
Indexing Spat io tempora l Trajectories w i t h

Chebyshev Po lynomia l s

by

Yuhan Cai

B.Sc. (Honours), The University of British Columbia, 2002

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r o f Sc i ence

in

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required, standard

T h e Un ive r s i t y of B r i t i s h C o l u m b i a

Apri l 2004

© Yuhan Cai, 2004

Library Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the

head of my department or by his or her representatives. It is understood that

copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

yUHAAJ CAI 27/0^-/200^
Name of Author (please print) Date (dd/mm/yyyy)

Degree: MoSt^T 0$ SciWCl Year: 2 0 0 ^

Department of Cofff'iAxx Science
The University of British Columbia
Vancouver, BC Canada

A b s t r a c t

In this thesis, we investigate the subject of indexing large collections of spatiotem-
poral trajectories for similarity matching. Our proposed technique is to first mitigate
the dimensionality curse problem by approximating each trajectory with a low order
polynomial-like curve, and then incorporate a multidimensional index into the re­
duced space of polynomial coefficients. There are many possible ways to choose the
polynomial, including Fourier transforms, splines, non-linear regressions, etc. Some
of these possibilities have indeed been studied before. We hypothesize that one of
the best approaches is the polynomial that minimizes the maximum deviation from
the true value, which is called the minimax polynomial. Minimax approximation is
particularly meaningful for indexing because in a branch-and-bound search (i.e., for
finding nearest neighbours), the smaller the maximum deviation, the more pruning
opportunities there exist. In general, among all the polynomials of the same degree,
the optimal minimax polynomial is very hard to compute. However, it has been
shown that the Chebyshev approximation is almost identical to the optimal mini­
max polynomial, and is easy to compute [32]. Thus, we shall explore how to use
the Chebyshev polynomials as a basis for approximating and indexing d-dimensional
(d > 1) trajectories. ,

The key analytic result of this thesis is the Lower Bounding Lemma. That is,
we show that the Euclidean distance between two d-dimensional trajectories is lower
bounded by the weighted Euclidean distance between the two vectors of Chebyshev
coefficients. This lemma is not trivial to show, and it ensures that indexing with
Chebyshev coefficients admits no false negatives. To complement the analytic re­
sult, we conduct comprehensive experimental evaluation with real' and generated
1-dimensional to 4-dimensional data sets. We compare the proposed scheme with
the Adaptive Piecewise Constant Approximation (APCA) scheme. Our preliminary
results indicate that in all situations we test, Chebyshev indexing dominates A P C A
in pruning power, I /O and C P U costs.

ii

C o n t e n t s

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgments ix

Dedication x

1 Introduction 1

1.1 Motivation 2

1.2 Problem Statement 3

1.2.1 Similarity Model 4

1.2.2 Data Representation . 7

1.2.3 Index Structure 8

1.3 Contributions 9

1.4 Thesis Outline 10

iii

2 Related Works 12

2.1 Indexing 1-dimensional Time Series 12

2.1.1 Whole Matching 13

2.1.2 Subsequence Matching 24

2.2 Indexing Multidimensional Trajectories 27

3 Background: Chebyshev Polynomials 31

3.1 Trigonometric Definitions and Recurrences 32

3.2 Approximation Theory 34

3.3 Orthogonality , . 38

3.4 Series Expansions 40

4 Indexing with No False Negatives 42

4.1 Assumptions 43

4.2 Chebyshev Approximation of a Time Series 44

4.3 An Example 47

4.4 A Metric for Chebyshev Coefficients . 49

4.5 The Lower Bounding Lemma 50

4.6 Extension to the Weighted Euclidean Framework 52

5 Indexing Multidimensional Trajectories 55

5.1 Lower Bounding for the Multidimensional Case 55

5.2 Algorithms for Building and Searching A Single Index 56

5.3 Algorithms for Building and Searching Multiple Indices 57

5.4 Properties of Chebyshev Indexing 58

iv

6 Experimental Evaluation 62

6.1 Data Sets and Programs Used 62

6.2 Comparison Criteria: Pruning Power and Search Time 64

6.3 Pruning Power Comparison: Real Data Sets 66

6.4 Building Time and the Choice of n 68

6.5 On Scalability: Generated Data 70

6.6 Comparisons with Indexing Included 73

6.6.1 I /O Cost Comparison 73

6.6.2 C P U Cost Comparison 74

6.6.3 Recommendations 76

6.7 A Single Index vs. Multiple Indices 76

6.8 Subsequence Matching 77

7 Conclusions 82

Bibliography 84

v

L i s t o f T a b l e s

4.1 Maximum Deviations for Different Approximation Schemes 49

6.1 Data Sets Used 62

vi

L i s t o f F i g u r e s

2.1 Algorithm to Compute the A P C A Representation of a Time Series . 20

3.1 Chebyshev Polynomials 33

4.1 Summary of Notation 43

4.2 A Comparison of Approximation Schemes (n = 4) 47

4.3 A Comparison of Approximation Schemes (n = 8) 48

5.1 Algorithm for Building a Single Index of Chebyshev Coefficients . . 57

5.2 Algorithm for a Range Search in a Single Index 58

5.3 Algorithm for a kNN Search in a Single Index 59

5.4 Algorithm for Building Multiple Indices of Chebyshev Coefficients . 60

5.5 Algorithm for a Range Search in Multiple Indices 61

5.6 Algorithm for a kNN Search in Multiple Indices . 61

6.1 Pruning Power Comparisons: Real 1- to 4-Dimensional Data Sets . . 67

6.2 Computing Chebyshev Coefficients 68

6.3 Scalability: Pruning Power and Building Time 71

6.4 Search Time Comparison: Indexing Included 72

6.5 A Single Index vs. Multiple Indices (n = 3) 78

vii

6.6 A Single Index vs. Multiple Indices (n = 5) 79

6.7 Subsequence Matching: Pruning Power, I/O costs and C P U cost . . 80

viii

A c k n o w l e d g m e n t s

First of all, I would like to express my gratitude to my supervisor, Dr. Raymond
T. Ng, for his rewarding guidance and constant support throughout the course of
my work. It was his supervision and inspiration that have not only enabled me to
complete this thesis but also led me to the right direction of research.

Additionally, special thanks go to both Dr. Eamonn Keogh at the University
of California, Riverside, for his A P C A code and experimental data sets, and Dr.
Christos Faloutsos at Carnegie Mellon University for his DR-tree package. I would
also like to thank Dr. Jason Harrison and Dr. Michiel van de Panne for providing
me with their motion capture data.

I did most of my research in the Database Systems Laboratory, where there
was an enlightening and stimulating academic environment. My appreciation is
extended to all my colleagues for their friendship and help. I owe many thanks to
Dr. Edwin Knorr for his valuable comments and precious suggestions on my thesis.

Moreover, for two years, my studies were mainly funded by scholarships from
the Natural Sciences and Engineering Research Council of Canada (NSERC) and
the Institute of Robotics and Intelligent Systems (IRIS).

Finally, I am indebted to my parents for their love, education and encour­
agement during the eighteen years of my schooling.

Y U H A N C A I

The University of British Columbia

April 2004

ix

To my parents.

x

Chapter 1

I n t r o d u c t i o n

A spatiotemporal trajectory is a time-stamped sequence of vectors representing

space and/or time information. More formally, a d-dimensional trajectory is an

ordered collection S in the form

S - {{h,vi), {t2,v2), •. •, {tN,vN)}

where

• N is the length of the trajectory S.

• t\ < < • • • < tpf are time stamps.

• Each vector Vi is of arity d for all 1 < i < N.

• Each pair {U,Vi) records the values of a vector of d scalars at time i j .

For example, if d = 1, then the trajectory is a time series. For a second example, Vi

may capture the 2-dimensional or 3-dimensional coordinates of a moving object at

time U, in which case we have a spatiotemporal trajectory. For yet another example,

a trajectory may represent the change of the attributes or features of an entity over

time.

1

1.1 Mot iva t ion

Time series axe ubiquitous in temporal databases, which is a well-established area

in database studies [16]. Massive time series or sequence data sets arise naturally

in a variety of real world applications, such as medinformatics, meteorology, stock

markets, and image/video databases. For example, doctors monitor the health

conditions of their patients by keeping track of their body temperatures, geologists

record monthly or annual rainfall data for weather forecasting, and financial analysts

try to find patterns in their large pools of stock prices of different companies.

There are also many large collections of higher-dimensional spatiotemporal

trajectories, thanks in part to the development of cost-effective mobile technolo­

gies, such as Geographic Information Systems, wireless communication electronics,

and multimedia applications [14, 43, 56]. Examples include spatiotemporal trajec­

tories of cars, airplanes, and other moving objects generated by motion tracking

devices in surveillance applications and electronic games applications. Additionally,

a video stream can also be regarded as a multidimensional trajectory, as it consists

of a sequence of multiple frames, each of which is characterized by a set of feature

attributes.

Specifically, as part of our collaboration with an electronic games company,

we encounter large collections of 2-, 3- and 4-dimensional spatiotemporal trajecto­

ries. A 2-dimensional example is the coordinates of National Football League (NFL)

players moving on a football field, or of National Hockey League (NHL) players skat­

ing on an ice rink. A 3-dimensional example is the positions of aircrafts during a

flight simulation. Finally, a 4-dimensional example is the four angles of body joints

of a person playing kung-fu or dancing. This type of data sets is useful for games

developers and medical professionals. The point here is that beyond 1-dimensional

2

time series, applications of higher-dimensional spatiotemporal trajectories are very

common.

Given those enormous databases of trajectories, what can we do with them,

and how do we retrieve valuable information from them? One of the fundamental

operations in mining trajectories is similarity matching, which refers to the pro­

cess of finding trajectories that are similar to a given query trajectory. Similarity

matching is useful in two aspects. First, it is a subroutine of many data mining

tasks, such as classification, clustering, rule discovery, outlier detection, and query

by contents. Second, it is important in its own right for exploratory data analysis.

The following axe typical similarity queries:

• Identify companies who have similar sales patterns as Microsoft has.

• Find out if a given musical score is similar to any of the existing scores.

• Discover all images that contain regions similar to regions of a given image.

1.2 Prob lem Statement

The problem of retrieving similar trajectories can be formatted as follows: given a

reference trajectory database DB, a distance measure Dist, a query trajectory q,

and a positive number r, find the set R of trajectories that aie within distance r of

q, or more precisely:

R = {x € DB | Dist{x, q) < r) (1.1)

This is called a range query or radius search. Alternatively, one might be interested

in finding the k nearest neighbours (fcNN) of q, which is equivalent to setting r so

that \R\ = k.

3

Similarity-based pattern querying has three major components: the similar­

ity model that defines a distance measure between trajectories, the data representa­

tion that abstracts features from raw data sets, and the index structure that enables

efficient searching for the closest matches.

1.2.1 S i m i l a r i t y M o d e l

Many similarity distance functions have been studied in the literature, and which

one is the "best" always depends on the specific user, data set and task. In general,

they can be classified into two categories: metric functions and non-metric functions.

A distance function D is a metric if it satisfies the following requirements:

• Symmetry: D(a,b) = D(b,a).

• Non-negativity: D(a, b) > 0 if a ̂ b, and D(a, b) = 0 if and only if a = b.

• Triangle Inequality: D(a,b) < D(a,c) + D(c,b).

In most cases, a metric function is desired, because the triangle inequality

can then be used to prune the index during search. The most popular distance

metric is the £ p -norm.

Definition 1.1 Given two d-dimensional trajectories

tu = ((h,u[),(t2,u2), (tN,U~N))

and

tv = ((ti,v{), {t2,v2) (tN,VN))

the Cn-norm distance between them is:

(1.2)

4

where each u\ denotes the jth component of the vector u$.

It is called the Manhattan distance Distman if p = 1, the Euclidean distance Disteuc

if p = 2, and the Max distance Dist^ if p = oo. A simple variant of (1.2) is the

weighted £ p -norm defined by:

_ » N d - » - » i
£ p (t « , to, = [£ £ W ^ K - ^ H 5 (1.3)

i = i j = i

where I f is a matrix of (nonnegative) weights for different points on different tra­

jectories.

While Euclidean Distance Disteuc is used in most existing studies, it is nev­

ertheless insufficient for all situations because:

• It works only for trajectories of the same length.

• It cannot handle outliers or noise.

• It is very sensitive to scale or amplitude.

• It does not work well with trajectories that are similar in shape, but out of

phase.

• It does not allow stretching or compression of the time axis.

As a result, many attempts have been made to come up with distance functions

that are invariant with respect to six transformations: shifting, uniform amplitude

scaling, uniform time scaling, uniform bi-scaling, time warping and non-uniform

amplitude scaling. Unfortunately, none of them is a metric. Some of the most

famous distance notations are:

• Dynamic Time Warping (DTW) [4, 19]: The idea is to use dynamic program­

ming to construct the warping path in the distance matrix that minimizes the

5

warping cost and then define the distance as the minimized cost. In effect, it

.allows shifting and stretching in order to align trajectories. . .

• Longest Common Subsequence (LCSS) [52, 53]: As a variant of edit distance,

it describes how well two trajectories can match one another, by allowing

them to stretch and to translate in space, without any rearrangements of the

sequence of elements. One of the advantages is that it is robust to noise by

giving more weight to the similar portions and paying less attention to regions

of great dissimilarity.

• Landmark Model [25, 35]: Generally speaking, it identifies points of "great

importance" as landmarks, based on which the similarity patterns are defined.

For example, first-order landmarks are global or local extrema, second-order

landmarks are inflection points, and so on. It is claimed to better match

human intuition and episodic memory as it takes smoothing into account by

letting certain landmarks be overshadowed by others.

In this thesis, we adopt the Euclidean distance function Disteuc for spa­

tiotemporal trajectories. While this distance function is easy to compute, it is natu­

ral for many applications of spatiotemporal trajectories, including those for airplanes

and other flying objects. Additionally, it allows scalable solutions to other problems

such as clustering and classification. It is also the distance function adopted by most

studies on indexing time series, including [21]. For more advanced distance functions

such as time-warping [4] and longest common subsequence [53], we consider them

future topics of investigation.

6

1.2.2 D a t a Represen ta t i on

It is not necessary to separate data representation from the similarity model, but

most previous works did, as an abstract representation permits more efficient com­

putations than the raw data could, and may allow for an even more sophisticated

indexing technique. While we shall discuss related works in greater detail in Chap­

ter 2, it suffices to say that most existing frameworks are based on piecewise approx­

imations, where each piece is either constant or linear. However, recall that, among

the examples cited in Section 1.1, one thing in common is that they have smooth and

continuous trajectories. This is because all those activities (e.g., human movement,

flying objects) are governed by the laws of physics, giving rise to smooth motion

trajectories. That is to say, a smooth and continuous trajectory is approximated

with a piecewise discontinuous function. This mismatch may cause an unnecessary

error or deviation, and may lead to a loss in pruning power in a branch-and-bound

search.

