incorrect behavior. After
the computation fx = f(x) finishes, a second pure block

either updates z to complete the transaction or terminates

normally without any side-effect if z has changed, in which

case the transaction is retried.
Straightforward sequential reasoning enables us to

ensure that this code is correct under the abstract sequential

semantics. Our type system then verifies that every

arbitrary interleaved execution of this code is also therefore

correct.

5 MODIFYING LOCAL VARIABLES IN PURE BLOCKS

A number of examples can be handled by pure blocks that

do not modify the program state, such as those described in

Section 4. However, it is sometimes convenient to permit

some assignments within pure blocks. In this section, we

relax our restriction that pure blocks be entirely side-effect

free. Specifically, we introduce the notion of thread-local

variables, and we permit a pure block to read from and

assign to thread-local variables. Many standard escape

analyses can be used to identify thread-local variables [2],

[15], [19], [20].
For example, the pure block in the left column of Fig. 19

reads a shared variable z and writes its value to a thread-

local variable x. The reason this relaxed requirement is still

correct is that this pure block can be rewritten so that,
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instead of assigning to x, it returns the value that should be
assigned to x, but that assignment is actually done outside
the pure block, as shown in the right column in Fig. 19. The
typing rule for pure blocks remains unchanged.

This technique generalizes to multiple thread-local
variables by allowing the pure block to return a tuple of
the values to be assigned to the various thread-local
variables. This more expressive notion of pure blocks
allows us to express programs such as the transaction retry
example more naturally.

6 RELATED WORK

Lipton [11] first proposed reduction as a way to reason
about deadlocks in concurrent programs without consider-
ing all possible interleavings. Reduction has subsequently
been extended to support proofs of general safety and
liveness properties [21], [22], [23], [24], [25]. Bruening [26]
and Stoller [27] have used reduction to improve the
efficiency of model checking. Flanagan and Qadeer have
pursued a similar approach [28], and Qadeer et al. [29] have
used reduction to infer procedure summaries in concurrent
programs.

We previously applied reduction to verify atomicity in a
static type and effect system for Java programs [8], [7]. This
paper improves on that approach by enabling us to reason
about the atomicity of code that is not immediately
reducible.

The Calvin-R checker for multithreaded code relates
procedure implementations to their functional specifica-
tions with an abstraction relation based on both reduction
and simulation [6]. While capable of checking the atomicity
of the examples in this paper, the overhead of that
approach, in terms of annotation size and analysis complex-
ity, is much greater. In contrast, the approach presented in
this paper is more scalable, intuitive, and easier to use for
checking atomicity properties.

Wang and Stoller [9] have developed a dynamic
algorithm that can verify the atomicity of some irreducible
code sequences. Their approach constructs the feasible
interleavings of steps from two blocks of code and then
determines whether all such interleavings are serializable.
Unlike our approach, that algorithm does not require
abstraction or auxiliary analysis to recognize pure blocks,
and it is, in some sense, a complementary approach to ours.

The Atomizer is another dynamic analysis tool for
detecting atomicity violations [5]. Our experience with the
Atomizer,which uses reduction, suggests that the techniques
developed in this paper could eliminate a nontrivial number
of spurious warnings in reduction-based atomicity checkers.

The use of model checking for verifying atomicity is
being explored by Hatcliff et al. [10], and they present two
approaches, based on Lipton’s theory of reduction and
partial-order reductions [30]. In comparison with our effect
system, model checking requires many fewer programmer-
inserted annotations and can accommodate complex syn-
chronization disciplines more easily, but is less scalable.
Their experimental results suggest that verifying atomicity
via model-checking is feasible for unit-testing. Their
approach currently verifies atomicity only of reducible
procedures, but we believe that integrating our notions of

abstraction and atomicity into their system could yield
many of the benefits of both approaches.

In related work, Rodriguez et al. [31] demonstrate how to
refactor code in order to extract some reducible code blocks
embedded inside irreducible functions. This technique
could, for example, refactor alloc to utilize an auxiliary
(and reducible) method that contains a variant of the code
inside the body of the for loop. In this way, one could
check the atomicity of the auxiliary method, but not of the
entire alloc function.

