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A b s t r a c t 

In this thesis, we investigate the subject of indexing large collections of spatiotem-
poral trajectories for similarity matching. Our proposed technique is to first mitigate 
the dimensionality curse problem by approximating each trajectory with a low order 
polynomial-like curve, and then incorporate a multidimensional index into the re
duced space of polynomial coefficients. There are many possible ways to choose the 
polynomial, including Fourier transforms, splines, non-linear regressions, etc. Some 
of these possibilities have indeed been studied before. We hypothesize that one of 
the best approaches is the polynomial that minimizes the maximum deviation from 
the true value, which is called the minimax polynomial. Minimax approximation is 
particularly meaningful for indexing because in a branch-and-bound search (i.e., for 
finding nearest neighbours), the smaller the maximum deviation, the more pruning 
opportunities there exist. In general, among all the polynomials of the same degree, 
the optimal minimax polynomial is very hard to compute. However, it has been 
shown that the Chebyshev approximation is almost identical to the optimal mini
max polynomial, and is easy to compute [32]. Thus, we shall explore how to use 
the Chebyshev polynomials as a basis for approximating and indexing d-dimensional 
(d > 1) trajectories. , 

The key analytic result of this thesis is the Lower Bounding Lemma. That is, 
we show that the Euclidean distance between two d-dimensional trajectories is lower 
bounded by the weighted Euclidean distance between the two vectors of Chebyshev 
coefficients. This lemma is not trivial to show, and it ensures that indexing with 
Chebyshev coefficients admits no false negatives. To complement the analytic re
sult, we conduct comprehensive experimental evaluation with real' and generated 
1-dimensional to 4-dimensional data sets. We compare the proposed scheme with 
the Adaptive Piecewise Constant Approximation (APCA) scheme. Our preliminary 
results indicate that in all situations we test, Chebyshev indexing dominates A P C A 
in pruning power, I /O and C P U costs. 
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Chapter 1 

I n t r o d u c t i o n 

A spatiotemporal trajectory is a time-stamped sequence of vectors representing 

space and/or time information. More formally, a d-dimensional trajectory is an 

ordered collection S in the form 

S - {{h,vi), {t2,v2), •. •, {tN,vN)} 

where 

• N is the length of the trajectory S. 

• t\ < < • • • < tpf are time stamps. 

• Each vector Vi is of arity d for all 1 < i < N. 

• Each pair {U,Vi) records the values of a vector of d scalars at time i j . 

For example, if d = 1, then the trajectory is a time series. For a second example, Vi 

may capture the 2-dimensional or 3-dimensional coordinates of a moving object at 

time U, in which case we have a spatiotemporal trajectory. For yet another example, 

a trajectory may represent the change of the attributes or features of an entity over 

time. 
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1.1 Mot iva t ion 

Time series axe ubiquitous in temporal databases, which is a well-established area 

in database studies [16]. Massive time series or sequence data sets arise naturally 

in a variety of real world applications, such as medinformatics, meteorology, stock 

markets, and image/video databases. For example, doctors monitor the health 

conditions of their patients by keeping track of their body temperatures, geologists 

record monthly or annual rainfall data for weather forecasting, and financial analysts 

try to find patterns in their large pools of stock prices of different companies. 

There are also many large collections of higher-dimensional spatiotemporal 

trajectories, thanks in part to the development of cost-effective mobile technolo

gies, such as Geographic Information Systems, wireless communication electronics, 

and multimedia applications [14, 43, 56]. Examples include spatiotemporal trajec

tories of cars, airplanes, and other moving objects generated by motion tracking 

devices in surveillance applications and electronic games applications. Additionally, 

a video stream can also be regarded as a multidimensional trajectory, as it consists 

of a sequence of multiple frames, each of which is characterized by a set of feature 

attributes. 

Specifically, as part of our collaboration with an electronic games company, 

we encounter large collections of 2-, 3- and 4-dimensional spatiotemporal trajecto

ries. A 2-dimensional example is the coordinates of National Football League (NFL) 

players moving on a football field, or of National Hockey League (NHL) players skat

ing on an ice rink. A 3-dimensional example is the positions of aircrafts during a 

flight simulation. Finally, a 4-dimensional example is the four angles of body joints 

of a person playing kung-fu or dancing. This type of data sets is useful for games 

developers and medical professionals. The point here is that beyond 1-dimensional 
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time series, applications of higher-dimensional spatiotemporal trajectories are very 

common. 

Given those enormous databases of trajectories, what can we do with them, 

and how do we retrieve valuable information from them? One of the fundamental 

operations in mining trajectories is similarity matching, which refers to the pro

cess of finding trajectories that are similar to a given query trajectory. Similarity 

matching is useful in two aspects. First, it is a subroutine of many data mining 

tasks, such as classification, clustering, rule discovery, outlier detection, and query 

by contents. Second, it is important in its own right for exploratory data analysis. 

The following axe typical similarity queries: 

• Identify companies who have similar sales patterns as Microsoft has. 

• Find out if a given musical score is similar to any of the existing scores. 

• Discover all images that contain regions similar to regions of a given image. 

1.2 Prob lem Statement 

The problem of retrieving similar trajectories can be formatted as follows: given a 

reference trajectory database DB, a distance measure Dist, a query trajectory q, 

and a positive number r, find the set R of trajectories that aie within distance r of 

q, or more precisely: 

R = {x € DB | Dist{x, q) < r) (1.1) 

This is called a range query or radius search. Alternatively, one might be interested 

in finding the k nearest neighbours (fcNN) of q, which is equivalent to setting r so 

that \R\ = k. 
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Similarity-based pattern querying has three major components: the similar

ity model that defines a distance measure between trajectories, the data representa

tion that abstracts features from raw data sets, and the index structure that enables 

efficient searching for the closest matches. 