In this thesis, we seek to approximate and index a d-dimensional spatiotem-

poral trajectory with a low order continuous polynomial-like curve. There are many

possible ways to choose the polynomial, including (continuous) Fourier transforms,

splines, non-linear regression, and so on. While all approximations are not exact by

definition, the approximation that minimizes the maximum deviation from the true

value is very desirable. This is called the minimax approximation. Minimax ap­

proximation is particularly meaningful for indexing because in a branch-and-bound

search (i.e., for finding nearest neighbours), the smaller the maximum deviation,

the more pruning opportunities there exist. However, in general, among all the

polynomials of the same degree, the optimal minimax polynomial is very hard to

compute. It has been shown that the Chebyshev approximation is almost identical

7

to the optimal minimax polynomial, and is easy to compute [32]. Thus, we shall

explore how to use the Chebyshev polynomials as a basis for indexing d-dimensional

trajectories.

1.2.3 Index Structure

Indexing is one of the many searching techniques available for similarity matching.

If a searching mechanism retrieves a (proper) subset S of R, then the wrongly

dismissed trajectories in R — S are called false dismissals or false negatives. On the

other hand, if S is a (proper) superset of R, then the wrongly retrieved trajectories

in S — R are called false alarms or false positives. As we can always remove false

positives in a post-processing stage, they can be tolerated as long as there are not

too many of them. Searching techniques that guarantee no false negatives are said

to be exact; however, there are studies which consider providing faster approximate

search at the expense of allowing both false positives and negatives [46, 25].

The most obvious brute-force solution for similarity matching would be a

sequential scan of the whole database, in which we compute the distance between

every trajectory x G DB and q, and return x if it qualifies. This approach requires

that we access every single page in the database, which is clearly unrealistic for large

data sets. Any mechanisms that avoid retrieving all the data pages could potentially

increase the speed of the search, which automatically entails the idea of using an

index. While we will discuss the existing indexing schemes in Chapter 2 and propose

our own scheme in Chapter 4 and Chapter 5, here we shall give an outline of the

desirable properties for any indexing technique [9]:

• It should be faster than sequential scanning.

• It should incur little space overhead.

" 8

• It should be able to handle queries of different lengths.

• It should be incremental, that is, it should allow insertions and deletions with­

out rebuilding the index.

• It should guarantee no false negatives.

In addition, two other desirable crteria [21] are:

• It should be possible to build the index in a reasonable time.

• It should be able to handle more than one distance measure.

1.3 Contributions

As a preview, we make the following contributions in this thesis:

• Recall that a spatiotemporal trajectory is of the form ((ti,vi),..., (£AT,# /v)) .

Thus, it is discrete in nature. We show how to approximate such a discrete

"function" with Chebyshev polynomials. We first begin with the 1-dimensional

case of time series. Our representation scheme allows us to prove a main result

of this thesis - the Lower Bounding Lemma. That is, the true distance between

two time series is lower-bounded by the distance in the index space (i.e., the

space of Chebyshev coefficients in our case). As shown in Chapter 4, this is

not a trivial result to prove.

• We generalize from the 1-dimensional case to the d-dimensional case (d > 1).

Specifically, a d-dimensional trajectory is projected onto each dimension to

create d 1-dimensional trajectories. We show that this projection preserves

the Lower Bounding Lemma. We also give algorithms for building an index

9

of Chebyshev coefficients, and for supporting similarity searching of whole

trajectories. . ,

• To evaluate the effectiveness of the minimax property of Chebyshev polynomi­

als on indexing, we conduct an extensive experimental evaluation. We use 1- to

4- dimensional real data sets, as well as generated (i.e. synthetic) data sets. For

time series, the Adaptive Piecewise Constant Approximation (APCA) scheme

has been shown to outperform all other schemes including Discrete Fourier

Transform (DFT), Discrete Wavelet Transform (DWT) and Piecewise Aggre­

gate Approximation (PAA) [21]. We obtain the A P C A code from Keogh et

al., and compare with Chebyshev approximation. We also extend A P C A to

d-dimensional situations as a "straw man" strategy.

As a preview of our results, from 1- to 4-dimensional, real and generated data,

Chebyshev dominates A P C A in pruning power, I /O cost and C P U cost. Our

empirical results indicate that Chebyshev approximation can deliver a 3- to

5- fold reduction on the dimensionality of the index space. For instance, it

only takes 4 to 6 Chebyshev coefficients to deliver the same pruning power

produced by 20 A P C A coefficients. This is a very important advantage. As

the dimensionality curse on the indexing structure is bound to set in sooner or

later, Chebyshev coefficients are far more effective than A P C A in delivering

additional pruning power before that happens.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, we discuss related works. In

Chapter 3, we review Chebyshev polynomials and their properties central to the

10

development of this thesis. In Chapter 4, we show how to approximate a time series

with a Chebyshev polynomial, and give an example. We also propose a metric

distance function between two vectors of Chebyshev coefficients. Finally, we prove

the Lower Bounding Lemma. In Chapter 5, we generalize the earlier results for

time series to deal with d-dimensional trajectories. In Chapter 6, we present our

experimental setup and results. We compare Chebyshev and A P C A with respect to

pruning power, I/O costs and C P U costs.

11

Chapter 2

R e l a t e d W o r k s

2.1 Indexing 1-dimensional T ime Series

Substantial efforts have been made on the problem of indexing one-dimensional time

series. There are basically two ways to post a similarity query:

• Whole Matching: Given a collection DB of M time series, each of length

N, and a query time series Q of the same length, we want to find those time

series that are within distance r of Q. Mathematically, we seek the set

R = {S £ DB\Dist(S,Q) < r}

Note that every time series, including Q, must have the same length N.

• Subsequence Matching: Given a collection DB of M time series S i , . . . , SM,

where |S;| = iV; for 1 < i < M, and a query time series Q of length

|Q| = NQ < mini<j<M{^V,}, we want to find every time series Si and ev­

ery possible offset I such that

Dist(Q,Si[l:{l + NQ-l)})<r

12

where Si[l : (I + NQ — 1)] denotes the subsequence of Si starting at position

I and ending at position I + NQ — 1. Intuitively, we want to identify those

sequences that contain matching subsequences.

It is possible to convert the subsequence matching problem into whole matching, by

placing a sliding window of size NQ at every offset of each sequence and taking each

subsequence within the window as one "whole" sequence.

2.1.1 W h o l e M a t c h i n g

A time series of length N is by definition a sequence of real numbers, and therefore

can be considered as a point in A^-dimensional space. This immediately suggests

that we can use existing multidimensional index structures (a.k.a. Spatial Access

Methods (SAMs)) to store and search such data. S A M examples include the .R-tree

family, quadtrees, k-d/B tree family and gridfiles. One of the problems common to

all multidimensional indices is that their query performance degrades dramatically

as dimensionality increases, and eventually reduces to sequential scanning or even

worse. Experiments have shown that the R-tree family seems to be the most robust

with respect to dimensionality, and that the i?*-trees work well up to 20 dimen­

sions [10]. Since a time series may contain thousands of points, it is impossible

to code the entire sequence directly into any multidimensional index. This phe­

nomenon is known as the dimensionality curse problem, and in order to utilize the

powers of SAMs we need to first perform dimensionality reduction (a.k.a. Feature

Extraction) on the raw data [2].

A framework called GEneric Multimedia INdexIng (GEMINI) is introduced

to accommodate any dimensionality reduction methods to allow efficient index­

ing [9]. The framework consists of three steps:

13

1. Establish a distance measure Disttrue for the raw data series. In this thesis,

we focus on Euclidean distance Disteuc.

2. Produce a feature extraction function F that reduces the dimensionality of the

data from the original length N to n that can be handled by an appropriate

index structure.

3. Establish a distance measure Distjeature in the feature space (of n dimensions).

In fact, there is a specific requirement that Distfeature has to satisfy for the GEMINI

framework to work out. A crucial result in [9] is that, for any search techniques that

use feature extraction, in order to guarantee completeness, the distance measure in

the feature space must match or underestimate the true distance.

Theorem 2.1 (Lower Bounding Lemma) To guarantee no false negatives, the

feature extraction function F must satisfy:

DistfeatoreiFiP^FiO*)) < Disttrue(0U02)

where 0\ and 02 are any two raw data series.

Proof: Let Q be the query object, O be a qualifying object and r be the radius.

We want to prove that

Disttrue(Q,0) < r => Distfeature{F(Q),F{0)) < r.

This is clear since

Distfeature(F(Q),F{0)) < Disttrue(Q,0) < r.

•

14

Intuitively, this Theorem means that if two objects are far apart in the feature

space, then they must be far apart in the original space. The performance of GEMINI

methods depends solely on the tightness of the lower bound. The closer DistfeatUTe

is to Distune, the fewer false positives there are, and the more efficient the algorithm

will be.

In the following sections, we shall review the existing dimensionality reduc­

tion techniques. Note that they are also applicable to the subsequence matching

algorithm to be presented in Section 2.1.2. In general, these studies can be divided

into the following categories based on the underlying approximation schemes:

• DFT: [9, 3, 40, 8]

• DWT: [7, 58, 17, 37]

• PA A: [24, 59]

• A P C A : [21]

• SVD: [29, 18, 24]

Discrete Fourier Transform (DFT)

The first dimensionality reduction technique proposed for indexing time series in

the literature is to use the Discrete Fourier Transform. The basic idea is that

any realistic signal can be characterized by the superposition of a finite number of

sine/cosine waves, each of which is represented by a single complex number known

as a Fourier coefficient. The key observation is that, a signal of length N can

be decomposed into N sine/cosine waves that can be recombined into the original

signal, and many Fourier coefficients have a very low amplitude and therefore can

be discarded without much loss of information in the reconstruction process.

15

The iV-point Discrete Fourier Transform of a signal x = (xo,. • •, XJV-I) is a

sequence X = (Xo,..., Xpf-i) of complex numbers, where

XF = ^Ylx<e~iS^~ F = 0,...,N-1 (2.1)

where j —

The signal x can be recovered by the inverse transform:

, N-1

xi = -/wY,XFe" » = 0 , . . . , J V - 1 (2.2)

F=0

The energy E(x) of a signal x is given by:

N-1

E(x) = \\x\\2 = \xi\2 (2.3)
i=0

One of the fundamental properties of D F T is the Parseval's Theorem, which

states that the energy is preserved from time domain to frequency domain:

Theorem 2.2 (Parseval's Theorem)

N-1 N-1

E N 2 = E l -M 2 (2-4)
i=o F=o

For our dimensionality reduction purposes, we only keep the first n D F T co­

efficients as features, which will result in an underestimation of the distance between

sequences. According to Theorem 2.1, no false negatives are guaranteed.

Discrete Wavelet Transform (DWT)

There are many different types of wavelet transforms and the one that is proposed for

dimensionality reduction is the Discrete Haar Wavelet Transform [7]. It is similar to

D F T in that it represents data in terms of the sum of a prototype function. However,

it is different from D F T in that it is a multi-resolution representation and has the

16

time-frequency localization property. In most cases, D W T bears more information

than D F T , in which only the frequency domain is considered. On the other hand,

one of the drawbacks of DWT is that it is defined only for signals whose length is

an integral power of 2.

Haar transform is a sequence of averaging and differencing operations in

which we compute the average and difference between every two adjacent values of

a discrete function (or a time series). For example, let x = (9735) , then the DWT

is computed as follows:

Resolution Averages Coefficients

4 (9 7 3 5)

2 (8 4) (1 - 1)

1 (6) (2)

The final Harr Transform H(x) = {c dg d^ d\) = (6 2 1 —1) is obtained by

combining the last average value 6 and the coefficients on the third column, 2, 1

and -1. It is easy to see that we can get different resolutions by adding difference

values back to or subtract differences from averages, and the original signal x can

be recovered from H(x) by essentially reversing the whole D W T process.

A crucial Theorem established in [7] is that the Euclidean distance between

two time series can be expressed in terms of their Haar Transforms.

Theorem 2.3 Let x and y be two sequences of length N, which is a power of 2. Sup­

pose their Haar Transforms are r and s, respectively. Let f—s = (C D\ ... D^-i)-

Then the Euclidean distance Disteuc(x, y) = S\og2 N can be computed recursively by:

So = C (2.5)

Si+i = ^2(52 + Dl + Dji+1 + ••• + Dl+1_J (2.6)

17

forO<i<log2N -1.

One important Corollary of this Theorem is the Lower Bounding Lemma for

Corollary 2.1 .// the first n (1 < n < N). dimensions of Haar Transform are used,

no false negatives will occur.

Piecewise Aggregate Approximation (PAA)

The idea is introduced independently by Y i and Faloutsos [59] and Keogh et al. [24,

23]. P A A divides each time series of length N into n segments of equal length, and

uses the average value of each segment as a coordinate in the n-dimensional feature

space. Mathematically, a time series X = {x\,... , x/v) of length is represented

in the n-dimensional feature space by X = x\,..., xn, where

assuming that iV is divisible by n.

Then, the distance metric Distfeature in feature space is defined as:

The proof of the Lower Bounding Lemma is long but straightforward. Read­

ers are referred to [24] for a complete proof.

Another important result in [24] is:

Theorem 2.4 / / a raw time series is transformed to a feature space of dimension­

ality that is a power of 2, then the D WT representation and PAA representation are

equivalent in the following ways:

DWT:

(2.7)

DistfeatUTe(X,Y) = DR(X,Y) = J - E (*i - Vi)2 (2.8)

18

1. The best possible representations using both techniques are identical.

2. The estimated distances between two objects in the feature space using both

techniques are identical.

This seemingly simple dimensionality reduction scheme has many advan­

tages [24, 59]: it is easy to understand and implement; it is faster than most other

transforms; it can handle more distance measures such as the general £ p -norms and

weighted distance functions.

Adaptive Piecewise Constant Approximation (APCA)

A P C A is a generalization of P A A by relaxing the requirement that each segment

must be of the same length. Intuitively, regions with great fluctuations are repre­

sented with several short segments, while relatively flat regions are represented with

fewer long segments. As a result, A P C A requires two numbers per segment, the first

number recording the mean value of all the points in the segment and the second

number recording the segment length.

Given a time series S = (v i , . . . , VJV), its A P C A representation is defined to

be:

C = {(cvi,cn),..., {cvR,crR)}, cr0 = 0 (2.9)

where R is the number of segments, cvi is the mean value of the data points in

segment i and cr̂ is the right endpoint of segment i. For indexing reasons, the right

endpoints are used instead of the lengths of segments.