A number of tools have been developed for detecting
race conditions, both statically and dynamically. The Race
Condition Checker [2] uses a type system to catch race
conditions in Java programs. This approach has been
extended [14] and adapted to other languages [15]. Other
static race detection tools include Warlock [16], for ANSI C
programs, and ESC/Java [3], which catches a variety of
software defects in addition to race conditions.

Atomicity is a semantic correctness condition for multi-
threaded software. It is related to strict serializability [32], a
correctness condition for database transactions, and linear-
izability [33], a correctness condition for concurrent objects.
It is possible that techniques for verifying atomicity can be
leveraged to develop lightweight checking tools for related
correctness conditions.

Other languages have included a notion of atomicity as a
primitive operation. Hoare [34] and Lomet [35] first
proposed the use of atomic blocks for synchronization,
and the Argus [36] and Avalon [37] projects developed
language support for implementing atomic objects. Persis-
tent languages [38], [39] augment atomicity with data
persistence in order to introduce transactions into program-
ming languages. Other recent approaches to supporting
atomicity include lightweight transactions [40], [41] and
automatic generation of synchronization code from high-
level specifications [42].

7 CONCLUSION

Atomicity is an important correctness property for multi-
threaded software. Current reduction-based tools can verify
atomicity in common cases, but they cannot handle
situations in which code that is intuitively atomic is not
immediately reducible. A number of frequently used
programming idioms fall into this category.

This paper describes a static analysis technique capable
of verifying the atomicity of some problematic cases by
applying reduction to an abstraction of the program. The
abstraction notions we have presented—based on purity
and instability—are intuitive. The correctness of an ab-
stractly atomic procedure under the serial abstract seman-
tics can be verified using sequential reasoning. Our static
analysis then verifies that every interleaved execution of
this abstractly atomic procedure is also correct.

Although we present our analysis as an effect system,
these concepts may be applicable in other domains. For
example, softwaremodel checkers (such as the one described
in [10]) could identify and exploit pure code blocks while
performing reduction, and dynamic analyses for atomicity
[5] could perhaps benefit from these ideas as well.
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APPENDIX A

EFFECT SYSTEM FOR PURITY

We present in this appendix an effect system to check that

all normally terminating pure expressions in a program are

side-effect-free. This effect system (Fig. 20) is relatively

simple but sufficient to check all examples in this paper.

The effect system essentially tracks all locks acquired by

each pure expression to ensure that these locks are released

before termination. More complex analyses could improve

precision by, for example, tracking more precise control-

flow and data-flow information.
The effect system reasons about the judgment

�; X ‘p e : L ! L0

where � is the set of functions that are side-effect-free

under normal-termination, and X is the set of variables that

may change during evaluation of e. The set L is the set of

locks held at the beginning of evaluation of e, and L0 is the

set of locks held after e terminates normally.
Most rules are straightforward. Any variable may be

read, but only variables appearing in X may be modified.

½PURE READ�

�; X ‘p xr : L ! L

½PURE ASSIGN�
�; X ‘p e : L1 ! L2 x 2 X

�; X ‘p xr :¼ e : L1 ! L2

The rules typically construct the set of locks held after

evaluation by “threading” the lockset through each sub-

expression, as demonstrated by the rule for let expressions:

½PURE LET�
�; X ‘p e1 : L1 ! L2 �; X [ fxg ‘p e2 : L2 ! L3

�; X ‘p let x ¼ e1 in e2 : L1 ! L3

We introduce specific rules for the primitive operations that
acquire and release locks as well as for the idiom of
breaking when a CAS operation succeeds. Additional rules
could model other synchronization primitives, as necessary.

½PURE ACQ�
x 62 X x 62 L

�; X ‘p acquireðxÞ : L ! L [ fxg

½PURE REL�
x 62 X x 2 L

�; X ‘p releaseðxÞ : L ! L n fxg

½PURE IF CAS�
�; X ‘p ei : L ! L

�; X ‘p if CASðe1; e2; e3Þ break e4 : L ! L

The rule ½PURE PROG� for the top-level judgment

� ‘p P

states that the annotation pure e is valid if

�; UnstableV ar ‘p e : ; ! ;
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That is, a pure block may not change any stable variables or

terminate with a different set of locks held than when

evaluation started. This rule also requires that every

function in � is pure.