1.2.1 S i m i l a r i t y M o d e l 

Many similarity distance functions have been studied in the literature, and which 

one is the "best" always depends on the specific user, data set and task. In general, 

they can be classified into two categories: metric functions and non-metric functions. 

A distance function D is a metric if it satisfies the following requirements: 

• Symmetry: D(a,b) = D(b,a). 

• Non-negativity: D(a, b) > 0 if a ̂  b, and D(a, b) = 0 if and only if a = b. 

• Triangle Inequality: D(a,b) < D(a,c) + D(c,b). 

In most cases, a metric function is desired, because the triangle inequality 

can then be used to prune the index during search. The most popular distance 

metric is the £ p -norm. 

Definition 1.1 Given two d-dimensional trajectories 

tu = ((h,u[),(t2,u2), (tN,U~N)) 

and 

tv = ((ti,v{), {t2,v2) (tN,VN)) 

the Cn-norm distance between them is: 

(1.2) 
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where each u\ denotes the jth component of the vector u$. 

It is called the Manhattan distance Distman if p = 1, the Euclidean distance Disteuc 

if p = 2, and the Max distance Dist^ if p = oo. A simple variant of (1.2) is the 

weighted £ p -norm defined by: 

_ » N d - » - » i 
£ p ( t « , to, = [ £ £ W ^ K - ^ H 5 (1.3) 

i = i j = i 

where I f is a matrix of (nonnegative) weights for different points on different tra

jectories. 

While Euclidean Distance Disteuc is used in most existing studies, it is nev

ertheless insufficient for all situations because: 

• It works only for trajectories of the same length. 

• It cannot handle outliers or noise. 

• It is very sensitive to scale or amplitude. 

• It does not work well with trajectories that are similar in shape, but out of 

phase. 

• It does not allow stretching or compression of the time axis. 

As a result, many attempts have been made to come up with distance functions 

that are invariant with respect to six transformations: shifting, uniform amplitude 

scaling, uniform time scaling, uniform bi-scaling, time warping and non-uniform 

amplitude scaling. Unfortunately, none of them is a metric. Some of the most 

famous distance notations are: 

• Dynamic Time Warping (DTW) [4, 19]: The idea is to use dynamic program

ming to construct the warping path in the distance matrix that minimizes the 
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warping cost and then define the distance as the minimized cost. In effect, it 

.allows shifting and stretching in order to align trajectories. . . 

• Longest Common Subsequence (LCSS) [52, 53]: As a variant of edit distance, 

it describes how well two trajectories can match one another, by allowing 

them to stretch and to translate in space, without any rearrangements of the 

sequence of elements. One of the advantages is that it is robust to noise by 

giving more weight to the similar portions and paying less attention to regions 

of great dissimilarity. 

• Landmark Model [25, 35]: Generally speaking, it identifies points of "great 

importance" as landmarks, based on which the similarity patterns are defined. 

For example, first-order landmarks are global or local extrema, second-order 

landmarks are inflection points, and so on. It is claimed to better match 

human intuition and episodic memory as it takes smoothing into account by 

letting certain landmarks be overshadowed by others. 

In this thesis, we adopt the Euclidean distance function Disteuc for spa

tiotemporal trajectories. While this distance function is easy to compute, it is natu

ral for many applications of spatiotemporal trajectories, including those for airplanes 

and other flying objects. Additionally, it allows scalable solutions to other problems 

such as clustering and classification. It is also the distance function adopted by most 

studies on indexing time series, including [21]. For more advanced distance functions 

such as time-warping [4] and longest common subsequence [53], we consider them 

future topics of investigation. 
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1.2.2 D a t a Represen ta t i on 

It is not necessary to separate data representation from the similarity model, but 

most previous works did, as an abstract representation permits more efficient com

putations than the raw data could, and may allow for an even more sophisticated 

indexing technique. While we shall discuss related works in greater detail in Chap

ter 2, it suffices to say that most existing frameworks are based on piecewise approx

imations, where each piece is either constant or linear. However, recall that, among 

the examples cited in Section 1.1, one thing in common is that they have smooth and 

continuous trajectories. This is because all those activities (e.g., human movement, 

flying objects) are governed by the laws of physics, giving rise to smooth motion 

trajectories. That is to say, a smooth and continuous trajectory is approximated 

with a piecewise discontinuous function. This mismatch may cause an unnecessary 

error or deviation, and may lead to a loss in pruning power in a branch-and-bound 

search. 

In this thesis, we seek to approximate and index a d-dimensional spatiotem-

poral trajectory with a low order continuous polynomial-like curve. There are many 

possible ways to choose the polynomial, including (continuous) Fourier transforms, 

splines, non-linear regression, and so on. While all approximations are not exact by 

definition, the approximation that minimizes the maximum deviation from the true 

value is very desirable. This is called the minimax approximation. Minimax ap

proximation is particularly meaningful for indexing because in a branch-and-bound 

search (i.e., for finding nearest neighbours), the smaller the maximum deviation, 

the more pruning opportunities there exist. However, in general, among all the 

polynomials of the same degree, the optimal minimax polynomial is very hard to 

compute. It has been shown that the Chebyshev approximation is almost identical 
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to the optimal minimax polynomial, and is easy to compute [32]. Thus, we shall 

explore how to use the Chebyshev polynomials as a basis for indexing d-dimensional 

trajectories. 