While finding the optimal A P C A representation (with the minimum recon­

struction error) takes 0(MN2) time, Keogh et al. [21] propose a sub-optimal algo­

rithm using the Discrete Wavelet Transform, as shown in Figure 2.1.

19

Algor i t hm ComputeAPCA(,S ' , R) {
/ * input: a time series S */
/ * input: the number of segments R to be used * /
/ * output: the A P C A representation of S */
(1) If length(S) is not a power of two, pad it wi th zeros.
(2) Perform the Haar Wavelet Transform on S
(3) Sort coefficients in order of decreasing normalized magnitude and

keep only the first R coefficients.
(4) Reconstruct approximation of S from retained coefficients.
(5) If S was padded wi th zeros, truncate it to the original length.
(6) Replace approximate segment mean values wi th exact ones.
(7) W H I L E (the number of segments is bigger than R)
(8) Merge the pair that can be merged wi th least rise of error

end W H I L E
} / * end algorithm * /

Figure 2.1: Algorithm to Compute the A P C A Representation of a Time Series

To define a distance metric that lower bounds the Euclidean distance Disteuc,

we must first introduce a special version of the A P C A representation. Given a query

Q, a time series S together with its A P C A representation C, we define another

sequence Q' as follows:

Q' = {{qvl,qrl),...,(qvR,qrR)} (2.10)

where qn = cn and qvi = mean(Qcri_1+1,..., QCn)-

Then the lower-bounding distance metric is defined to be:

DLB(Q',S) =
R

\\J2(Cri- cri-l){q.Vi- CVi)2 (2.11)

\ t=l

The key contribution Keogh et al. [21] make is that they show A P C A is

an indexable compression scheme. Each time series S is mapped to a point C =

{{cvi, c r i) , . . . , (CUR, CTR)} in n-dimensional space (where n = 2R), and such points

are referred to as A P C A points. The distance between an A P C A point C and Q is

defined by DLB(Q',C) (Equations (2.10) and (2.11)) while the distance between Q

20

and a node U in the index is defined by the minimum distance MINDIST(Q, Rect)

between Q and the Minimum Bounding Rectangle (MBR) Rect associated with U,

as to be discussed below.

Let U be a leaf node in a multidimensional index and Rect = (L,H) be

the M B R associated with U. We define L = {h, - • • ,ln} and H = {hi,...,hn} as

follows:

k = MINc inu{cmin^+iy2} if H s odd

— MINc inu{cri/2} if i is even
(2.12)

hi = MAXc in u{cmax(i+iy2} if i is odd

= MAXc in u{cTi/2} if i is even

where each cmirii and cmaxi denote the minimum and maximum values of the

corresponding time series 5 among the data points in segment i, that is,
cmirn = MIN^^iSt)

(2.13)
cmaxi = MAX^^iSt)

for i = 1,..., R.

For an index node U with M B R Rect = (L,H), we can view Rect as two

A P C A representations L = {{l\,l2), • • -, (ln-iJn)} and H = {{h\, h2),..., (hn-\,hn)}

It is clear that any time series S under node U is "contained" within the two se­

quences L and H. To formalize this notion of containment, we define a set of R

regions associated with Rect: the ith region G^ct[i = 1,...,R) associated with

Rect is the two-dimensional rectangular region that fully contains the ith segment

of all sequences stored under U. Formally speaking, the boundary of the ith region

21

is:

G f e c i [l] — hi-l

Gf e c t [2] = hi-2 +1

Gf e c t [3] = ^ 2 i - i

Gf e c t [4] = h2i

(2.14)

where G[l] and G[2] are the low bounds, and G[3] and G[4] are the high bounds

along the value and time axes. At time instance t — 1,..., N, we say that a region

G f e c t is active if and only if G f e r f [2] < t < Gf e c < [4].

Given a query time series Q, the minimum distance MIN DI ST(Q, Red,t)

between Q and Red at time instant t — 1,..., N is given by:

MINDIST(Q, Red, t) = MING i s a c t i v e a t t{MINDIST(Q, G, t)}

where

MINDIST(Q, G, t) = (G [l] - Q t) 2 if Qt < G[l]

= (Q 4 - G [3]) 2 HG[S]<Qt

= 0 otherwise.

And finally, we define:

MINDIST(Q, Red) =
N

\ t = i

As the proof of the Lower Bounding Lemma (that both D^Q and MINDIST

lower bound Disteuc) is not trivial to present, we shall omit the details here.

Experiments have shown that the A P C A representation has a very high

fidelity to the original signal and a relatively low reconstruction error [21]. As a

result, for indexing time series data, A P C A outperforms all the above schemes,

including DFT, D W T and P A A .

22

Singular Value Decomposition (SVD)

SVD is also known as Karhunen-Loeve (K-L) transform [57] and Principle Compo­

nent Analysis (PCA) in statistics.

Given a collection of A^-dimensional vectors {x1,... ,xM}, we collect them

into an M x N matrix A. The Singular Value Decomposition of A is given by:

A = UT,VT (2.16)

where U is an M x JV matrix and S and V are N x N matrices. We have:

UU1 = IM UTU = IN

and V is orthonormal:

V VT = VTV = IN

S is a diagonal matrix with non-negative elements called singular values along its

diagonal:

(o-x 0 • • • 0

0 cr2 ••• 0
E = '

\

\ 0 0 • • • O-JV)

Since V is orthonormal, we can multiply both sides of Equation (2.16) by V

and we get:

AV = UT, (2.17)

The product UT, contains a set of A7-dimensional vectors {X1,... ,XM},

which are rotated from the original vectors {x1,... ,xM}. As rotation preserves

length, we have:

115*11 = 1 1 X 1 for i = 1 M

23

From Equation (2.17), we have:

o" j 0

0 CT2

0

0

V 0 0 ••• crjv /

We can reduce the dimensionality by discarding the least significant singular

values in S and the corresponding entries in A , U and V. We have:

/ - n n \

\ X n J

(tf* \
CTi 0

0 cr2

V 0 0 ••• an /

The key property of SVD is that it provides the best least squares fit to any

matrix of data points. In other words, the product UnT,n contains the truncated

versions of the original vectors rotated to the directions of best least squares fit.

Consequently, SVD is optimal in the sense that it minimizes the reconstruction

error among all (linear) transformations. However, since the whole database has to

be examined before the transformation, SVD is a global technique and therefore not

incremental. A single insertion to the data set would result in a recomputation of

the entire reduction matrix. Additionally, since SVD requires 0(MN2) time and

O(MN) space, we shall omit it in our experimental comparison.

2.1.2 Subsequence M a t c h i n g

Subsequence matching is a more difficult problem, as different time series might

have different lengths. There are not as many studies in this area as the ones for

whole matching.

24

I-adaptive Method

This is the first work on indexing techniques for subsequence matching in time series

databases, and it generalizes the GEMINI framework, which is originally designed

for whole matching problems [9].

Without loss of generality, assume that the minimum query length is w. We

use a sliding window of width w and place it at every possible offset I on every data

sequence Si, i = 1,..., M. For each placement of the window, we extract n features

from the subsequence inside the window, where n can be handled by an appropriate

multidimensional index structure. Note that, the feature extraction can be done

using any of the dimensionality techniques introduced in Section 2.1.1. Thus, a

time series of length \Si\ = Ni is transformed into a trail in feature space, consisting

of Ni — w + 1 points, one for each possible offset of the sliding window. By taking

advantage of the fact that adjacent points on the same trail will probably be very

close to each other, we then divide the trail of a given data sequence into sub trails

and represent each subtrail by its Minimum Bounding Rectangle (MBR). Finally,

each time series is transformed into a set of MBRs in feature space, and we insert

all the rectangles for every sequence into a multidimensional index.

Attempting to minimize the number of disk accesses, Faloutsos et al. use an

adaptive heuristic I-adaptive based on a greedy algorithm to group trail points into

subtrails. The algorithm defines a cost function that estimates the disk accesses:

Definition 2.1 Given the sides L = (L\,..., Ln) of the n-dimensional MBR of a

node in an index, the average number of disk accesses DA(L) that this node will

contribute for the average range query is:

n
DA(L) = Y[(Li + 0.5) (2.18)

i=i

25

assuming that the rectangles have been normalized to [0,1)".

Definition 2.2 Given a subtrail of k points with an MBR of sizes L = (L\,..., Ln)

the marginal cost me of each point in this subtrail is:

mc =
DA{L)

k (2.19)

The algorithm for dividing a trail into subtrails is then as follows: we assign

the first point of the trail in a (trivial) subtrail. Then, for each successive point, if it

increases the marginal cost of the current subtrail, start a new subtrail; otherwise,

include it in the current subtrail.

For range searches, there are two cases:

• If the query sequence Q has a length equal to w, we map Q to a point qj in

feature space, and then the range query corresponds to a sphere centred at qf

with radius r. We retrieve subtrails whose MBRs intersect the query region

and examine the real subsequences to discard false positives if any.

• If the length of Q is longer than w, we split the query into p pieces of length w

each, process each subquery separately and merge the results. Moreover, the

tolerance/radius for each subquery can in fact be reduced to rj^fp [9].

Other Approaches

Keogh et al. [22] introduce STB-indexing for subsequence matching. Their idea is

to divide the data sequences into non-overlapping parts of a prespecified window

size. If the points within a segment are mostly increasing, then this segment is

represented by the number 1. If they are mostly decreasing, then the segment is

represented by 0. The transformed sequences are then stored in bins, each of which

26

also contains a matrix that records the distance between all pairs of sequences. For

query processing, the sequence is used for bin-pruning and the distance matrix is

used for interbin-pruning.

Kahveci et al. [17] propose another method to handle range searches for

queries of variable lengths. Their algorithm splits a given query into non-overlapping

subqueries at different resolutions. For each subquery, a search in the index is

performed corresponding to the resolution of the subquery. The results are then used

to refine the radius of the next subquery. The search volume decreases exponentially

as the query radius decreases, and consequently, this dramatically reduces redundant

computations and disk reads.

2.2 Indexing Mult id imensional Trajectories

There are not many studies in the literature on indexing multidimensional trajec­

tories for similarity matching.

Theodoridis et al. [49] provide a formal specification for spatiotemporal in­

dex structures and multidimensional access methods in SpatioTemporal Database

Management Systems (STDBMS). They describe a classification scheme for effi­

cient indexing and query processing in spatiotemporal databases. They discuss

three types of specification issues on:

• data types and data sets supported

• index construction

• query processing operations

They evaluate the existing proposals according to the above issues, and observe that

27

most of those methods do not follow the full list of specifications proposed, and thus

they should be extended and revised.

Lee et al. [30] extend the traditional similarity search methods on time series

data to support multidimensional trajectories. They first define the distance be­

tween two multidimensional sequences as a variant of Euclidean distance, and then

introduce two lower bounding metrics, based on which they propose an algorithm

to prune a database of irrelevant sequences and to find the solution interval of the

selected sequences. Their methods have the following advantages:

• The search algorithm is based on Minimum Bounding Rectangles (MBRs), so

it is fast and needs small storage overhead.

• The framework is designed to handle sophisticated similarity search, such as

finding subsequences of a selected sequence.

• Query and data sequences can have arbitrary length.

• Any multidimensional access structure can be used.

Vlachos et al. [52, 53] investigate techniques for analysis and retrieval of

trajectories in two-dimensional or three-dimensional space. In order to cope with

the noisy nature of such data, they formalize non-metric similarity functions based

on the Longest Common Subsequence (LCSS) framework, which is very robust to

noise. As the exact computation of these measures is unavoidably inefficient, they

present approximation algorithms with provable performance bounds. In addition,

they prove a weaker version of the triangle inequality that can be used to prune

the index for answering nearest neighbour queries based on hierarchical clustering.

And finally, they compare their framework to the widely used Euclidean and Time

Warping distance functions and show the superiority of their approach.

28

Kollios et al. [28], Papadopoulos et al. [34] and Saltenis et al. [44] consider

indexing mobile objects and one-dimensional and two-dimensional space to answer

range queries over the object locations into the future. One example of such queries

is: "Report all objects that will be inside a specific region after a certain amount of

time." They model the objects as points moving at a constant speed starting from a

specific location, and approximate each trajectory by straight line segments in their

indexing scheme. They also give an approximation algorithm with linear space and

expected logarithmic query time in a dynamic external memory setting, as well as

an algorithm with guaranteed logarithmic query time for a restricted version of the

problem.

In addition to those similarity-based and coordinated-based queries discussed

above, Pfoser et al. [36] introduce the concept of trajectory-based queries, which can

be further classified into topological and navigational queries. Topological queries

involve the whole or part of a trajectory, and they are important as well as expensive.

Some of the basic spatial predicates are: meet, overlap, contain, equal, and cross. On

the other hand, navigational queries seek dynamic information that is not explicitly

stored, but has to be derived from the trajectories. For example, the average speed

of a object is computed by dividing the distance travelled by the time taken, the

direction of an object is determined by considering a vector between the starting and

ending positions, and the area an object covers is derived by computing the convex

hull of its trajectory. Having described the types of data and queries, the authors

present two access methods for indexing such data, namely, the SpatioTemporal

R-tree (STR-tree) and the Trajectory-Bundle tree (TB-tree).

Hadjieleftheriou et al. [12] and Kollios et al. [28] propose to index animated

objects as a spatiotemporal evolution so as to efficiently answer queries about their

29

position in time and space. While most of the previous research has concentrated

on the raw and feature levels and examines similarity-based queries, their work is

focused on the semantic level and the queries are topological in nature. They clas­

sify evolutions as the degenerate case and the general case. In the degenerate case,

objects are simply added or deleted from the movie. In the general case, objects

are allowed to move and grow/shrink among frames during their life time. On the

assumption that objects can only move or grow/shrink according to a polynomial

function of time, they combine a spatial index with a partially persistent method­

ology, such that a new record is inserted into the index only when the parameters

describing the movement (or extent) change.

30

Chapter 3

B a c k g r o u n d : Chebyshev

P o l y n o m i a l s

A polynomial is a real function P(x) that can be written in the form:

P(x) = ao + a\x H h a m x m

where ao, • • • , a m are real numbers and x is a real variable. If am ^ 0, we say that

P{x) has a degree of m.

Polynomials have many nice properties. For example, they can be differenti­

ated as many times as we want for any values of x, and they can also be integrated

over any intervals. Additionally, P(x) is uniquely defined by the m + 1 coefficients

OQ,...,am. As a result, polynomials have been the top choice for the approximation

and interpolation of more complicated functions.