APPENDIX B

FORMAL SEMANTICS OF CAP

To reason about the correctness of our analysis, we

formalize the runtime behavior of CAP programs using an

operational semantics (Fig. 22). For this purpose, we extend

CAP with additional runtime expressions (Fig. 21), which

record that execution is proceeding inside an atomic block

or inside a pure block. In addition, since nonterminating

pure blocks should not change the program state, we

distinguish evaluation of a pure block that will terminate

normally (in-pure) from one that will terminate abruptly

(in-pureX). We also extend the set of values to include
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synchronization locations m, which are manipulated by the
synchronization primitives.

A program state P is a three-tupleH;M; T . A heapH is a
partial map from variables to values. A synchronization
heap M maps synchronization locations to synchronization
values, and T is a sequence of threads. A thread is either an
expression or wrong.

Evaluation contexts define the order of evaluation for
CAP. An evaluation context E is an expression with a
“hole” at the location of the next subexpression to be
evaluated, and E½e� denotes the operation of filling the hole
in E with the expression e. The notation H½x :¼ v� denotes a
new heap that is identical to H except that it maps x to v.

The transition relation !i performs a single step of

thread i. In the standard semantics, evaluation of pure e has

two possible outcomes. For the case where e terminates

normally, yielding some value v, we reduce pure e to

in-pure e via ½RED PURE�, which in turn evaluates to

in-pure c, which reduces to c via ½RED IN-PURE�. (Recall
that pure expressions may return only constants.) Alter-

natively, if e terminates abruptly (via break), we reduce

pure e to in-pureX e via ½RED PURE EX�, which evaluates

to in-pureX E½break� and the break propagates outside the

in-pureX expression via ½RED BREAK�. Thus, these rules

characterize all possible executions of pure e, but also

capture (via in-pure=in-pureX) the future termination

mode of e, which is necessary for the correctness proof.
Note that this semantics requires a choice to be made

about the behavior of e when the pure e block is entered.
The wrong choice will simply cause evaluation to block
when incorrect behavior is observed. For example, the
½RED BREAK� rule is not applicable if a break causes an
abrupt exit from an in-pure block. Similarly, in-pureX c
cannot be further reduced.

The transition relation performs a single step of an
arbitrarily chosen thread in the standard semantics. How-
ever, we verify atomicity with respect to an abstract semantics
! that admits additional execution sequences. First, in the
abstract semantics, the evaluation of pure e may be skipped
entirely via ½ABS PURE SKIP�. The value returned as a
result of skipping pure e must be consistent with the value
returned by evaluating pure e in some arbitrary global state,
modeling that a read of a global variable by a normally
terminating pure block returns an arbitrary value.

The abstract semantics also includes the rules
½ABS UNSTABEL READ� and ½ABS UNSTABLE WRITE�
for reading/writing arbitrary values from/to unstable
variables. Since pure expressions may create garbage by
allocating new temporaries, we also introduce the “garbage
creation” rule ½ABS GARBAGE�. This rule enables us to
show that a trace including the normal evaluation of a pure
expression is equivalent to a trace with its evaluation
replaced by a ½ABS PURESKIP� step followed by a
½ABS GARBAGE� step. While not strictly necessary, we
permit that rule to change unstable variables to simplify
some technical aspects of our correctness proof.

We use !þ and !� to denote the transitive and
reflexive-transitive closure of ! , respectively. The serial
abstract semantics 7! is similar to ! , with the additional

restriction that a thread cannot perform a step if another
thread is inside an in-atomic block. Thus, 7! does not
interleave the execution of an atomic block with instruc-
tions from other threads.

For simplicity, we do not model thread-local variables in
this semantics, but that could be accomplished by following
the approach of [15].

B.1 Primitive Operations

The meaning of a primitive operation p is given by the
partial function Ip, which takes a sequence of argument
values, a synchronization heap, and an integer identifying
the current thread, and returns a value and a (possibly
modified) synchronization heap. If the primitive is applied
to incorrect arguments, Ip returns wrong.