1.2.3 Index Structure 

Indexing is one of the many searching techniques available for similarity matching. 

If a searching mechanism retrieves a (proper) subset S of R, then the wrongly 

dismissed trajectories in R — S are called false dismissals or false negatives. On the 

other hand, if S is a (proper) superset of R, then the wrongly retrieved trajectories 

in S — R are called false alarms or false positives. As we can always remove false 

positives in a post-processing stage, they can be tolerated as long as there are not 

too many of them. Searching techniques that guarantee no false negatives are said 

to be exact; however, there are studies which consider providing faster approximate 

search at the expense of allowing both false positives and negatives [46, 25]. 

The most obvious brute-force solution for similarity matching would be a 

sequential scan of the whole database, in which we compute the distance between 

every trajectory x G DB and q, and return x if it qualifies. This approach requires 

that we access every single page in the database, which is clearly unrealistic for large 

data sets. Any mechanisms that avoid retrieving all the data pages could potentially 

increase the speed of the search, which automatically entails the idea of using an 

index. While we will discuss the existing indexing schemes in Chapter 2 and propose 

our own scheme in Chapter 4 and Chapter 5, here we shall give an outline of the 

desirable properties for any indexing technique [9]: 

• It should be faster than sequential scanning. 

• It should incur little space overhead. 
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• It should be able to handle queries of different lengths. 

• It should be incremental, that is, it should allow insertions and deletions with

out rebuilding the index. 

• It should guarantee no false negatives. 

In addition, two other desirable crteria [21] are: 

• It should be possible to build the index in a reasonable time. 

• It should be able to handle more than one distance measure. 

1.3 Contributions 

As a preview, we make the following contributions in this thesis: 

• Recall that a spatiotemporal trajectory is of the form ((ti,vi),..., (£AT,# /v ) ) . 

Thus, it is discrete in nature. We show how to approximate such a discrete 

"function" with Chebyshev polynomials. We first begin with the 1-dimensional 

case of time series. Our representation scheme allows us to prove a main result 

of this thesis - the Lower Bounding Lemma. That is, the true distance between 

two time series is lower-bounded by the distance in the index space (i.e., the 

space of Chebyshev coefficients in our case). As shown in Chapter 4, this is 

not a trivial result to prove. 

• We generalize from the 1-dimensional case to the d-dimensional case (d > 1). 

Specifically, a d-dimensional trajectory is projected onto each dimension to 

create d 1-dimensional trajectories. We show that this projection preserves 

the Lower Bounding Lemma. We also give algorithms for building an index 
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of Chebyshev coefficients, and for supporting similarity searching of whole 

trajectories. . , 

• To evaluate the effectiveness of the minimax property of Chebyshev polynomi

als on indexing, we conduct an extensive experimental evaluation. We use 1- to 

4- dimensional real data sets, as well as generated (i.e. synthetic) data sets. For 

time series, the Adaptive Piecewise Constant Approximation (APCA) scheme 

has been shown to outperform all other schemes including Discrete Fourier 

Transform (DFT), Discrete Wavelet Transform (DWT) and Piecewise Aggre

gate Approximation (PAA) [21]. We obtain the A P C A code from Keogh et 

al., and compare with Chebyshev approximation. We also extend A P C A to 

d-dimensional situations as a "straw man" strategy. 

As a preview of our results, from 1- to 4-dimensional, real and generated data, 

Chebyshev dominates A P C A in pruning power, I /O cost and C P U cost. Our 

empirical results indicate that Chebyshev approximation can deliver a 3- to 

5- fold reduction on the dimensionality of the index space. For instance, it 

only takes 4 to 6 Chebyshev coefficients to deliver the same pruning power 

produced by 20 A P C A coefficients. This is a very important advantage. As 

the dimensionality curse on the indexing structure is bound to set in sooner or 

later, Chebyshev coefficients are far more effective than A P C A in delivering 

additional pruning power before that happens. 

1.4 Thesis Outline 

The thesis is organized as follows. In Chapter 2, we discuss related works. In 

Chapter 3, we review Chebyshev polynomials and their properties central to the 
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development of this thesis. In Chapter 4, we show how to approximate a time series 

with a Chebyshev polynomial, and give an example. We also propose a metric 

distance function between two vectors of Chebyshev coefficients. Finally, we prove 

the Lower Bounding Lemma. In Chapter 5, we generalize the earlier results for 

time series to deal with d-dimensional trajectories. In Chapter 6, we present our 

experimental setup and results. We compare Chebyshev and A P C A with respect to 

pruning power, I/O costs and C P U costs. 
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Chapter 2 

R e l a t e d W o r k s 

2.1 Indexing 1-dimensional T ime Series 

Substantial efforts have been made on the problem of indexing one-dimensional time 

series. There are basically two ways to post a similarity query: 

• Whole Matching: Given a collection DB of M time series, each of length 

N, and a query time series Q of the same length, we want to find those time 

series that are within distance r of Q. Mathematically, we seek the set 

R = {S £ DB\Dist(S,Q) < r} 

Note that every time series, including Q, must have the same length N. 

• Subsequence Matching: Given a collection DB of M time series S i , . . . , SM, 

where |S;| = iV; for 1 < i < M, and a query time series Q of length 

|Q| = NQ < mini<j<M{^V,}, we want to find every time series Si and ev

ery possible offset I such that 

Dist(Q,Si[l:{l + NQ-l)})<r 
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where Si[l : (I + NQ — 1)] denotes the subsequence of Si starting at position 

I and ending at position I + NQ — 1. Intuitively, we want to identify those 

sequences that contain matching subsequences. 