Chebyshev Polynomials are a special group of polynomials, whose proper­

ties and applications were discovered a century ago by the Russian Mathematician

Pafnuty Lvovich Chebyshev. Their importance for practical computation, how­

ever, was rediscovered 60 years ago by Cornelius Lanczos, the father of Numerical

31

Mathematics. Thanks to their orthogonality and minimax properties, Chebyshev

Polynomials have played a significant role in nearly every area of numerical analysis,

including polynomial approximation, numerical integration, integral equations, and

spectral methods for Partial Differential Equations.

In this chapter, we shall give an overview of the basic definitions and key

formulae of Chebyshev Polynomials, and their applications in approximations and

series expansions [32, 38, 41].

3.1 Trigonometric Definitions and Recurrences

Definition 3.1 The Chebyshev Polynomial Tm(t) of the first kind is a polynomial

of degree m (m = 0,1,...), defined by:

There are actually four kinds of Chebyshev Polynomials, but Tm(t) of the first

kind is by far the most important and influential group and in this thesis we shall

use the expression "Chebyshev Polynomials" to refer exclusively to the Chebyshev

Polynomials Tm(t) of the first kind.

While it is inconvenient and inefficient to compute each Tm(t) directly from

Equation (3.1), we can utilize the trigonometric identity

Tm{t) = cos(m cos 1(t)) (3.1)

for t£ [-1,1].

cos md + cos (m -2)6 = 2 cos 8 cos (m - 1)8

to derive the fundamental recurrence relation:

Tm(t) = 2 r T m _ 1 (r O - T m _ 2 (') (3.2)

32

Chebyshev Polynomials

O

r—^ ^ — , (—
1—"7*—v." " i "

\ T i m /n

-W \ /
\ T2(t) / .II

- A / \ \ / T4(t)

\ / In

i~. i _^ «^ 1 ' ^ A]

/ T5(t)

\T3(t)

1 1*
- 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.8 1

t

Figure 3.1: Chebyshev Polynomials

for all m > 2 with T0(t) = 1 and T^t) = t.

From the above definition, the first six Chebyshev polynomials are:

T0(t) = 1

Ti(t) = t

T2(t) = 2 t 2 - l

T3(t) = 4 t 3 - 3 f

T4(t) = 8 i 4 - 8 t 2 + l

T5(t) = 16t5 - 20*3 + 5*

And Figure 3.1 shows the graphs of T\(t) to T5(t).

Even though in the above definitions, t is defined,only over the interval

[—1,1], we may define Chebyshev Polynomials appropriate to any given finite inter-

33

val [a, b] (—00 < a < b < + 0 0) by transforming this domain into [—1,1] of a new

variable s under the linear transformation:

2x - (a + b)
s = —»;

0 — a

Then, the Chebyshev Polynomials appropriate to [a, b] are Tm(s). Without loss of

generality, hereafter we simply focus on the interval [—1,1].

Finally, we conclude this section with a key property of Chebyshev Polyno­

mials:

T h e o r e m 3.1 The Chebyshev Polynomial Tm(t) has m zeros and m + 1 local ex-

trema in [—1,1].
The zeros are:

(i - -)ir
tj = cos- j = l , 2 , . . . , m (3.3)

m

The extrema are:

Z7T
U = cos—, i = 0, l , . . . , m (3.4)

Note that all the zeros are interior to [—1,1], while there are two extrema at the

endpoints ± 1 , and m — 1 "true" alternate maxima and minima where the first

derivative is 0.

3.2 Approximation Theory

As described before, polynomials are among the simplest classes of functions in

the sense that they can be easily specified, compactly represented, and efficiently

evaluated. However, there exist many other functions that are complex in nature.

This is where approximation comes in - it is useful and sometimes essential to

34

approximate any given function / by a much simpler function /*, such that the

approximating value f*(x) is very close to the corresponding real value f(x). In

this section, we shall review the fundamental concepts of approximation theory,

with an emphasis on uniform (minimax) approximation, and then introduce the

minimax property of Chebyshev Polynomials.

The approximation theory consists of three major components:

1. A function class J- (containing all the functions to be approximated).

2. A form (for the approximation function /*) that is parameterized by a few

adjustable coefficients. This defines a set A of possible approximations to the

3. A norm || • || (of the approximation error) that measures how good the approx­

imation is. That is, | | / — /*| | defines the closeness of /* to / .

There exists a vast body of literature on how to define different approximation

problems by making appropriate selections of these components, however, in this

thesis, our main focus is as follows:

1. Function class T = Cp[a, b], that is, the set of £ p-integrable functions on [a, b],

defined by:

given / .

T = Cp[a,b] = {h(x) for which / w(x)\h(x)\p dx exists} (3.5)

where w(x) is a given nonnegative weight function, and 1 < p < oo.

2. Form

A = I I m = {f*(x) = Pm(x) = a0 + aix + • • • + amxm} (3.6)

where the adjustable coefficients are ao,. . . , a,

35

3. Norm || • || = \\h\\p = £ p -norm where

(3.7)

Specifically, the Chebyshev (minimax) norm is:

\\h maxa<x<b\h(x)\ (3.8)

With respect to a specific function class, a form, and a norm, we are particularly

concerned with the following questions:

1. What is a best approximation?

2. Does there always exist a best approximation?

3. Is the best approximation unique?

4. How do we construct a best approximation?

Our polynomial approximation problem, as defined by Equations (3.5) through

(3.8), is one of the classical problems in the literature. In the remainder of this

section, we shall cite a few theorems to characterize the properties of a best ap­

proximation, and delay the discussion of (4) to a later section. A l l the theorems are

by themselves very important in numerical analysis, and they require an extensive

amount of mathematical proof for which we shall refrain from going into details.

Definition 3.2 An approximation fg in A is a best approximation to f if, for

any other approximation f* in A,

In the case of Coo-norm, we often use the terminology minimax in place o/best.

u/-/sii<n/-r

36

Note that the above definition only shows what a best approximation looks like, but

says nothing about whether one exists at all or whether there is more than one for

the same function. The next Theorem establishes the existence and uniqueness of

the best (polynomial) approximation.

Theorem 3.2 (Weierstrass's Theorem) For any given continuous function f

and for any given e > 0, there exists a polynomial Pm for some sufficiently large

m such that \\f — Pm\\p < e for any p > 1. Furthermore, there exists a unique

best polynomial approximation to any function f £ Cp[a,b] in the Cp-norm, where

w(x) = 1 in the case p —* oo.

Best approximations also exist in £ p -norm on finite point sets for 1 < p < oo and

are unique if and only if p > 1. Such Cp norms are defined by:

l l / - / l p = [X>i|/(zi)-/>i) l p]*
i = i

where {w^fLx are positive scalar weights and {xi}f=l is a discrete set of fitting

points.

In particular, Theorem 3.2 guarantees the existence of a unique best approx­

imation in the minimax norm; however, it does not tell us how to recognize such an

approximation. Rather surprisingly, it is possible to do so explicitly, as the following

powerful Theorem illustrates.

Theorem 3.3 (Alternation Theorem for Polynomials) For any continuous

function f a unique minimax polynomial approximation Pm exists and is uniquely

characterized by the "alternating or equioscillation property" that there are at least

m + 2 points in [a,b] at which f(x) — Pm(x) attains its maximum absolute value with

alternating signs.

37

It is clear from Theorem 3.1 and Figure 3.1 in Section 3.1 that the Chebyshev

Polynomial Tm(t) has m + 1 extrema with alternating signs on the interval [—1,1].

By invoking Theorem 3.3, we have:

Theorem 3.4 The polynomial 21~mTm(t) is the minimax approximation on [—1,1]

to the zero function by a monic polynomial of degree m.

3.3 Orthogonality

In the last section, we showed that their minimax property have earned Cheby­

shev Polynomials a key position in the development of approximations. On the

other hand, Chebyshev Polynomials also possess another equally important prop­

erty, namely, they are a family of orthogonal polynomials. The orthogonality of

those polynomials, in addition to having a strong linkage with £2 (or least-squares)

approximations, lends itself to the subject of series expansions.

Definition 3.3 Two functions f(x) and g(x) in £.2[a,b] are orthogonal on the in­

terval [a,b] with respect to a given continuous and nonnegative weight function w(x)

then the orthogonality condition (3.9) is equivalent to saying that f is orthogonal to

if

(3.9)

If we use the "inner product" notation

(3.10)

9 if

(f, 9) = 0. (3.11)

38

Furthermore, with this notation of inner product, the C2-norm is

\h\\ = \\h\\2 := yft^h). (3.12)

Definition 3.4 A family of polynomials {(f>i(x) : i = 0 ,1 , . . . } is orthogonal on the

interval [a,b] with respect to a given continuous and nonnegative weight function

w(x) if and only if for each i = 0,1, . . . , and j = 0 ,1 , . . .

1. 4>i[x) is of degree i.

2. (c6i(x)>0i(aO> = °>

3. = ll&ll2 > 0 .
The family is orthonormal if, for all i, (4>i(x),4>i{x)) = 1 = ||c/>i||2.

If we define the inner product (3.10) using the interval and weight function

[a,6] = [- l , l] , w(t) = (l - t 2) - l 2

then the following theorem holds for the inner product between Chebyshev Polyno­

mials:

Theorem 3.5

(Ti,Tj)=

0 ifi + j

1 ifi = j^0

n if i = j = 0

(3.13)

The system {Ti} is therefore orthogonal with respect to w(t) but not orthonormal.

Hereafter we shall refer to

w(t) = (i - t2yh

as the Chebyshev weight function.

39

3.4 Series Expansions

One of the best ways to approximate a given function is to expand-it in terms of

infinite series of an orthogonal family of simpler functions. Indeed, many expansion

techniques have been studied before, including the familiar Taylor series, Laurent

series and Fourier series. We may write the Chebyshev series expansion of a given

function /(£) as

where S^if) denotes the partial sum of the infinite series ST-)(f).

The following Theorem asserts that S^,(/) is in fact £2-convergent with

respect to the Chebyshev weight function, provided that / is £2-integrable with

respect to the same weight function.

Theorem 3.6 / / f(t) is ti-integrable with respect to the inner product (3.10), then

its Chebyshev series expansion (3.14) converges in £2, in other words,

00

(3.14)

j\l-t>)-\[f(t)-Sl(m)?dx^Q as m 00

Thus, we may write:
00

/(*) = $£(/)(*) = EC*3H*) (3.15)
i=0

It follows, by taking inner products with Tj, that

00

(f,Tj) = Y,ci(Ti,Tj) = cj{Tj,Tj)
i=0

since (Ti,Tj) — 0 for i ^ j. Therefore,

3 Irn. rp\ (3.16)

(3.17)

40

j = WW) = - / - i T f ^ F f o r J - (3 - 1 8)

Note that in the above formulae, for Co and Cj ' s , the constants differ by a factor of

2. This is a direct consequence of the second and third cases shown in Theorem 3.5

(i.e., 7r versus 7r/2).

For a particular degree m, the error function for the partial sum S^f is

emf = I ~ Smf a n d it satisfies:

K / l l 2 = (f-SlfJ-Slf)

= (f,f)-2(f,ST

lf) + {SL]f,SU)

= l l / l | 2 - 2 E ^ 0 c i m ! /) + E £ o c f (T i , T i)

2 _ o r m p-TLr- 4- V m

2 ' 7r v ^ m „2

From Theorem 3.6, eL\f —> 0, as m —> oo, therefore, we obtain an important

convergence Theorem for Chebyshev Coefficients:

Theorem 3.7

£ ^ = ^ l l / l l 2 = ^ / 1 (1 - * 2) " ' / 2 (*) * - (3-19)

41

Chapter 4

Indexing wi th No False

Negatives

In this Chapter, we focus on 1-dimensional spatiotemporal trajectories, that is,

time series. In Chapter 5, we shall generalize our framework to higher dimensional

trajectories. Figure 4.1 summarizes all the symbols used in this thesis.

Given a collection of time series of length N, we intend to represent each

time series by its Chebyshev approximation of degree m, with m <g; N. To facilitate

fast searching, the n = m + 1 Chebyshev coefficients are to be stored in a multi­

dimensional index structure. As such, n is typically small, say below 25.

To show that indexing the time series is reduced to indexing their Chebyshev

coefficients, we follow the GEMINI framework [9]. We first establish a distance

metric for the Chebyshev coefficients. In this thesis, we use the Euclidean distance

(denoted as Disteuc) to measure the distance between two time series S i ,$2- We

propose in Section 4.4 a natural Euclidean variant (denoted as Distcby) for measuring

the distance between the two corresponding vectors of Chebyshev coefficients C\,C2-

42

Notations Meanings

Tm{t) Chebyshev Polynomial of degree m
m the degree of the polynomial Tm (t)

also the degree of the approximated polynomial
n the number of Chebyshev coefficients, i.e., n = m + 1
c» the coefficient of Ti(t) in an approximation
M the number of trajectories
N the (padded) length of each trajectory
d the dimensionality of the trajectories
V a vector of arity d
S a spatiotemporal trajectory ((i i , v±),..., (tjv, wjv))

C the vector of n Chebyshev coefficients for S

/(*) an interval function defined for trajectory S

Disteuc Euclidean Distance

Disteucw Weighted Euclidean Distance

Figure 4.1: Summary of Notation

We then establish the important Lower Bounding Lemma in Section 4.5:

Distcby(Ci,C2) < Disteuc(Si,S2)

This lemma is critical in guaranteeing no false negatives in using the index as a

filter. And the tighter the lower bound, the smaller is the number of false positives.

4.1 Assumptions

Concerning the studies of time series and trajectories in the literature, the following

assumptions may be made:

• Same-length: That every time series has the same length, i.e., N time points.

• Power-of-2: That every time series has a length 2k for some positive integer

k.

• Same-set: That every time series has the same set of time points { t i ; . . . , t^}.

Thus, this assumption automatically includes the same-length assumption.

However, the width between a pair of successive time points U and U+\ is not

necessarily the same as the width between any other pair.

43

• Same-set-uniformly-spaced: This extends the same-set assumption to re­

quire that the width between a pair of successive time points be the same

everywhere, i.e., (£; — = (U+i — *i) for i = 2 , . . . , iV — 1.

In this study, like most frameworks on trajectory matching, we make the

same-length assumption. If the time series are not of the same length, padding tech­

niques may be applied (see Matlab for example). Unlike some other frameworks,

like wavelet decompositions [7, 58, 17, 37], we do not require the power-of-2 assump­

tion. Furthermore, we make the same-set assumption to make the ensuing analysis

easier. If this assumption is not met, interpolation techniques may be applied. The

results to be presented in this thesis do not require the same-set-uniformly-spaced

assumption.

4.2 Chebyshev Approximation of a Time Series

Given a time series, we begin with the computation of the Chebyshev coefficients.