I p :ðConst [ SyncLocÞ� � SyncHeap� Int ��!
ððConst [ SyncLocÞ � SyncHeapÞ [ fwrongg:

The assert primitive operation goes wrong if its
argument is 0 and otherwise terminates normally without
modifying the heap. Addition is a pure primitive
operation and does not modify the synchronization heap.
The new_lock operation returns a synchronization loca-
tion m that refers to a newly allocated lock containing 0,
indicating that is not held by any thread. The acquire

operation acquires a lock, provided the lock is not held by
another thread. If the lock is held by some thread, then
the acquire operation blocks, and execution can proceed
only on the other threads. The release operation never
blocks; if the current thread holds the lock, then the lock
is released and, otherwise, the release operation goes
wrong. We define the semantics of these primitive
operations as follows (where � is the empty sequence
and v:s prepends v at the front of sequence s):

Iassertðv;M; tidÞ ¼
h0;Mi if v 6¼ 0

wrong if v ¼ 0

�

Iþðm:n;M; tidÞ ¼ hmþ n;Mi
Inew lockð�;M; tidÞ ¼

hm;M½m :¼ hlock; 0i�i if m 62 domðMÞ
Iacquireðm;M½m :¼ hlock; 0i�; tidÞ ¼

hm;M½m :¼ hlock; tidi�i
I releaseðm;M; tidÞ ¼

hm;M½m :¼ hlock; 0i�i if MðmÞ ¼ hlock; tidi
wrong otherwise

�

ICASðm:c1:c2;M; tidÞ ¼
h0;Mi if MðmÞ 6¼ c1

h1;M½m :¼ c2�i if MðmÞ ¼ c1:

�

We now formalize our assumption on primitive atom-
icities. A primitive p right-commutes with a primitive q if, for
all i and j such that i 6¼ j, the following conditions hold:

1. If I pð�vv;M; iÞ ¼ hv0;M 0i and I qð�uu;M 0; jÞ ¼ hu0;M 00i,
then there is M 000 such that I qð�uu;M; jÞ ¼ hu0;M 000i
and Ipð�vv;M 000; iÞ ¼ hv0;M 00i.

2. If Ipð�vv;M; iÞ ¼ wrong and I qð�uu;M; jÞ ¼ hu0;M 0i,
then Ipð�vv;M 0; iÞ ¼ wrong.
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3. If I pð�vv;M; iÞ ¼ hv0;M 0i and I qð�uu;M 0; jÞ ¼ wrong,
then I qð�uu;M; jÞ ¼ wrong.

The primitive p left-commutes with the primitive q if q right-

commutes with p. An effect environment is valid if the

atomicity �ðpÞ of each primitive p is correct in that the

following properties hold:

1. If �ðpÞ v R, then p right-commutes with any
primitive q.

2. If �ðpÞ v L, then p left-commutes with any
primitive q.

3. B v �ðpÞ.
Note that, since primitive operations read or write only

the synchronization heap and not the regular heap, they

trivially commute with all nonprimitive operations which

access only the regular heap.

B.2 Correctness of Annotations

This section defines the meaning of the conflict annotations,

call annotations, and purity in terms of the CAP semantics.

An expression e is about to read x if e � E½xr�. Similarly, e is

about to write x if e � E½xr :¼ v�. An expression e is about to

access x if e is about to read or write x. The following

conditions characterize correct annotations. As mentioned

earlier, auxiliary type and effect analyses may check

conformance to these requirements.

1. The conflict annotations in a program P are correct if,
whenever P !� H;M; T :

a. If Ti � E½x�� and x 2 StableV ar, then no other
thread in T is about to write x.

b. If Ti � E½x� :¼ v� and x 2 StableV ar, then no
other thread in T is about to read or write x.

2. The call annotations in P are correct if, whenever
P !� H;M; T and Ti � E½ðfð�xxÞ eÞF ð�vvÞ�, then f 2 F .

3. The purity annotations in P are correct if, whenever
i ¼ jT j and

P !� H1;M1; T :E½pure e�:T 0

!�
i H2;M2; T :E½c�:T 0:T 00

and, in each intermediate state, the ith thread has

outermost evaluation context E, then T 00 ¼ � and

H1;M1; T :E½c�:T 0 !�
i H2;M2; T :E½c�:T 0:

APPENDIX C

CORRECTNESS PROOF FOR ATOMICITY

Our effect system (extended to runtime states as in Fig. 23)

guarantees a correspondence between nonserial abstract

executions and serial abstract executions of any well-

formed program. In particular, if, under the nonserial

abstract semantics (! ), a well-formed program P can reach

a state Qwhere no thread is executing an atomic block, then

P can also reach Q under the serial abstract semantics ( 7!).