It is possible to convert the subsequence matching problem into whole matching, by 

placing a sliding window of size NQ at every offset of each sequence and taking each 

subsequence within the window as one "whole" sequence. 

2.1.1 W h o l e M a t c h i n g 

A time series of length N is by definition a sequence of real numbers, and therefore 

can be considered as a point in A^-dimensional space. This immediately suggests 

that we can use existing multidimensional index structures (a.k.a. Spatial Access 

Methods (SAMs)) to store and search such data. S A M examples include the .R-tree 

family, quadtrees, k-d/B tree family and gridfiles. One of the problems common to 

all multidimensional indices is that their query performance degrades dramatically 

as dimensionality increases, and eventually reduces to sequential scanning or even 

worse. Experiments have shown that the R-tree family seems to be the most robust 

with respect to dimensionality, and that the i?*-trees work well up to 20 dimen

sions [10]. Since a time series may contain thousands of points, it is impossible 

to code the entire sequence directly into any multidimensional index. This phe

nomenon is known as the dimensionality curse problem, and in order to utilize the 

powers of SAMs we need to first perform dimensionality reduction (a.k.a. Feature 

Extraction) on the raw data [2]. 

A framework called GEneric Multimedia INdexIng (GEMINI) is introduced 

to accommodate any dimensionality reduction methods to allow efficient index

ing [9]. The framework consists of three steps: 
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1. Establish a distance measure Disttrue for the raw data series. In this thesis, 

we focus on Euclidean distance Disteuc. 

2. Produce a feature extraction function F that reduces the dimensionality of the 

data from the original length N to n that can be handled by an appropriate 

index structure. 

3. Establish a distance measure Distjeature in the feature space (of n dimensions). 

In fact, there is a specific requirement that Distfeature has to satisfy for the GEMINI 

framework to work out. A crucial result in [9] is that, for any search techniques that 

use feature extraction, in order to guarantee completeness, the distance measure in 

the feature space must match or underestimate the true distance. 

Theorem 2.1 (Lower Bounding Lemma) To guarantee no false negatives, the 

feature extraction function F must satisfy: 

DistfeatoreiFiP^FiO*)) < Disttrue(0U02) 

where 0\ and 02 are any two raw data series. 

Proof: Let Q be the query object, O be a qualifying object and r be the radius. 

We want to prove that 

Disttrue(Q,0) < r => Distfeature{F(Q),F{0)) < r. 

This is clear since 

Distfeature(F(Q),F{0)) < Disttrue(Q,0) < r. 

• 
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Intuitively, this Theorem means that if two objects are far apart in the feature 

space, then they must be far apart in the original space. The performance of GEMINI 

methods depends solely on the tightness of the lower bound. The closer DistfeatUTe 

is to Distune, the fewer false positives there are, and the more efficient the algorithm 

will be. 

In the following sections, we shall review the existing dimensionality reduc

tion techniques. Note that they are also applicable to the subsequence matching 

algorithm to be presented in Section 2.1.2. In general, these studies can be divided 

into the following categories based on the underlying approximation schemes: 

• DFT: [9, 3, 40, 8] 

• DWT: [7, 58, 17, 37] 

• PA A: [24, 59] 

• A P C A : [21] 

• SVD: [29, 18, 24] 

Discrete Fourier Transform (DFT) 

The first dimensionality reduction technique proposed for indexing time series in 

the literature is to use the Discrete Fourier Transform. The basic idea is that 

any realistic signal can be characterized by the superposition of a finite number of 

sine/cosine waves, each of which is represented by a single complex number known 

as a Fourier coefficient. The key observation is that, a signal of length N can 

be decomposed into N sine/cosine waves that can be recombined into the original 

signal, and many Fourier coefficients have a very low amplitude and therefore can 

be discarded without much loss of information in the reconstruction process. 
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The iV-point Discrete Fourier Transform of a signal x = (xo,. • •, XJV-I) is a 

sequence X = (Xo,..., Xpf-i) of complex numbers, where 

XF = ^Ylx<e~iS^~ F = 0,...,N-1 (2.1) 

where j — 

The signal x can be recovered by the inverse transform: 

, N-1 

xi = -/wY,XFe" » = 0 , . . . , J V - 1 (2.2) 

F=0 

The energy E(x) of a signal x is given by: 

N-1 

E(x) = \\x\\2 = \xi\2 (2.3) 
i=0 

One of the fundamental properties of D F T is the Parseval's Theorem, which 

states that the energy is preserved from time domain to frequency domain: 

Theorem 2.2 (Parseval's Theorem) 

N-1 N-1 

E N 2 = E l -M 2 (2-4) 
i=o F=o 

For our dimensionality reduction purposes, we only keep the first n D F T co

efficients as features, which will result in an underestimation of the distance between 

sequences. According to Theorem 2.1, no false negatives are guaranteed. 

Discrete Wavelet Transform (DWT) 

There are many different types of wavelet transforms and the one that is proposed for 

dimensionality reduction is the Discrete Haar Wavelet Transform [7]. It is similar to 

D F T in that it represents data in terms of the sum of a prototype function. However, 

it is different from D F T in that it is a multi-resolution representation and has the 
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time-frequency localization property. In most cases, D W T bears more information 

than D F T , in which only the frequency domain is considered. On the other hand, 

one of the drawbacks of DWT is that it is defined only for signals whose length is 

an integral power of 2. 