However, Equations (3.17) and (3.18) are not immediately applicable because the

given formulae are restricted to interval functions. By "interval functions", we mean

functions whose domain is an interval (in our case, the interval [-1,1])- The function

may or may not be continuous, but is defined everywhere over the interval.

In contrast, the time series is a discrete function, as the domain is a discrete

set, rather than an interval. Specifically, let the time series be S = ((t\,vi),..., (tjv, v^))

where — l < i i < . . . < £ j v < l . (Recall that time t is normalized into the range

[-1,1].) This can be rewritten in functional form below:

S(t) =
Vi if t — ti

(4.1)
undefined otherwise

44

To apply Equations (3.17) and (3.18), we need to extend the above discrete

function into an interval function. We first divide the interval [—1,1] into N disjoint

subintervals as follows:

' [- 1 , ^) if * = 1

[h^±th+h±x) if 2 < i < AT - 1 (4.2)

[t N-* 2

+ t N, 1]]fi = N

A n obvious choice for an interval function would be the following step func­

tion:

g(t) = Vi if t € Ii, (for 1 < i < N) (4.3)

To create an interval function based on the original time series in Equation

(4.1), the above function defines the previously undefined parts as follows. Between a

pair of successive time points ti and ti+\, the mid-point t l + t ^+ 1 is used as a "divider" -

the first half retains the value Vi, while the second half adopts the value vi+i. Special

attention is paid to the boundary conditions: i i with respect to the left end-point

of the interval, and with respect to the right end-point.

While the above function is simple, it does not immediately satisfy the Lower

Bounding Lemma. A key result to be proven later in this thesis is that the lemma is

satisfied with the inclusion of the Chebyshev weight function (defined in Section 3.3)

and the length of each subinterval:

/(*)= (f o r l < i<A0 (4.4)
y/w(t)\Ii\

where g(t) is as defined in Equation (4.3) and |it| is the length of subinterval Ii.

At this point, we need to use an known result in integral calculus [51]:

Lemma 4.1 A function is integrable over interval [a,b] if it is bounded and has a

finite number of discontinuities on [a,b].

45

Now, by applying Equation (4.4) and Lemma 4.1 we can claim that:

Lemma 4.2 f(t) is C^-integrable with respect to the Chebyshev weight function.

Because f(t) is also an interval function, we can use the formulae to compute

the coefficients of the Chebyshev approximation. Furthermore, for better approxi­

mation quality, we can use all ./V data points and values of the time series. Of course,

to reduce dimensionality, we only keep the first n = m + 1 Chebyshev coefficients

for indexing. More specifically, we have the following formulae:

(4.5)

for all 1 < i < (n - 1).

For a complex function f(x), it might not be easy or efficient to evaluate

the integrals exactly. We would rather evaluate them numerically using Gauss-

Chebyshev quadrature.

Theorem 4.1 For any C^-integrable function F(t) with respect to the Chebyshev

weight function w{t),

JX_w{t)F{t)dt~^F{ti) (4.6)

where tj = cos^ ^ (j = 1,2,... , N) is the jth root o/T/v(i), as in Equation (3.3).

Thus, the discretized version of Equation (4.5) is:

co = jjZU f(h)To(ty) = kzULi f(tj)
(4.7)

d = # £ £ = 1 f(tj)Ti(tj), l < i < (n - l)

It should be obvious that the complexity of computing each Cj is O(N).

Thus, the total complexity for approximating a time series is 0(nN) for computing

46

DFT v.s. P A A v.s. A P C A v.s. C H E B Y approximations
2.5 I 1 1 1 1 1 1 1

t

Figure 4.2: A Comparison of Approximation Schemes (n = 4)

all n coefficients. Because n is intended to be a small constant (e.g., < 25), the

complexity for Chebyshev approximation can thus be regarded as O(N).

4.3 An Example

Figure 4.2 and Figure 4.3 show the time series of the opening stock price of a Fortune

500 company called A L C O A (ticker symbol: AA) for the period from February 28,

1978 to October 24, 2003 (for a total length of 6480 trading days). For n = 4,

Figure 4.2 shows the original time series, and the Chebyshev, D F T , P A A and A P C A

approximations. Figure 4.3 shows the approximations for n = 8. The x-axis is

normalized to the interval [-1, 1], and the y-axis is normalized according to the

A P C A framework.

47

DFT v s . P A A v s . A P C A v.s. C H E B Y approximations
2.51 , , , , , , ,

-1 - 0 .8 -0 .6 -0.4 - 0 . 2 0 0.2 0.4 0.6 0.8 1
t

Figure 4.3: A Comparison of Approximation Schemes (n = 8)

Note that, if n is a power of 2, the P A A approximation is exactly the same

as the wavelet transform. Also note that under A P C A , because each piece is not of

equal length, each piece requires two values for storage. Thus, for n = 8, there are

only 4 pieces under A P C A , as opposed to 8 pieces under P A A (and 8 coefficients

for the Chebyshev approximation and DFT) .

From the two Figures, it is easy to see that the Chebyshev approximation

is different from the others. However, just based on the naked eye, it is hard to

observe the minimax property of the Chebyshev approximation. Table 4.1 shows

the maximum deviation under the various schemes, normalized into the y-range of

[-2, 2.5].

The second and third column of the table show the situation for n = 4 and

n = 8 respectively. Notice that for D F T as n increases, there is no guarantee that

48

Approximation Maximum Maximum
Scheme Deviation (n = 4) Deviation (n = 8)
Chebyshev 1.88 1.84
D F T 2.00 2.09
A P C A 2.35 2.23
P A A 2.31 2.28

Table 4.1: Maximum Deviations for Different Approximation Schemes

the maximum deviation decreases. Having said that, the general trend is that the

maximum deviation decreases as n increases, as exhibited by the other schemes. In

any event, for both values of n, the maximum deviation of the Chebyshev approxi­

mation is by far the smallest among the ones shown.

4.4 A Metric for Chebyshev Coefficients

Given two time series S i , S2, the previous section shows how to compute their cor­

responding vectors of Chebyshev coefficients, denoted by 61,62 respectively. The

next task is to define a distance function between the two vectors. Such a definition

depends on the distance function used for the original time series S i , £2-

Definition 4.1 Let Si, £2 be two time series of length N, and let 61,62 be the

corresponding vectors of Chebyshev coefficients. Specifically, let C? = [ao,..., am]

and Cj = [60, • • • ,bm]. (T denotes the transpose of the vector.) Define:

Distcby(Ci,C2) =
\

m
^ (o i - f t i) 2 (4-8)

The distance function Dist^y is basically a Euclidean distance function on

the coefficients. It is weighted by the constant | for the eventual Lower Bounding

Lemma to work out. The following lemma is obvious.

49

Lemma 4.3 Distcby is a metric distance function.

4.5 The Lower Bounding Lemma

We are now in a position to establish the Lower Bounding Lemma: Distcby (C\, C 2) <

Disteuc(S\,S2).

Given S\ = ((t i . i t i) , . . . , (tN,uN)), and S2 = ((ti, t>i),..., (tiv.vjv)), we

consider the time series Z = ((t\,ui — v\), ..., (£#,UN — VN))- Let zj = Uj — Vj for

all 1 < j < N. Then it is clear that the Euclidean distance between S\,S2 satisfies

the following equality:

£>wtLc (Si ,5 2) = Y , { u] - v j f = Yjz2

j (4.9)

Recall from Section 4.2 how an interval function is defined for a time series.

Let the interval functions corresponding to S\, 5 2 and Z be /1, / 2 and fz respectively.

The lemma below is easy to establish by following Equations (4.3) and (4.4) in

Section 4.2.

Lemma 4.4 For a l H e [-1,1], fz(t) = fi(t) - f2(t).

Proof: Vz = 1,..., N, let x € Ii be arbitrarily given.

vSfc' " [E q u a t i o n (4-4)] •
= V^ f tM [Equation (4.3)]

= vSta [Definition of Z]

= h[x)-f2lx) [Equation (4.4)]

•

50

The above lemma can then be used to establish a useful result for Cheby­

shev approximation. Let us consider the Chebyshev approximation of Z based on

Equation (4.7). Let the corresponding vector of Chebyshev coefficients be denoted

as Cz- Given that Z is the "difference" between Si,S2, the following lemma says

that the vector of Chebyshev coefficients preserves the difference.

Lemma 4.5 Let Ci,C2 and Cz be the vectors of Chebyshev coefficients for Si,S2

and Z respectively. Specifically, let C f = [oo,..., a m] , C2 = [bo, • • •, bm] and =

[co,..., Cm]. Then for all 0 < i < m, it is the case that Cj = aj — b{.

Proof: In the following, we only focus on c; for 1 < i < m; the situation is almost

identical for CQ.

Ci = £ £ f = i fzitjWitj) [Equation (4.7)]

= %Z"=i[h(tj)-f2(tj)]Ti(tj) [Lemma 4.4]

= ai — bi [Equation (4.7)]

•

Based on the above lemma and Definition 4.1, it is clear that:

m oo

Distlby(CuC2) = fE c?<|E ci (4-!0)
Z i=0 Z i=0

Lemma 4.2 tells us that, the function f(t), as defined in Equation (4.4), is £2-

integrable with respect to the Chebyshev weight function. By invoking Theorem 3.7

in Chapter 3, we can finally put the various pieces together and conclude with the

following theorem.

Theorem 4.2 (The Lower Bounding Lemma) Let Si, S2 be two time series,

and Ci,C2 be the corresponding vectors of Chebyshev coefficients. Then:

Distcby(Ci,C2) < Disteuc(Si, S2)

51

Proof:
Dist'iCxA) < | E £ 0 c 2 [Equation (4.10)]

= J^Jji^dt [Theorem 3.7]

= EjLi\Ij\^ [Equation (4.4)]

- 72

= Dist2

euc(S1,S2) [Equation (4.9)]

•
1 f2 (t) M z2

Notice that a key step in the above proof is / _ x ^dt = Ej=i \Ij I

This is due to the fact that the integrand is a step function, and hence stepwise

integrable. The result of the integration at each step is the area under the curve,
z2

which is the width |7j| multiplied with the height j^, that is, z2.

4.6 E x t e n s i o n t o the W e i g h t e d E u c l i d e a n F r a m e w o r k

In this Section, we shall extend the strict Euclidean framework into a generalized

weighted version.

Definition 4.2 For any two time series S\ = ((£1, ui),..., (tjv, UN)) and S2 =

((t\,vi),..., (tpf,vpf)), the weighted Euclidean Distance between them is:

N

^ £ W i (« i - V i) 2 (4-11) DisteuCw(Si,S2) =

where { W j } ^ are nonnegative scalar weights.

We redefine the function g(t) (as in Equation (4.3)) as follows:

g(t) = y/WiVi if t e Iit (for l<i<N) (4.12)

52

where subintervals {Jj}^. 1 are defined in Equation (4.2).

. We then define another function f(t) as:

f(t) = - ^ = at eh (iovi<i<N) (4.13)

It is clear that fit) is yCVintegrable with respect to the Chebyshev weight function.

Therefore, we can apply Gauss-Chebyshev quadrature (Equation (4.6)) to obtain:

(4.14)
Ci =

2_
N Ef= i HtjWfa), l < i < (n - l)

where tj = c o s ^ - ^ (j = 1,2,. . . , N) is the jth root of TN(t).

Definition 4.3 Let S i , £2 be two time series of length N, and let 01 ,62 be the

corresponding vectors of Chebyshev coefficients obtained by applying Equation

(4.12) through Equation (4.14). Specifically, suppose Cf = [ao,... ,am] and C2 =

[bo,..., bm}. (T denotes the transpose of the vector.) Define:

Distcbyw(Ci,C2) =

Thus, the Lower Bounding Lemma for the weighted Euclidean framework is:

m

Z i=0

Theorem 4.3 Let S i , S2 be two time series, and Ci,C2 be the corresponding vec­

tors of Chebyshev coefficients. Then:

Distcbyw(Ci,C2) < Dist
eucw (Si,S2)

Proof: Let Z = ((h,zi),..., (£JV, <ZJV), where Zj — Uj — Vj for j — 1,. . . , N. Note

that, if the interval functions corresponding to S i , S2 and Z are fi, f2 and fz

respectively (Equations (4.12) and (4.13)), then both Lemma 4.4 and Lemma 4.5

53

are also valid for our weighted Euclidean framework. Therefore,

Dist2

cbyJCuC2) < fESoA2 [Equation (4.10)]

= j \ J ^ d t [Theorem 3.7]

= E^il^mf^ [Equation (4.13)]

= E f = i ^ 2

= Dist2

euc(Si,S2) [Equation (4.11)]

54

Chapter 5

I n d e x i n g M u l t i d i m e n s i o n a l

T r a j e c t o r i e s

So far, we have established indexing based on Chebyshev approximation for 1-

dimensional time series. In this Chapter, we extend the framework to d-dimensional

(d > 1) spatiotemporal trajectories. Then we present algorithms for indexing and

kNN searches.

5.1 Lower Bounding for the Multidimensional Case

Let S be a d-dimensional spatiotemporal trajectory of the form ((ti, vi),..., (t^, u/v)),

where Vi is of arity d. Let the d dimensions be {Dim\,..., Dim^}. Then S is decom­

posed into d 1-dimensional series: Srjimi > • • • > ^Dimd' Let each of these series Srjimi

be approximated and represented with the vector (7, of Chebyshev coefficients. The

vector Ci is of arity n,, and needs not be of the same arity as Cj for j i. Finally,

let C be the vector of Chebyshev coefficients for 5, i.e., CT = [C[, • • •, Cj].

We generalize Definition 4.1 to give a metric distance function between two

55

vectors of Chebyshev coefficients for two d-dimensional trajectories.

Definition 5.1 Let S,R be d-dimensional spatiotemporal trajectories. Let their

vectors of Chebyshev coefficients be CT = [Cf,..., Cj] and DT = [Df,..., D%]

respectively. Define:

The following corollary is a simple extension of Theorem 4.2 generalizing the

the Lower Bounding Lemma from 1-dimensional to d-dimensional trajectories. This

is because the d-dimensional distance is based on the sum-of-squares distances along

each dimension.

5.2 Algorithms for Building and Searching A Single In-

Having established the Lower Bounding Lemma in Corollary 5.1 for the d-dimensional

case, we can build an index of Chebyshev coefficients. Figure 5.1 shows a skeleton

of an algorithm which takes M d-dimensional spatiotemporal trajectories, obtains

the Chebyshev coefficients for each trajectory, and inserts the vectors of coefficients

into a multidimensional index.