Hence, the serial abstract semantics in which we do not

have to consider interleaved actions of concurrent threads

inside an atomic block suffices for reasoning about the

reachability of such states Q.

In the absence of pure blocks, we can prove this

correspondence property via reduction [11] since each

atomic block consists of a sequence of right-movers,

followed by at most one atomic action, followed by a

sequence of left-movers. However, pure blocks significantly

complicate the correctness proof. This appendix contains an

outline of the correctness proof; the complete details are

available in a companion technical report [43].

We begin by showing via subject reduction that every

state reachable from an initial, well-formed state is well-

formed. For this purpose, we extend the effect system to

handle runtime expressions and states, as follows. The rule

½PROG� ensures that runtime expressions appear only in

evaluation contexts.

Theorem 1 (Subject Reduction). If the call annotations in P

are correct and � ‘ P and P ! P 0, then � ‘ P 0.

Let � be a fixed effect environment and let WT be the set
of well-formed states under �.

WT ¼ fhH;M; T i j � ‘ hH;M; T ig:

If � ‘ e : a " b, then we define the normal atomicity �nðeÞ,
abrupt atomicity �xðeÞ, and (combined) atomicity �ðeÞ of
the expression e as

�nðeÞ ¼ a
�xðeÞ ¼ b
�ðeÞ ¼ a t b:

An examination of the effect rules shows that these are well-
defined partial functions.

Each pure block that terminates normally evaluates via a
sequence of in-pure states. Our correctness proof pro-
ceeds by induction on the nesting depth n of in-pure

blocks. First, we reduce each in-pure block at depth n to a
serial execution in which all of the actions of the in-pure

block occur contiguously. Then, by the definition of purity,
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we can replace that in-pure fragment of the execution
sequence with a single ½ABS PURE SKIP� step, followed by
an ½ABS GARBAGE� step to create any garbage generated
by the removed in-pure fragment. This technique reduces
the nesting depth of in-pure blocks by one. Proceeding in
this manner eventually yields an execution sequence with
no in-pure blocks at which point we can apply reduction
to serialize each atomic block and produce an execution of
the serial semantics (7!).

To assist in reasoning about the nesting depth of
in-pure blocks, we define Dn to denote evaluation
contexts with at least n nested in-pure blocks so that
E ¼ D0 � D1 � 	 	 	 .

D0 ¼ E
Dnþ1 ¼ fE½in-pure E0� j E 2 Dng:

For all thread identifiers i and integers n, we partition
the set of well-formed states into four categories:

. Rn
i —states where thread i is in the right-mover part

of an in-pure block at depth n.
. Ln

i —states where thread i is in the left-mover part of
an in-pure block at depth n.

. Un
i —states where thread i is in an in-pure block at

depth n that has normal atomicity ? and, hence,
diverges.

. Nn
i —states where thread i does not contain

in-pure block at depth n.

In addition, Nn contains states where no thread is in an in-

pure block at depth n (and, so, N1 describes states
containing no in-pure blocks).

Rn
i ¼ WT \ fhH;M; T i j Ti � E½in-pure e�

^ E 2 Dn�1 ^ �nðeÞ 2 fR;A;>gg
Ln
i ¼ WT \ fhH;M; T i j Ti � E½in-pure e�

^E 2 Dn�1 ^ �nðeÞ 2 fB;Lgg
Un
i ¼ WT \ fhH;M; T i j Ti � E½in-pure e�

^E 2 Dn�1 ^ �nðeÞ ¼ ?g
Nn

i ¼ WT \ fhH;M; T i j 8E 2 Dn�1:Ti 6� E½in-pure e�g
Nn ¼ 8i:Nn

i :

We next define two restrictions of the transition relation
!i . The definition of these relations requires some
additional notation. For any state predicate X 
 State and
transition relation Y 
 State� State, by Y =X we mean the
transition relation obtained by restricting Y to pairs whose
first component is in X. Similarly, by Y nX we mean the
restriction of Y to pairs whose second component is in X.
The first restricted relation ¼)

n

i (for n � 0) is a restriction of
!i to states where thread i has at most n nested in-pure

blocks (at nesting depth 1 through n inclusive). The second
relation j¼)

n

i (for n � 1) is a serialized version of ¼)
n

i where
each in-pure block at depth n is executed serially with
respect to other blocks at depth n or greater.