Haar transform is a sequence of averaging and differencing operations in 

which we compute the average and difference between every two adjacent values of 

a discrete function (or a time series). For example, let x = (9735) , then the DWT 

is computed as follows: 

Resolution Averages Coefficients 

4 (9 7 3 5) 

2 (8 4) ( 1 - 1 ) 

1 (6) (2) 

The final Harr Transform H(x) = {c dg d^ d\) = (6 2 1 —1) is obtained by 

combining the last average value 6 and the coefficients on the third column, 2, 1 

and -1. It is easy to see that we can get different resolutions by adding difference 

values back to or subtract differences from averages, and the original signal x can 

be recovered from H(x) by essentially reversing the whole D W T process. 

A crucial Theorem established in [7] is that the Euclidean distance between 

two time series can be expressed in terms of their Haar Transforms. 

Theorem 2.3 Let x and y be two sequences of length N, which is a power of 2. Sup

pose their Haar Transforms are r and s, respectively. Let f—s = (C D\ ... D^-i)-

Then the Euclidean distance Disteuc(x, y) = S\og2 N can be computed recursively by: 

So = C (2.5) 

Si+i = ^2(52 + Dl + Dji+1 + ••• + Dl+1_J (2.6) 
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forO<i<log2N -1. 

One important Corollary of this Theorem is the Lower Bounding Lemma for 

Corollary 2.1 .// the first n (1 < n < N). dimensions of Haar Transform are used, 

no false negatives will occur. 

Piecewise Aggregate Approximation (PAA) 

The idea is introduced independently by Y i and Faloutsos [59] and Keogh et al. [24, 

23]. P A A divides each time series of length N into n segments of equal length, and 

uses the average value of each segment as a coordinate in the n-dimensional feature 

space. Mathematically, a time series X = {x\,... , x/v) of length is represented 

in the n-dimensional feature space by X = x\,..., xn, where 

assuming that iV is divisible by n. 

Then, the distance metric Distfeature in feature space is defined as: 

The proof of the Lower Bounding Lemma is long but straightforward. Read

ers are referred to [24] for a complete proof. 

Another important result in [24] is: 

Theorem 2.4 / / a raw time series is transformed to a feature space of dimension

ality that is a power of 2, then the D WT representation and PAA representation are 

equivalent in the following ways: 

DWT: 

(2.7) 

DistfeatUTe(X,Y) = DR(X,Y) = J - E (*i - Vi)2 (2.8) 
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1. The best possible representations using both techniques are identical. 

2. The estimated distances between two objects in the feature space using both 

techniques are identical. 

This seemingly simple dimensionality reduction scheme has many advan

tages [24, 59]: it is easy to understand and implement; it is faster than most other 

transforms; it can handle more distance measures such as the general £ p -norms and 

weighted distance functions. 

Adaptive Piecewise Constant Approximation (APCA) 

A P C A is a generalization of P A A by relaxing the requirement that each segment 

must be of the same length. Intuitively, regions with great fluctuations are repre

sented with several short segments, while relatively flat regions are represented with 

fewer long segments. As a result, A P C A requires two numbers per segment, the first 

number recording the mean value of all the points in the segment and the second 

number recording the segment length. 

Given a time series S = ( v i , . . . , VJV), its A P C A representation is defined to 

be: 

C = {(cvi,cn),..., {cvR,crR)}, cr0 = 0 (2.9) 

where R is the number of segments, cvi is the mean value of the data points in 

segment i and cr̂  is the right endpoint of segment i. For indexing reasons, the right 

endpoints are used instead of the lengths of segments. 

While finding the optimal A P C A representation (with the minimum recon

struction error) takes 0(MN2) time, Keogh et al. [21] propose a sub-optimal algo

rithm using the Discrete Wavelet Transform, as shown in Figure 2.1. 
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Algor i t hm ComputeAPCA( ,S ' , R) { 
/ * input: a time series S */ 
/ * input: the number of segments R to be used * / 
/ * output: the A P C A representation of S */ 
(1) If length(S) is not a power of two, pad it wi th zeros. 
(2) Perform the Haar Wavelet Transform on S 
(3) Sort coefficients in order of decreasing normalized magnitude and 

keep only the first R coefficients. 
(4) Reconstruct approximation of S from retained coefficients. 
(5) If S was padded wi th zeros, truncate it to the original length. 
(6) Replace approximate segment mean values wi th exact ones. 
(7) W H I L E (the number of segments is bigger than R) 
(8) Merge the pair that can be merged wi th least rise of error 

end W H I L E 
} / * end algorithm * / 

Figure 2.1: Algorithm to Compute the A P C A Representation of a Time Series 

To define a distance metric that lower bounds the Euclidean distance Disteuc, 

we must first introduce a special version of the A P C A representation. Given a query 

Q, a time series S together with its A P C A representation C, we define another 

sequence Q' as follows: 

Q' = {{qvl,qrl),...,(qvR,qrR)} (2.10) 

where qn = cn and qvi = mean(Qcri_1+1,..., QCn)-

Then the lower-bounding distance metric is defined to be: 

DLB(Q',S) = 
R 

\\J2(Cri- cri-l){q.Vi- CVi)2 (2.11) 

\ t=l 

The key contribution Keogh et al. [21] make is that they show A P C A is 

an indexable compression scheme. Each time series S is mapped to a point C = 

{{cvi, c r i ) , . . . , (CUR, CTR)} in n-dimensional space (where n = 2R), and such points 

are referred to as A P C A points. The distance between an A P C A point C and Q is 

defined by DLB(Q',C) (Equations (2.10) and (2.11)) while the distance between Q 
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and a node U in the index is defined by the minimum distance MINDIST(Q, Rect) 

between Q and the Minimum Bounding Rectangle (MBR) Rect associated with U, 

as to be discussed below. 