Recall from Section 4.2 that the complexity of step (4) of the algorithm is

O(N), where N is the length of each trajectory. Thus, it is clear from Figure 5.1

that building the index takes 0(dMN) time.

Corollary 5.1 Let S,R be d-dimensional spatiotemporal trajectories, and C,D be

the corresponding vectors of Chebyshev coefficients. Then:

Disced) < Disteuc{S,R)

dex

56

Algorithm BuildOneIndex(£)B, Index, n\,... ,nd) {
/* input: a database DB of M d-dimensional trajectories */
/* input: Index, a multidimensional index which may already

contain some entries */
/* input: ni (1 < % < d) denotes the number of Chebyshev

coefficients to be used for the ith dimension */ .
/* output: the trajectories approximated and added to Index */
for each trajectory S {

(1) initialize C to be empty
(2) project S to its d dimensions {Dim\,... ,Dimd}

creating SDimiSDimd

(3) for (1 < i < d) {
(4) apply Equations (4.2) to (4.7) to SDimi

(5) add all the computed ni coefficients to C
} /* end for-loop */

(6) insert the coefficients in C as a single
multi-dimensional point .into Index

} /* end for-loop */
} /* end algorithm */

Figure 5.1: Algorithm for Building a Single Index of Chebyshev Coefficients

Next we consider range and kNN searches. In both cases, the search is rather

straightforward, following the GEMINI framework [9]. Figure 5.2 shows a skeleton

of the range search algorithm, and Figure 5.3 shows a skeleton of the kNN search

algorithm.

5.3 A l g o r i t h m s for B u i l d i n g a n d S e a r c h i n g M u l t i p l e In­

d ices

A keen reader would notice that the algorithm presented in Figure 5.1 does not scale

very well with the dimensionality of the trajectories. For' example, if the trajecto­

ries have a dimensionality of 10, then even as few as four coefficients per dimension

would result in an index of 40 dimensions, which is clearly unacceptable, due to

the dimensionality curse problem of multidimensional indices. In this Section, we

57

Algorithm RangeSearchOneIndex(Q, Index, r) {
I* input: a d-dimensional query trajectory Q */
/* input: the index of Chebyshev coefficients Index */
/* input: a radius r for range search */
/* output: all trajectories within distance r of Q

with respect to Disteuc */
(1) apply Equations (4.2) to (4.7) to obtain the vector of

coefficients for Q
(2) find all trajectories in Index within distance r of Q using Distcoy

(3) retrieve from disk the corresponding (full) trajectories
(4) compute the true distances using Disteuc and

discard all the false positives
} /* end algorithm */

Figure 5.2: Algorithm for a Range Search in a Single Index

shall propose an alternative approach, in which we "distribute" the Chebyshev coef­

ficients of trajectories to multiple indices instead of using a single index. Figure 5.4

illustrates how we build multiple indices based on the Chebyshev coefficients of each

trajectory in a collection of M d-dimensional spatiotemporal trajectories. Figure 5.5

gives an algorithm for range search, and Figure 5.6 is for kNN search.

Note that, in Step (5) of Figure 5.4, there are many ways to choose I. In fact,

there are exponentially many ways to distribute the sets of Chebyshev coefficients

to indices, and we shall leave the optimization of distributions as a topic of future

research.

5.4 P r o p e r t i e s o f C h e b y s h e v I n d e x i n g

Recall from Section 1.2.3 that we have outlined a list of desirable properties for

indexing techniques. In this Section, we shall argue that Chebyshev indexing satisfies

all those criteria:

• Indexing is intrinsically much faster than sequential scanning in terms of query

58

Algorithm kNNSearchOneIndex(Q, Index, k) {
/* input: a d-dimensional query trajectory Q */
/* input: the index of Chebyshev coefficients Index */
/* input: k a positive integer */
/* output: the k most similar trajectories to Q

with respect to Disteuc */
(1) apply Equations (4.2) to (4.7) to obtain the vector of

coefficients for Q
(2) find the /c-nearest neighbours to Q in Index using Distcby

(3) retrieve from disk the corresponding (full) trajectories
(4) compute the true distances using Disteuc and

record the maximum max
(5) invoke the range search RangeSearchOneIndex(Q, Index, max)
(6) retrieve from disk the corresponding (full) trajectories
(7) compute the true distances using Disteuc and

retain the nearest k trajectories
} /* end algorithm */

Figure 5.3: Algorithm for a kNN Search in a Single Index

performance, since it partitions the search space into hierarchical components

and does not require access to every data page. As long as the dimensionality

is not too high, indexing always dominates sequential scanning. This is also

confirmed by our experimental results in Chapter 6.

• As n is quite small, our indexing structure does not take much space and is

supposed to be memory resident.

• Chebyshev indexing allows both whole matching and subsequence matching.

• For each trajectory in the database, we compute its Chebyshev coefficients

based only on the trajectory itself. Unlike SVD, Chebyshev approximation is

incremental.

• No false negatives are guaranteed (Theorem 4.2 and Corollary 5.1).

• It is clear to see from Figure 5.1 that the index building process takes 0(dMN)

59

Algorithm BuildMultipleIndices(DB, Indexi,..., Indexg, m,...,rid) {
/* input: a database DB of M d-dimensional trajectories */
/* input: Indexi,..., Indexg, g indices which may already

contain some entries */
/* input: rij (1 < i < d) denotes the number of Chebyshev

coefficients to be used for the ith dimension */
/* output: the trajectories approximated and indexed */
for each trajectory S {

(1) initialize C\, • • •, Cg to be empty where Cj is
the collection of coefficients to be inserted into Index j

(2) project S to its d dimensions {Dimi,..., Dinid}
creating SDimi, • • •, Soimd

(3) for (1 < i < d) {
(4) apply Equations (4.2) to (4.7) to Spirm

to get the set of Chebyshev coefficients Vi for Soim,
(5) add all the coefficients in Vi to C; for some I

} /* end for-loop */
(6) for (1 < j < g) {
(7) insert the coefficients in Cj as a single

multidimensional point into Index j
} /* end for-loop */

} /* end for-loop */
} /* end algorithm */

Figure 5.4: Algorithm for Building Multiple Indices of Chebyshev Coefficients

time. Thus, Chebyshev indexing is scalable with respect to all of d, M and N.

• As shown in Chapter 4, our framework can handle both the Euclidean distance

and the weighted Euclidean distance.

60

Algor i thm RangeSearchMultipleIndices(Q, Index\,..., Indexg, r) {
/ * input: a d-dimensional query trajectory Q * j
/ * input: the indices of Chebyshev coefficients * /
/ * input: a radius r for range search * /
/ * output: a l l trajectories wi th in distance r of Q

with respect to Disteuc */
(1) apply Equations (4.2) to (4.7) to obtain the vector C of

coefficients for Q
(2) for (l<j<g){
(3) project C onto the dimensions on which Indexj is based
(4) find all trajectories in Index j wi th in r of Q using Distcby

(5) retrieve from disk the corresponding (full) trajectories
(6) compute the true distances using Disteuc and

discard all the false positives
} / * end for-loop * /

} / * end algorithm * /

Figure 5.5: Algorithm for a Range Search in Multiple Indices

Algor i thm kNNSearchMult ipleIndices(Q, Indexi,... ,Indexg, k) {
/ * input: a d-dimensional query trajectory Q */
/ * input: the indices of Chebyshev coefficients * /
/ * input: k a positive integer * /
/ * output: the k most similar trajectories to Q

with respect to Disteuc */

(1) apply Equations (4.2) to (4.7) to obtain the vector C of
coefficients for Q

(2) initialize set U to be empty
(3) for (1 < j < g) {
(4) project C onto the dimensions on which Indexj is based
(5) find the fc-nearest neighbours to Q in Indexj using Distcby

(6) add those neighbours into set U
} / * end for-loop * /

(7) retrieve from disk the corresponding (full) trajectories
(8) compute the true distances using Disteuc and

record the kih smallest distance ks
(9) invoke the range search

RangeSearchMultipleIndices(Q, Index\,..., Indexg, ks)
(10) retrieve from disk the corresponding (full) trajectories
(11) compute the true distances using Disteuc and

retain the nearest k trajectories
} / * end algorithm * /

Figure 5.6: Algorithm for a kNN Search in Multiple Indices

61

Chapter 6

E x p e r i m e n t a l E v a l u a t i o n

6.1 Data Sets and Programs Used

We conducted an experimental evaluation on many real data sets. The following

table provides a summary of those reported here.

The Stocks data set consists of the daily opening prices of 500 companies

traded on the New York Stock Exchange for the past 25 years. The data set was

obtained from http://finance.yahoo.com. The E R P data set was provided to us by

Eammon Keogh. Both of these data sets consist of long 1-dimensional time series.

Name Dimensionality Number of Trajectories Trajectory Length
Stocks 1 500 6480
E R P 1 496 6396
N H L 2 5000 256
Slips 3 495 400
Kungfu 3 495 640
Angle 4 657 640

Table 6.1: Data Sets Used

62

http://finance.yahoo.com

The NHL data set consists of .5000 National Hockey League players' 2-

dimensional trajectories, each of length 256 time points. The trajectories were

obtained by digitizing the Philadelphia Flyers' hockey games during the NHL 2001-

2002 season. The data were provided to us by an electronic games company.

The Slips, Kungfu and Angle data sets were obtained from http://www.e-

motek.com/entertainment/index.htm. The site belongs to a company which oper­

ates a motion capture facility for use by electronic game developers and medical

professionals. The Slips data are 3-dimensional positions of body joints of a person

slipping down and trying to stand up. The Kungfu data axe 3-dimensional positions

of body joints of a person playing kung fu. Finally, the 4-dimensional Angle data

record the four angles of the body joints of a person playing kung fu.

The aforementioned data sets vary in dimensionality and length. But they

axe rather small in number (not necessarily in total size). To complement the sit­

uation so that scalability can be tested more thoroughly, we implemented a tra­

jectory generator. Specifically, it uses a simple mixture contamination model, i.e.,

Z(t) = (1 — w)P(t) + wM. Z{t) is the generated 1-dimensional time series. With

a probability of (1 — w) (e.g., w = 0.1), the generated values follow the values of

a polynomial P(t) of a specified degree m (e.g., from 4 to 20). But with a proba­

bility w, Gaussian noise A/"(0,1) is introduced. The polynomial P(t) of degree m

has m roots, which are picked randomly within the range [-1,1]. This polynomial

is then expanded and scaled. For a d-dimensional trajectory, the above generation

procedure is invoked d times to generate the data on each dimension separately.

We implemented Chebyshev approximation in C++, corresponding to Equa­

tions (4.3) to (4.7). Recall from Figure 4.2 that there are various well-known schemes

for time series indexing. As the study in [21] shows convincingly that A P C A is al-

63

http://www.e-
http://motek.com/entertainment/index.htm

most always the best algorithm, we focus our empirical comparison only with A P C A .

We obtained the A P C A code from Eammon Keogh, for which we are thankful. The

A P C A code was implemented in Matlab. We implemented the Buildlndex, Range-

Search and kNNSearch procedures shown in Figures 5.1 to 5.3.

Finally, many multidimensional indexing structures have been developed.

See [10] for a comprehensive survey. For the results reported here, we used the

DR-tree package developed by Christos Faloutsos and his group.

To come up with a "straw man" algorithm for a comparative analysis for d-

dimensional trajectories, we developed another version of the Buildlndex procedure

by replacing line (4) in Figure 5.1 with the A P C A code. Similarly, we developed

A P C A versions of RangeSearch and kNNSearch procedures by basically replacing

line (1) in Figures 5.2 and 5.3 with the A P C A code.

6.2 Comparison Criteria: Pruning Power and Search

Time

Note that because the A P C A code is implemented in Matlab, and line (4) in Buildln­

dex is looped many times, it is unfair to compare the execution times of the two

Buildlndex procedures directly. However, the situation is different for the Range-

Search and kNNSearch procedures. Because line (1) in Figures 5.2 and 5.3 is called

only once per query, we did not measure the execution time of this line, but mea­

sured and compared the execution times of the rest of the procedures. We feel that

this is a fair comparison between Chebyshev and A P C A on their search performance

with indexing taken into account - modulo the time taken to approximate the initial

query.

64

In addition to the execution times, we also compared the pruning power of the

two schemes. Our definition of pruning power is slightly simpler than the one used

by Keogh et al. [21]. Adopting a branch-and-bound strategy, we used a sequential

scan to conduct a kNN search. Specifically, let Si,... ,Sk be the current fc-nearest

trajectories based on their real Euclidean distances to query Q. Let maxeuc be the

maximum distance according to these k current best. For the next trajectory R to

be evaluated, we compare maxeuc with DistcbY(CQ,CR), where CQ,CR denote the

vectors of coefficients of query Q and trajectory R respectively. If smaller,

then by the Lower Bounding Lemma, R cannot possibly be nearer, thus saving one

calculation of the real Euclidean distance Disteuc(Q, R). Otherwise, the real dis­

tance Disteuc(Q, R) is computed and the current fc-nearest trajectories and maxeuc

may need to be updated. Thus, the pruning power essentially measures the percent­

age of saved real Euclidean distance calculations, as a result of the approximation.

Note that this percentage depends on the initial k trajectories. To overcome this

bias, we define the pruning power to be the average percentage of saved calculations

over 10 randomly picked queries.

Apart from search times, we feel that it is essential to compare the pruning

power for two reasons. First, in a search time comparison with indexing included,

there are biases introduced by implementation details, including the choice of the

indexing structure. A pruning power comparison is free of those implementation

biases. Second, as indexing is included in a search time comparison, the dimen­

sionality curse of the indexing structure may dominate at some point, and mask

the true pruning effectiveness of the approximation schemes. The latter is best

measured directly by a pruning power comparison.

65

6.3 Pruning Power Comparison: Real Data Sets

Figure 6.1 compares the pruning power of Chebyshev and A P C A approximations.

The value of A; is 10 (i.e., 10-nearest neighbours). The figure consists of six graphs,

one for each of the six real data sets. In all cases, the x-axis shows varying values of n

(i.e., the number of coefficients allowed in the approximation). Notice that because

A P C A approximates a trajectory with variable-length pieces, each piece requires

two coefficients. Thus, n — 2 for A P C A corresponds to a single piece, which has

little pruning power, and hence is omitted. Furthermore, the A P C A code requires

that the length of a trajectory be a multiple of n. Thus, the values plotted on the

x-axes for the six graphs vary from data set to data set. For example, the NHL

trajectories are each of length 256; the values of n that can be used must be powers

of 2. The y-axis shows the percentage of saved Euclidean distance calculations.