¼)
n

i ¼ Nnþ1= !i

j¼)
n

i ¼ ðNnþ1 ^ 8j 6¼ i:Nn
j Þ= !i

¼)
n

¼ 9i:¼)
n

i

j¼)
n

¼ 9i:j¼)
n

i

The following properties are obvious consequences of these
definitions.

j¼)
n

i � ¼)
n

i � !i

j¼)
n

� ¼)
n

� !

Using these relations, we show that any nonserial

execution via ¼)
n

can be reduced to an equivalent serial

execution via j¼)
n

.

Lemma 1 (Pure Reduction). Let P be a well-formed program

with correct conflict and call annotations. Suppose NnðP Þ
and NnðQÞ and P ¼)

n �
Q, where n � 1. Then, P j¼)

n �
Q.

Given any execution via j¼)
n

(in which in-pure blocks

at depth n are executed serially), we can elide each of these

serially executed in-pure blocks at depth n, thus reducing

the nesting depth of in-pure blocks and yielding an

execution sequence under ¼)
n�1

.

Lemma 2 (Pure Eliding). If the pure annotations in P are

correct and P0 j¼)
n �

Pk and NnðP0Þ and NnðPkÞ, where n � 1,

then P0 ¼)
n�1 �

Pk.

Thus, given any execution sequence P ¼)
n �

Q, by

repeatedly applying the Pure Reduction and Pure Eliding

Lemmas, we eventually obtain an execution sequence

P ¼)
0 �

Q, where each intermediate state satisfies N0 and

thus does not contain in-pure blocks. We now leverage

reduction one more time to reduce each atomic block in the

execution sequence P ¼)
0 �

Q. To assist in performing this

reduction, we again partition the set of well-formed states

into four categories:

. Ri—states where thread i is executing the right-
mover part of an in-atomic block.

. Li —states where thread i is executing the left-mover
part of an in-atomic block.

. Ui—states where thread i is executing an in-atomic

block that will never terminate.
. Ni—states where thread i does not execute an

in-atomic blocks.

We define N to contain states where no thread is executing
an in-atomic block.

Ri ¼ WT \ fhH;M; T i j Ti � E½in-atomic e�^�ðeÞ 6vLg
Li ¼ WT \ fhH;M; T i j Ti � E½in-atomic e�

^B v �ðeÞ v Lg
Ui ¼ WT \ fhH;M; T i j Ti � E½in-atomic e�^�ðeÞ¼?g
Ni ¼ WT \ fhH;M; T i j jT j < i _ Ti 6� E½in-atomic e�g
N ¼ 8i:Ni:

The following theorem then shows that we can reduce

an execution P ¼)
0 �

Q to a serial execution P 7!�Q.

Lemma 3 (Atomic Reduction). Let P be a program with

correct conflict and call annotations and let � be a valid effect

environment such that � ‘ P . Suppose NðP Þ and NðQÞ and
P ¼)

0 �
Q. Then, P 7!�Q.
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The following Correctness Theorem states that, given
any nonserial execution P !� Q with arbitrarily nested
in-pure and in-atomic blocks, we can always obtain an
equivalent serial execution P 7!�Q. To avoid the considera-
tion of partially executed atomic blocks, we require that no
thread is executing an atomic block in either the initial
state P or the final state Q. We conjecture that our results
can be extended to cover some partially executed blocks by
the following existing techniques [8].

Theorem 2 (Correctness). Let P be a program with correct
annotations and let � be a valid effect environment such that
� ‘ P . Suppose NðP Þ and NðQÞ and P !� Q. Then,
P 7!�Q.

Proof. This theorem follows from the following induction

hypothesis, since there exists n such that P ¼)
n �

Q.

Induction Hypothesis: Let P be a program with

correct annotations and let � be a valid effect environ-

ment such that � ‘ P . Suppose NðP Þ and NðQÞ and
P ¼)

n �
Q. Then, P 7!�Q.

The proof of this hypothesis is by induction on n. If

n ¼ 0, the conclusion follows by Lemma 3. Otherwise,

if P ¼)
n �

Q, then

P j¼)
n �

Q by Lemma 1

P ¼)
n�1 �

Q by Lemma 2

P !� Q by the inductive hypothesis:
ut
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