Let U be a leaf node in a multidimensional index and Rect = (L,H) be 

the M B R associated with U. We define L = {h, - • • ,ln} and H = {hi,...,hn} as 

follows: 

k = MINc inu{cmin^+iy2} if H s odd 

— MINc inu{cri/2} if i is even 
(2.12) 

hi = MAXc in u{cmax(i+iy2} if i is odd 

= MAXc in u{cTi/2} if i is even 

where each cmirii and cmaxi denote the minimum and maximum values of the 

corresponding time series 5 among the data points in segment i, that is, 
cmirn = MIN^^iSt) 

(2.13) 
cmaxi = MAX^^iSt) 

for i = 1,..., R. 

For an index node U with M B R Rect = (L,H), we can view Rect as two 

A P C A representations L = {{l\,l2), • • -, (ln-iJn)} and H = {{h\, h2),..., (hn-\,hn)} 

It is clear that any time series S under node U is "contained" within the two se

quences L and H. To formalize this notion of containment, we define a set of R 

regions associated with Rect: the ith region G^ct[i = 1,...,R) associated with 

Rect is the two-dimensional rectangular region that fully contains the ith segment 

of all sequences stored under U. Formally speaking, the boundary of the ith region 
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is: 

G f e c i [ l ] — hi-l 

Gf e c t [2] = hi-2 +1 

Gf e c t [3] = ^ 2 i - i 

Gf e c t [4] = h2i 

(2.14) 

where G[l] and G[2] are the low bounds, and G[3] and G[4] are the high bounds 

along the value and time axes. At time instance t — 1,..., N, we say that a region 

G f e c t is active if and only if G f e r f [2] < t < Gf e c < [4]. 

Given a query time series Q, the minimum distance MIN DI ST(Q, Red,t) 

between Q and Red at time instant t — 1,..., N is given by: 

MINDIST(Q, Red, t) = MING i s a c t i v e a t t{MINDIST(Q, G, t)} 

where 

MINDIST(Q, G, t) = ( G [ l ] - Q t ) 2 if Qt < G[l] 

= ( Q 4 - G [ 3 ] ) 2 HG[S]<Qt 

= 0 otherwise. 

And finally, we define: 

MINDIST(Q, Red) = 
N 

\ t = i 

As the proof of the Lower Bounding Lemma (that both D^Q and MINDIST 

lower bound Disteuc) is not trivial to present, we shall omit the details here. 

Experiments have shown that the A P C A representation has a very high 

fidelity to the original signal and a relatively low reconstruction error [21]. As a 

result, for indexing time series data, A P C A outperforms all the above schemes, 

including DFT, D W T and P A A . 
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Singular Value Decomposition (SVD) 

SVD is also known as Karhunen-Loeve (K-L) transform [57] and Principle Compo

nent Analysis (PCA) in statistics. 

Given a collection of A^-dimensional vectors {x1,... ,xM}, we collect them 

into an M x N matrix A. The Singular Value Decomposition of A is given by: 

A = UT,VT (2.16) 

where U is an M x JV matrix and S and V are N x N matrices. We have: 

UU1 = IM UTU = IN 

and V is orthonormal: 

V VT = VTV = IN 

S is a diagonal matrix with non-negative elements called singular values along its 

diagonal: 

( o-x 0 • • • 0 

0 cr2 ••• 0 
E = ' 

\ 

\ 0 0 • • • O-JV ) 

Since V is orthonormal, we can multiply both sides of Equation (2.16) by V 

and we get: 

AV = UT, (2.17) 

The product UT, contains a set of A7-dimensional vectors {X1,... ,XM}, 

which are rotated from the original vectors {x1,... ,xM}. As rotation preserves 

length, we have: 

115*11 = 1 1 X 1 for i = 1 M 
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From Equation (2.17), we have: 

o" j 0 

0 CT2 

0 

0 

V 0 0 ••• crjv / 

We can reduce the dimensionality by discarding the least significant singular 

values in S and the corresponding entries in A , U and V. We have: 

/ - n n \ 

\ X n J 

( tf* \ 
CTi 0 

0 cr2 

V 0 0 ••• an / 

The key property of SVD is that it provides the best least squares fit to any 

matrix of data points. In other words, the product UnT,n contains the truncated 

versions of the original vectors rotated to the directions of best least squares fit. 

Consequently, SVD is optimal in the sense that it minimizes the reconstruction 

error among all (linear) transformations. However, since the whole database has to 

be examined before the transformation, SVD is a global technique and therefore not 

incremental. A single insertion to the data set would result in a recomputation of 

the entire reduction matrix. Additionally, since SVD requires 0(MN2) time and 

O(MN) space, we shall omit it in our experimental comparison. 

2.1.2 Subsequence M a t c h i n g 

Subsequence matching is a more difficult problem, as different time series might 

have different lengths. There are not as many studies in this area as the ones for 

whole matching. 
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I-adaptive Method 

This is the first work on indexing techniques for subsequence matching in time series 

databases, and it generalizes the GEMINI framework, which is originally designed 

for whole matching problems [9]. 