Let us first take a closer look at the two 1-dimensional data sets: Stocks and

ERP. As expected, as n increases, the pruning power increases. For the Stocks data,

as n varies from 4 to 20, the pruning power of Chebyshev approximation increases

from around 35% to about 70%. In contrast, the pruning power of A P C A only

increases from 8% to 30%. In other words, even if 20 coefficients are used for the

A P C A to approximate each trajectory, the pruning power it delivers is less than

what the Chebyshev approximation can deliver with 4 coefficients. Thus, there is

at least a 5-fold improvement in the dimensionality of the approximation. For the

E R P data, as n varies from 4 to 12, the pruning power of Chebyshev approximation

changes from 20% to 35%, whereas that of A P C A changes from 10% to 20%. Thus,

it takes A P C A 12 coefficients to deliver the same pruning power as 4 Chebyshev

coefficients can do.

Let us turn our attention to higher-dimensional trajectories. Note that the

66

I—CHEBY~APCA|

10 12 14 16 18
Number ol Coefficients, n

5? 8 0

£
g 40

I—CHEBY - A P C A |

Number of Coefficients, n

(a) 1-D Stocks data (b) 1-D ERP data

| C H E B Y »APCA|

10 12 14

Number of Coefficients, n

l — CHEBY -"• APCA|

10 12 14 16 18
Number of Coefficients, n

(c) 2-D NHL data (d) 3-D Slips data

g 40^
•E
S

n. 20 H

I—CHEBY—APCAl

10 12 14 16

Number of Coefficients, n
10 12 14 16 18

Number of Coefficients, n

(e) 3-D Kungfu data (f) 4-D Angle data
Figure 6.1: Pruning Power Comparisons: Real 1- to 4-Dimensional Data Sets

67

Stocks * Kungfu « Angle |
140 -,

S 60 -
P
o 40 -
e

p 20 -

0 4 , , , , , , , r—I
4 6 8 10 12 14 16 18 20

Number of Coefficients, n

Figure 6.2: Computing Chebyshev Coefficients

value of n represents the number of coefficients for each dimension. For instance,

for the graph in Figure 6.1(f), n = 20 corresponds to a total of 80 coefficients used

for approximating the given 4-dimensional data. Note that we are not suggesting

that in practice, we should build an 80-dimensional index. Rather, we focus here

on examining pure pruning effectiveness, independent of the index structure. To

continue with Figure 6.1(f), we observe that it takes A P C A 20 coefficients to de­

liver what 4 Chebyshev coefficients can deliver, representing a 5-fold difference in

dimensionality of approximation. Similar observation applies to the 2-dimensional

and 3-dimensional data sets.

6.4 Building Time and the Choice of n

The above discussion focuses on comparing the dimensionality of Chebyshev ap­

proximation and A P C A . Here we focus solely on Chebyshev approximation. In all

the graphs shown in Figure 6.1, the larger the value of n, the higher the pruning

power is. The obvious question to ask then is how large n could be. There are two

key factors. The first factor is the dimensionality of the index, as the dimensionality

68

curse on the index structure may put a limit on the value of n. This issue will be

addressed in Section 6.6.

The second factor is the computation time of Chebyshev approximation.

The key question here is how fast the C P U time taken to compute the Chebyshev

coefficients grows with respect to n. Figure 6.2 answers this question for the 1-

dimensional Stocks data, 3-dimensional Kungfu data, and 4-dimensional Angle data.

We omit the others to save space, as the same conclusion can be drawn. The x-axis

of the graph shows varying values of n, and the y-axis shows the number of seconds

in C P U time to compute the Chebyshev coefficients for all the trajectories. The

machine used was an Intel P C with a single 1.8 GHz processor and 256 Mbytes of

R A M . The timing figures represent averages of 10 randomly picked queries.

Across the three curves in the graph, the absolute time taken is not that

important, as the time depends on the size and length of each data set. What is

important, however, is that for each curve, the time taken is shown to be linear with

respect to n, as predicted from the earlier equations. What is noteworthy is how

small the rate of growth turns out to be, i.e., the slope of the "straight" line. The

reason is that, as shown in Equation (4.7), the bottleneck of the computation of the

coefficients is for computing f(tj) for all 1 < j < N. This computation is done only

once for all the n coefficients. The significance of this observation is that as long as

increasing n delivers additional pruning power, the incremental building cost is not

an obstacle at all. Of course, this does not represent the final verdict on the choice

of n; later in Section 6.6 when indexing is included in our measurement, we shall

return to this issue.

We do not include the building time for A P C A here, as it takes at least an or­

der of magnitude longer. But this is not a fair comparison as A P C A is implemented

69

in Matlab, whereas our Chebyshev code is implemented in C++.

6.5 On Scalability: Generated Data

So far, all the empirical evaluations are based on the real data sets, all of which

are small in M, the number of trajectories. Here we used the generated data sets,

as described in Section 6.1. Figure 6.3 shows a representative situation - based

on a 3-dimensional generated data set with an underlying polynomial of degree 10

and trajectory length of 720. Figures 6.3(a) and (b) compare the pruning power of

Chebyshev approximation and A P C A . The rc-axis shows varying values of data set

size M, and the y-axis shows the percentage of saved Euclidean calculations. To

avoid crowding the graph, we only show the situation when n = 6,12 and 20.

Recall from the earlier pruning power discussion that Chebyshev approxima­

tion can deliver a 3- to 5-fold reduction in the dimensionality of the approximation.

Let us examine the first two graphs in Figure 6.3 to see if the same conclusion can

be drawn for larger data sets. Take M — 2000 as the first example. The pruning

power of Chebyshev approximation using n = 6 coefficients is roughly the same as

the pruning power of A P C A using n = 20 coefficients. Similar observations can

be made for all other values of M shown in the graphs. Thus, this confirms the

superiority of Chebyshev approximation for both real and generated data sets.

Figure 6.3(c) shows that the time taken to compute Chebyshev coefficients

is linear with respect to M. This shows the scalability of Chebyshev approximation.

Furthermore, the graph shows that there is little difference in time whether 6 or

20 coefficients are being computed, confirming an earlier observation surrounding

Figure 6.2. This shows that the computation of Chebyshev coefficients is far more

affected by the data set size M than by the number of coefficients n.

70

KCHEBY(n=6) — CHEBY (n=12) ~ - C H E B Y (n»20)|

g 40

2000 4000 6000 8000 10000
Number of Trajectories, M

(a) Chebyshev pruning power

] -~APCA (n=6) ~APCA(t l»12) - ~ A P C A (n=20)|

g> 40
•E

2000 4000 6000 8000 10000
Number of Trajectories, M

(b) A P C A pruning power

I—n = 6 — n = 12—n»20l

2000 4000 6000 8000 10000
Number of Trajectories, M

(c) Chebyshev building time

Figure 6.3: Scalability: Pruning Power and Building Time

71

["— CHEBY ~ A P C A |
1200 -i

z
200 -I 1 , . 1 1 , , , —

4 6 8 ' 10 12 14 16 16 20
Number of Coefficients, n

(a) 1-D Stocks data: I/O cost

[-•-CHEBY — APCA]
400 T

Number of Coefficients, n

(b) 3-D Kungfu data: I/O cost

I—CHEBY-^APCAj

4 6 8 10
Number of Coefficients, n

(c) 3-D Generated data: I/O cost

KCHEBY^APCAI

10 12 14 16 .18 20
Number of Coefficients, n

(d) 1-D Stocks data: CPU time

| 0.4

O 0.1

I—CHEBY(index) ~ A P C A -*- CHEBY(scan)|

4 6 8 10
Number of Coefficients, n

I—CHEBY (index) —APCA — CHEBY (scan) I

f 22

4 6 8
Number of Coefficients, n

(e) 3-D Kungfu data: CPU time (f) 3-D Generated data: CPU time
Figure 6.4: Search Time Comparison: Indexing Included

72

6.6 Comparisons with Indexing Included

So far, our discussions have not taken account of the indexing structure. The com­

parison between Chebyshev and A P C A is based on pruning power and sequential

scans. In the remainder of this section, we compare these two schemes with indexing

included - in terms of both I/O cost and C P U cost. I/O cost, if reported in seconds,

may depend heavily on implementation and experimentation details, such as buffer

space, speed of a random page read, etc. To eliminate these details, we report I/O

cost as the sum of the number of index nodes/pages accessed and the number of

page reads required to retrieve the specific trajectories needed by the kNNSearch

procedure. We used a page size of lOKbytes.

C P U time includes the time taken to navigate the index nodes, the time taken

to compute the lower bounded distances Distcby(CQ,Cs), and the time taken to

compute the real Euclidean distances Disteuc(Q, S), whenever needed. As discussed

before, the time taken to perform the initial approximation of the query is not

included, due to the fact that the A P C A code is written in Matlab. Even though

the exact C P U time is highly dependent on the size of the data set and the length

of the trajectories, the C P U time can at least be used as a relative measurement

between Chebyshev and A P C A . Like the figures reported on pruning power, the

timing figures reported here on I/O and C P U costs represent the averages over 10

randomly picked queries.

6.6.1 I/O C o s t C o m p a r i s o n

Figure 6.4 shows the I/O and C P U costs for the Stocks data, the Kungfu data and

the 3-dimensional generated data with 10,000 trajectories each of length 720. The

x-axis of the graphs shows the number of coefficients used, n, for each dimension.

73

For graphs (a) to (c), the y-axis shows the I/O cost in page accesses. Given the

differences in length and number of trajectories in each data set, the absolute values

in graphs (a) to (c) are relatively unimportant; what is important are the curves

within each graph.

For the 1-dimensional Stocks data in graph (a), the reduction in page ac­

cesses as n increases flattens off for n beyond 16. For the 3-dimensional Kungfu

data in graph (b), the number of page accesses reaches a minimum when n = 8,

corresponding to a 24-dimensional index. Beyond that, the dimensionality curse on

the index structure sets in, and the number of total page accesses starts to rise. For

the 3-dimensional generated data in graph (c), there is not yet any observed increase

in total page accesses beyond n = 8. However, recall that total page accesses come

from two sources: the number of data pages and the number of index nodes/pages.

As n increases, the former decreases due to the increase in pruning power. In con­

trast, the latter goes up due to increasing dimensionality, and accounts for a larger

and larger percentage of total page accesses. Eventually, the latter dominates the

former.

Dimensionality curse aside, the number of page accesses required by Cheby­

shev approximation in all cases is about 50% to 60% that of A P C A . This improve­

ment is highly consistent with the pruning power results shown earlier in Figure 6.1

and Figure 6.3.

6.6.2 C P U C o s t C o m p a r i s o n

For graphs (d) to (f), the y-axis shows the C P U time taken (in seconds) for the

entire kNNSearch. Within each graph, we show the times taken by Chebyshev and

A P C A , with indexing included. Furthermore, whenever the sequential scan strategy

74

(as described in Section 6.2) becomes competitive, the timing figures for scans are

included as well. The key difference between indexing and sequential scans is that

with the former, the dimensionality curse on the indexing structure will set in sooner

or later. In graph (d), for the 1-dimensional Stocks data, the minimum C P U time

occurs when n — 20. But for the 3-dimensional Kungfu and generated data in graphs

(e) and (f), the minimum C P U time occurs when n = 4 or n = 6 (corresponding to

a 12-dimensional or 18-dimensional index). And if the total time is considered by

summing up the C P U and I /O costs, the best situation is when n = 6.

As expected and consistent with the literature [55], our sequential scan strat­

egy starts to dominate indexing. For graphs (e) and (f), this occurs when n = 10.

As our sequential scan strategy is not optimized, it is conceivable that a more opti­

mized sequential scan procedure may dominate even earlier. Recall from Figure 6.1

that the pruning power continues to grow beyond n = 8. Thus, it is important

to include sequential scans as a viable alternative to indexing for spatiotemporal

trajectories.

For the comparison between Chebyshev and A P C A , again the former dom­

inates in C P U time taken. This is consistent with all the previous comparisons on

pruning power and I/O cost. But besides pruning power, there is an additional

reason why the C P U time for Chebyshev is lower than that for A P C A . As defined

in Definition 4.1, the computation of the distance between two vectors of Chebyshev

coefficients is 0(n). However, based on the distance measure given in [21], the cor­

responding computation between two vectors of A P C A coefficients is in fact O(N)

(where iV is the length of each trajectory), which requires extra C P U time.

75

6.6.3 Recommendations

In closing, we make the following suggestions regarding indexing for d-dimensional

spatiotemporal trajectories. They are based on the DR-tree we used and should be

adjusted depending on the choice of the index structure. For the 1-dimensional case,

using n = 20 Chebyshev coefficients appears to be the best. For the 2-dimensional

case, the suggested value of n is 8-12 for each dimension. The corresponding sug­

gestion is 4-6 for 3-dimensional trajectories. And finally, 4 coefficients for each

dimension are recommended for 4-dimensional trajectories. For higher dimension­

ality, or for additional pruning power, a sequential scan using a higher number of

Chebyshev coefficients is recommended.

6.7 A Single Index vs. Multiple Indices

Until now, the highest dimensionality of trajectories in all the experimental data

sets used is 4, but there are many examples of higher dimensionality in real life. In

this Section, we shall explore the performance of our algorithms with respect to the

dimensionality of trajectories, focusing only on Chebyshev approximation.

We use our trajectory generator to generate five databases, each having

M — 5000 trajectories, N = 500 in length, but with different dimensionalities

(d = 2,4,6,8,10). We compare the performance under three situations (where

n = 3 and 5):

1. Singlelndex corresponds to the scenario where n coefficients are computed for

each attribute and a single index of 3d dimensions is used.

2. Multiplelndices corresponds to the scenario where n coefficients are computed

for each attribute and the coefficients for two attributes are grouped into one

76

index. In total, | indices of 6 dimensions are used.

3. SequentialScan corresponds to the scenario where n coefficients are computed

for each attribute and kNN search is conducted using sequential scan.

Figure 6.5 and Figure 6.6 show the comparisons in terms of pruning power,

I/O cost and C P U cost, respectively. They both display a similar trend as dimen­

sionality increases from 2 to 10. When d is small, putting all the coefficients together

in one' single index appears to be the best, but as d gets larger, the dimensionality

curse sets in, and sequential scanning starts to dominate. It is interesting to note

that, when d > 6, distributing Chebyshev coefficients to multiple indices turns out

to be better than the single index approach, and the difference becomes more ob­

vious as d increases. On the other hand, however, sequential scan is definitely the

winner over the two indexing schemes at very high dimensionalities.

6.8 S u b s e q u e n c e M a t c h i n g

A l l the previous Sections, whether indexing is included or not, whether a single

index or multiple indices are used, are devoted to the problem of whole matching.

In this Section, our focus is subsequence matching, as discussed in Section 2.1.2.