Without loss of generality, assume that the minimum query length is w. We 

use a sliding window of width w and place it at every possible offset I on every data 

sequence Si, i = 1,..., M. For each placement of the window, we extract n features 

from the subsequence inside the window, where n can be handled by an appropriate 

multidimensional index structure. Note that, the feature extraction can be done 

using any of the dimensionality techniques introduced in Section 2.1.1. Thus, a 

time series of length \Si\ = Ni is transformed into a trail in feature space, consisting 

of Ni — w + 1 points, one for each possible offset of the sliding window. By taking 

advantage of the fact that adjacent points on the same trail will probably be very 

close to each other, we then divide the trail of a given data sequence into sub trails 

and represent each subtrail by its Minimum Bounding Rectangle (MBR). Finally, 

each time series is transformed into a set of MBRs in feature space, and we insert 

all the rectangles for every sequence into a multidimensional index. 

Attempting to minimize the number of disk accesses, Faloutsos et al. use an 

adaptive heuristic I-adaptive based on a greedy algorithm to group trail points into 

subtrails. The algorithm defines a cost function that estimates the disk accesses: 

Definition 2.1 Given the sides L = (L\,..., Ln) of the n-dimensional MBR of a 

node in an index, the average number of disk accesses DA(L) that this node will 

contribute for the average range query is: 

n 
DA(L) = Y[(Li + 0.5) (2.18) 

i=i 
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assuming that the rectangles have been normalized to [0,1)". 

Definition 2.2 Given a subtrail of k points with an MBR of sizes L = (L\,..., Ln) 

the marginal cost me of each point in this subtrail is: 

mc = 
DA{L) 

k (2.19) 

The algorithm for dividing a trail into subtrails is then as follows: we assign 

the first point of the trail in a (trivial) subtrail. Then, for each successive point, if it 

increases the marginal cost of the current subtrail, start a new subtrail; otherwise, 

include it in the current subtrail. 

For range searches, there are two cases: 

• If the query sequence Q has a length equal to w, we map Q to a point qj in 

feature space, and then the range query corresponds to a sphere centred at qf 

with radius r. We retrieve subtrails whose MBRs intersect the query region 

and examine the real subsequences to discard false positives if any. 

• If the length of Q is longer than w, we split the query into p pieces of length w 

each, process each subquery separately and merge the results. Moreover, the 

tolerance/radius for each subquery can in fact be reduced to rj^fp [9]. 

Other Approaches 

Keogh et al. [22] introduce STB-indexing for subsequence matching. Their idea is 

to divide the data sequences into non-overlapping parts of a prespecified window 

size. If the points within a segment are mostly increasing, then this segment is 

represented by the number 1. If they are mostly decreasing, then the segment is 

represented by 0. The transformed sequences are then stored in bins, each of which 
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also contains a matrix that records the distance between all pairs of sequences. For 

query processing, the sequence is used for bin-pruning and the distance matrix is 

used for interbin-pruning. 

Kahveci et al. [17] propose another method to handle range searches for 

queries of variable lengths. Their algorithm splits a given query into non-overlapping 

subqueries at different resolutions. For each subquery, a search in the index is 

performed corresponding to the resolution of the subquery. The results are then used 

to refine the radius of the next subquery. The search volume decreases exponentially 

as the query radius decreases, and consequently, this dramatically reduces redundant 

computations and disk reads. 

2.2 Indexing Mult id imensional Trajectories 

There are not many studies in the literature on indexing multidimensional trajec

tories for similarity matching. 

Theodoridis et al. [49] provide a formal specification for spatiotemporal in

dex structures and multidimensional access methods in SpatioTemporal Database 

Management Systems (STDBMS). They describe a classification scheme for effi

cient indexing and query processing in spatiotemporal databases. They discuss 

three types of specification issues on: 

• data types and data sets supported 

• index construction 

• query processing operations 

They evaluate the existing proposals according to the above issues, and observe that 
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most of those methods do not follow the full list of specifications proposed, and thus 

they should be extended and revised. 

Lee et al. [30] extend the traditional similarity search methods on time series 

data to support multidimensional trajectories. They first define the distance be

tween two multidimensional sequences as a variant of Euclidean distance, and then 

introduce two lower bounding metrics, based on which they propose an algorithm 

to prune a database of irrelevant sequences and to find the solution interval of the 

selected sequences. Their methods have the following advantages: 

• The search algorithm is based on Minimum Bounding Rectangles (MBRs), so 

it is fast and needs small storage overhead. 

• The framework is designed to handle sophisticated similarity search, such as 

finding subsequences of a selected sequence. 

• Query and data sequences can have arbitrary length. 

• Any multidimensional access structure can be used. 

Vlachos et al. [52, 53] investigate techniques for analysis and retrieval of 

trajectories in two-dimensional or three-dimensional space. In order to cope with 

the noisy nature of such data, they formalize non-metric similarity functions based 

on the Longest Common Subsequence (LCSS) framework, which is very robust to 

noise. As the exact computation of these measures is unavoidably inefficient, they 

present approximation algorithms with provable performance bounds. In addition, 

they prove a weaker version of the triangle inequality that can be used to prune 

the index for answering nearest neighbour queries based on hierarchical clustering. 

And finally, they compare their framework to the widely used Euclidean and Time 

Warping distance functions and show the superiority of their approach. 

28 



Kollios et al. [28], Papadopoulos et al. [34] and Saltenis et al. [44] consider 

indexing mobile objects and one-dimensional and two-dimensional space to answer 

range queries over the object locations into the future. One example of such queries 

is: "Report all objects that will be inside a specific region after a certain amount of 

time." They model the objects as points moving at a constant speed starting from a 

specific location, and approximate each trajectory by straight line segments in their 

indexing scheme. They also give an approximation algorithm with linear space and 

expected logarithmic query time in a dynamic external memory setting, as well as 

an algorithm with guaranteed logarithmic query time for a restricted version of the 

problem. 