We use our trajectory generator to create a database of M = 500 time series,

each of which has a length of N — 500. Queries of length w = 180 are randomly

generated and radius searches with a radius r = 10 are performed. In total, there

are (N — w + 1) * M — 160500 subsequences of length w.

Note that, in the subsequence matching algorithm described in Section 2.1.2,

both Chebyshev and A P C A can be used for the dimensionality reduction step. In

Figure 6.7, we compare Chebyshev approximation and A P C A approximation in

77

|-*- Singlelndex — Multiplelndices * SequentialScanl

60

Dimensionality ol Trajectories, d

(a) Pruning Power Comparison

- Singlelndex •«-• Multiplelndices " SequentialScan |

2 4 6 8
Dimensionality of Trajectories, d

(b) I/O Cost Comparison

1

I ~-Singlelndex — Multipielndces SequentialScan!

Dimensionality of Trajectories, d

(c) CPU Time Comparison

Figure 6.5: A Single Index vs. Multiple Indices (n = 3)

78

Singlelndex -^Multiptelndices Sequential Scan]

ft 60
o a
g> 40

5

4 6 8 10
Dimensionality ol Trajectories, d

(a) Pruning Power Comparison

I—-Singlelndex —• Mulliplelndices ••— SequentJalScan]

g 4000
«

jj

i 1000

z
4 6 e 10

Dimensionality ol Trajectories, d

(b) I/O Cost Comparison

|— Singlelndex -*-Multiplelndces -*- SequentialScan]

Dimensionality of Trajectories, d

(c) CPU Time Comparison

Figure 6.6: A Single Index vs. Multiple Indices (n = 5)

79

I—CHEBY -~APCA|

| 60

a

j? 40

1

Number o1 Coefficients, n

(a) Pruning Power Comparison

l — CHEBY — APCA|

g 100

I 10 12 14 16 18 20
Number of Coefficients, n

(b) I/O Cost Comparison

HCHEBY — APCA|

10 12 14 16 18 20
Number of Coefficients, n

(c) CPU Time Comparison

Figure 6.7: Subsequence Matching: Pruning Power, I /O costs and C P U cost

80

terms of pruning power, I/O cost and C P U cost, respectively. As expected, the

results are highly consistent with those for whole matching in Section 6.6.

81

Chapter 7

C o n c l u s i o n s

In this thesis, we explore how to apply Chebyshev polynomials for approximating

and indexing d-dimensional spatiotemporal trajectories. Chebyshev polynomials

enjoy the property that they are almost identical to the minimax polynomials; yet

they are easier to compute. Computing Chebyshev coefficients is linear with respect

to the data set size M, as well as to the trajectory length N. Our experimental

results further show that computing extra Chebyshev coefficients takes negligible

time (i.e., increasing n incurs little extra cost).

In order for Chebyshev approximation to be used for indexing, a key analytic

result of this thesis is the Lower Bounding Lemma. To achieve this result, we need

to extend a discrete trajectory into an interval function, so that Chebyshev approxi­

mation becomes applicable. We also need to define a distance function between two

vectors of Chebyshev coefficients.

To evaluate the effectiveness of the minimax property of Chebyshev polyno­

mials on indexing, we conducted an extensive experimental evaluation. From 1- to

4-dimensional, real to generated data, Chebyshev dominates the widely-used A P C A

82

in pruning power, I/O costs and C P U costs. Our empirical results indicate that

Chebyshev approximation can deliver a 3- to 5-fold reduction on the dimensionality

of the index space. That is, it only takes 4 to 6 Chebyshev coefficients to deliver

the same pruning power produced by 20 A P C A coefficients. This is a very impor­

tant advantage. As the dimensionality curse on the indexing structure is bound to

set in sooner or later, Chebyshev coefficients are far more effective than A P C A in

delivering additional pruning power before that happens.

In ongoing work, we would like to extend the Lower Bounding Lemma to

other distance functions, such as the dynamic time-war ping distance [4] and the

longest common subsequence distance [53]. We would also like to expand our frame­

work to conduct sub-trajectory matching. The fixed-window strategy proposed in [9]

is applicable; yet we seek to exploit properties of Chebyshev approximation for fur­

ther optimization. The experimental results reported here are based on using the

same number of coefficients for each dimension. In ongoing work, we would ex­

plore how to allocate a fixed number of Chebyshev coefficients to the d dimensions

according to the "need" of each dimension. Finally, we would explore how to de­

velop an optimized sequential scan algorithm to use in conjunction with Chebyshev

coefficients.

83

B i b l i o g r a p h y

[1] P. Agarwal, L . Arge and J . Erickson. Indexing Moving Points. Proc. 2000

ACM PODS, pp. 175-186.

[2] R. Agrawal, C. Faloutsos and A . Swami. Efficient similarity search in sequence

databases. Proc. of the J^th Conference on Foundations of Data Organization

and Algorithms 1993, pp. 69-84.

[3] R. Agrawal, K . L in , H . Sawhney and K . Shim. Fast Similarity Search in the

Presence of Noise, Scaling and Translation in Time-series databases. Proc.

1995 VLDB, pp. 490-501.

[4] D. J . Berndt and J . Clifford. Using dynamic time warping to find patterns in

time series. Working Notes of the Knowledge Discovery in Databases Work­

shop, 1994, pp. 359-370.

[5] Y . Cai and R. T. Ng. Indexing Spatio-Temporal Trajectories with Chebyshev

Polynomials. Proc. 2004 SIGMOD, to appear.

[6] K . Chakrabarti and S. Mehrotra. Local Dimensionality Reduction: a new

approach to indexing high dimensional spaces. Proc. 2000 VLDB, pp. 89-100.

84

[7] K . Chan and A . Fu. Efficient Time Series Matching by Wavelets. Proc. 1999

ICDE, pp. 126-133.

[8] K . Chu and M . Wong. Fast Time-Series Searching with Scaling and Shifting.

Proc. 1999 PODS, pp. 237-248.

[9] C. Faloutsos, M . Ranganathan and Y . Manolopoulos. Fast Subsequence

Matching in Time-Series Databases. Proc. 1994 SIGMOD, pp. 419-429.

[10] V . Gaede and O. Gunther. Multidimensional Access Methods. ACM Comput­

ing Surveys, 30, pp. 170-231, 1998.

[11] D. Gunopulos and G. Das. A Tutorial on Time Series Similarity Measures and

Time Series Indexing. Proc. 2001 SIGMOD, pp. 243-307.

[12] M . Hadjieleftheriou, G . Kollios, V . Tsotras and D. Gunopulos. Efficient In­

dexing of Spatiotemporal Objects. Proc. 2002 EDBT, pp. 251-268.

[13] M . L . Hetland. A Survey of Recent Methods for Efficient Retrieval of Simi­

lar Time Sequences. Data Mining in Time Series Databases. Kandel, and H .

Bunke, Eds. Singapore: World Scientific, to be published.

[14] T. Imielinski and B. Badrinath. Querying in Highly Mobile Distributed En­

vironments. Proc. 1992 VLDB, pp. 41-52.

[15] H . V . Jagadish. On Indexing Line Segments. Proc. 1990 VLDB, pp. 614-625.

[16] C. Jensen and R. Snodgrass. Temporal Data Management. TKDE 11(1), 1999,

pp. 36-44.

[17] T. Kahveci and A . Singh. Variable length queries for time series data. Proc.

2001 ICDE, pp. 273-282.

85

[18] K . V . R. Kanth, D. Agrawal and A . Singh. Dimensionality reduction for sim­

ilarity searching in dynamic databases. Proc. 1998 SIGMOD, pp. 166-176.

[19] E . Keogh. Exact indexing of dynamic time warping. Proc. VLDB 2002, pp.

406-417.

[20] E . J . Keogh. Efficiently Finding Arbitrarily Sealed Patterns in Massive Time

Series Databases. Proc. 2003 PKDD, pp. 253-265.

[21] E . Keogh, K . Chakrabarti, M . Pazzani and S. Mehrotra. Locally adaptive

dimensionality reduction for indexing large time series databases. Proc. 2001

SIGMOD, pp. 151-162.

[22] E . Keogh and M . Pazzani. A n Indexing Scheme for Fast Similarity Search in

Large Time Series Databases. Proc. 1999 SSDBM, pp. 56-67.

[23] E . J . Keogh and M . J . Pazzani. A simple dimensionality reduction technique

for fast similarity search in large time series databases. Pacific-Asia Conference

on Knowledge Discovery and Data Mining 2000, pp. 122-133.

[24] E . Keogh, K . Chakrabarti, M . Pazzani and S. Mehrotra. Dimensionality re­

duction for fast similarity search in large time series databases. Journal of

Knowledge and Information Systems, 2000, pp. 263-286.

[25] E . Keogh and P. Smyth. A probabilistic approach to fast pattern matching in

time series databases. Proc. 1997 KDD, pp. 20-24.

[26] G. Kollios, D. Gunopulos and V . Tsotras. Nearest Neighbor Queries in a

Mobile Environment. Spatio-Temporal Database Management Workshop 1999,

pp.119-134.

86

[27] G . Kollios, D. Gunopulos and V . Tsotras. On Indexing Mobile Objects. Proc.

1999 PODS, pp. 261-272.

[28] G. Kollios, D. Gunopulos, V . Tsotras, A . Delis and M . Hadjieleftheriou. Index­

ing Animated Objects Using Spatio-Temporal Access Methods. IEEE Trans.

Knowledge and Data Engineering 2001, pp. 742-777.

[29] F . Korn, H . Jagadish and C. Faloutsos. Efficiently supporting ad hoc queries

in large datasets of time sequences. Proc. 1997 SIGMOD, pp. 289-300.

[30] S. L . Lee, S. J . Chun, D. H . K i m , J . H . Lee and C. W . Chung. Similarity

Search for Multidimensional Data Sequences. Proc. 2000 ICDE, pp. 599-608.

[31] J . Kuan, P. Lewis. Fast k nearest neighbor search for R-tree family. Proc. of

First Int. Conf. on Information, Communication and Signal Processing 1997,

pp. 924-928.

[32] J . C. Mason and D. Handscomb. Chebyshev Polynomials. Chapman & Hall,

2003.

[33] Geographic Data Mining and Knowledge Discovery. Research Monographs in

Geographic Information Systems, edited by H . Miller and J . Han, Taylor and

Francis, 2000.

[34] Dimitris Papadopoulos, George Kollios, Dimitrios Gunopulos and Vassilis Tso­

tras. Indexing Mobile Objects on the Plane. DEXA Workshops 2002, pp. 693-

697.

[35] C. S. Perng, H . Wang, S. R. Zhang and D. S. Parker. Landmarks: a new

model for similarity-based pattern querying in time series databases. Proc.

2000 ICDE, pp. 33-42.

87

[36] D. Pfoser, C. J . Jensen and Y . Theodoridis. Novel approaches to the indexing

of moving object trajectories. Proc. 2000 VLDB, pp. 395-406.

[37] I. Popivanov and R. Miller. Similarity Search Over Time Series Data Using

Wavelets. Proc. 2002 ICDE, pp. 212-221.

[38] W . H . Press, B . P. Flannery, S. A . Teukolsky and W . T. Vetterling. Numerical

Recipes: The Ar t of Scientific Computing. Cambridge University Press, 1986.

[39] D. Rafiei. On similarity-based queries for time series data. Proc. 1999 ICDE,

pp. 410-417.

[40] D. Rafiei and A . Mendelzon. Efficient Retrieval of Similar Time Sequences

Using D F T . Proc. 1998 FODO.

[41] T. J . Rivl in. Chebyshev Polynomials: From Approximation Theory to Algebra

and Number Theory (2nd Edition). John Wiley & Sons, 1990.

[42] N . Roussopoulos, S. Kelley and F. Vincent. Nearest Neighbor Queries. Proc.

1995 SIGMOD, pp. 71-79.

[43] S. Saltenis and C. Jensen. Indexing of Moving Objects for Location-Based

Services. Proc. 2002 ICDE, pp. 463-472.

[44] S. Saltenis, C. Jensen, S. Leutenegger and M . Lopez. Indexing the Positions

of Continuously Moving Objects. Proc. 2000 SIGMOD, pp. 331-342.

[45] T. K . Sellis, N . Roussopoulos and C. Faloutsos. The i? + -Tree: A Dynamic

Index for Multi-dimensional Objects. Proc. 1987 VLDB, pp. 507-518.

[46] H . Shatkay and S. Zdonik. Approximate queries and representations for large

data sequences. Proc. 1996 ICDE, pp. 546-553.

88

[47] P. Sistla, O. Wolfson, S. Chamberlain and S. Dao. Modeling and querying

moving objects. Proc. 1997 ICDE, pp. 422-432.

[48] R. Snodgrass. The Temporal Query Language TQuel. TODS 12(2), pp. 247-

298, 1987.

[49] Y . Theodoridis, T. Sellis, A . Papadopoulos and Y . Manolopoulos. Specifica­

tions for Efficient Indexing in Spatiotemporal Databases. Proc. 1998 SSDBM,

pp. 123-132.

[50] E . Tsoukatos and D. Gunopulos. Efficient Mining of SpatioTemporal Patterns.

Seventh International Symposium on Spatial and Temporal Databases 2001,

pp. 425-442.

[51] James Stewart. Single Variable Calculus: Early Transcendentals. Brooks/Cole

Publishing Company, 1995.

[52] M . Vlachos, D. Gunopulos and G. Kollios. Robust Similarity Measures for

Mobile Object Trajectories. Proc. of DEXA Workshops 2002, pp. 721-728.

[53] M . Vlachos, G. Kollios and D. Gunopulos. Discovering similar multidimen­

sional trajectories. Proc. 2002 ICDE, pp. 673-684.

[54] C. Wang and S. Wang. Supporting content-based searches on time series via

approximation. Proc. 2000 SSDBM, pp. 69-81.

[55] R. Weber, H . Schek and S. Blott. A Quantitative Analysis and Performance

Study for Similarity-Search Methods in High-Dimensional Spaces. Proc. 1998

VLDB, pp. 194-205.

89

[56] O. Wolfson, B. Xu , S. Chamberlain and L. Jiang. Moving objects databases:

Issues and solutions. Proc. 1998 SSDBM, pp. 111-122.

[57] D. Wu, D. Agrawal, A . E l Abbadi, A . Singh and T . R. Smith. Efficient retrieval

for browsing large image databases. Proc. 1996 CIKM, pp. 11-18.

[58] Y . Wu, D. Agrawal and A. Abbadi. A Comparison of D F T and DWT based

Similarity Search in Time-Series Databases. Proc. 2000 CIKM, pp. 488-495.

[59] B . Y i and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Cp Norms.

Proc. 2000 VLDB, pp. 395-406.

90