In addition to those similarity-based and coordinated-based queries discussed 

above, Pfoser et al. [36] introduce the concept of trajectory-based queries, which can 

be further classified into topological and navigational queries. Topological queries 

involve the whole or part of a trajectory, and they are important as well as expensive. 

Some of the basic spatial predicates are: meet, overlap, contain, equal, and cross. On 

the other hand, navigational queries seek dynamic information that is not explicitly 

stored, but has to be derived from the trajectories. For example, the average speed 

of a object is computed by dividing the distance travelled by the time taken, the 

direction of an object is determined by considering a vector between the starting and 

ending positions, and the area an object covers is derived by computing the convex 

hull of its trajectory. Having described the types of data and queries, the authors 

present two access methods for indexing such data, namely, the SpatioTemporal 

R-tree (STR-tree) and the Trajectory-Bundle tree (TB-tree). 

Hadjieleftheriou et al. [12] and Kollios et al. [28] propose to index animated 

objects as a spatiotemporal evolution so as to efficiently answer queries about their 

29 



position in time and space. While most of the previous research has concentrated 

on the raw and feature levels and examines similarity-based queries, their work is 

focused on the semantic level and the queries are topological in nature. They clas

sify evolutions as the degenerate case and the general case. In the degenerate case, 

objects are simply added or deleted from the movie. In the general case, objects 

are allowed to move and grow/shrink among frames during their life time. On the 

assumption that objects can only move or grow/shrink according to a polynomial 

function of time, they combine a spatial index with a partially persistent method

ology, such that a new record is inserted into the index only when the parameters 

describing the movement (or extent) change. 
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Chapter 3 

B a c k g r o u n d : Chebyshev 

P o l y n o m i a l s 

A polynomial is a real function P(x) that can be written in the form: 

P(x) = ao + a\x H h a m x m 

where ao, • • • , a m are real numbers and x is a real variable. If am ^ 0, we say that 

P{x) has a degree of m. 

Polynomials have many nice properties. For example, they can be differenti

ated as many times as we want for any values of x, and they can also be integrated 

over any intervals. Additionally, P(x) is uniquely defined by the m + 1 coefficients 

OQ,...,am. As a result, polynomials have been the top choice for the approximation 

and interpolation of more complicated functions. 

Chebyshev Polynomials are a special group of polynomials, whose proper

ties and applications were discovered a century ago by the Russian Mathematician 

Pafnuty Lvovich Chebyshev. Their importance for practical computation, how

ever, was rediscovered 60 years ago by Cornelius Lanczos, the father of Numerical 
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Mathematics. Thanks to their orthogonality and minimax properties, Chebyshev 

Polynomials have played a significant role in nearly every area of numerical analysis, 

including polynomial approximation, numerical integration, integral equations, and 

spectral methods for Partial Differential Equations. 

In this chapter, we shall give an overview of the basic definitions and key 

formulae of Chebyshev Polynomials, and their applications in approximations and 

series expansions [32, 38, 41]. 

3.1 Trigonometric Definitions and Recurrences 

Definition 3.1 The Chebyshev Polynomial Tm(t) of the first kind is a polynomial 

of degree m (m = 0,1,...), defined by: 

There are actually four kinds of Chebyshev Polynomials, but Tm(t) of the first 

kind is by far the most important and influential group and in this thesis we shall 

use the expression "Chebyshev Polynomials" to refer exclusively to the Chebyshev 

Polynomials Tm(t) of the first kind. 

While it is inconvenient and inefficient to compute each Tm(t) directly from 

Equation (3.1), we can utilize the trigonometric identity 

Tm{t) = cos(m cos 1(t)) (3.1) 

for t£ [-1,1]. 

cos md + cos (m -2)6 = 2 cos 8 cos (m - 1)8 

to derive the fundamental recurrence relation: 

Tm(t) = 2 r T m _ 1 ( r O - T m _ 2 (') (3.2) 
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Chebyshev Polynomials 
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Figure 3.1: Chebyshev Polynomials 

for all m > 2 with T0(t) = 1 and T^t) = t. 

From the above definition, the first six Chebyshev polynomials are: 

T0(t) = 1 

Ti(t) = t 

T2(t) = 2 t 2 - l 

T3(t) = 4 t 3 - 3 f 

T4(t) = 8 i 4 - 8 t 2 + l 

T5(t) = 16t5 - 20*3 + 5* 

And Figure 3.1 shows the graphs of T\(t) to T5(t). 

Even though in the above definitions, t is defined,only over the interval 

[—1,1], we may define Chebyshev Polynomials appropriate to any given finite inter-
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val [a, b] (—00 < a < b < + 0 0 ) by transforming this domain into [—1,1] of a new 

variable s under the linear transformation: 

2x - (a + b) 
s = —»; 

0 — a 

Then, the Chebyshev Polynomials appropriate to [a, b] are Tm(s). Without loss of 

generality, hereafter we simply focus on the interval [—1,1]. 

Finally, we conclude this section with a key property of Chebyshev Polyno

mials: 

T h e o r e m 3.1 The Chebyshev Polynomial Tm(t) has m zeros and m + 1 local ex-

trema in [—1,1]. 
The zeros are: 

(i - -)ir 
tj = cos- j = l , 2 , . . . , m (3.3) 

m 

The extrema are: 

Z7T 
U = cos—, i = 0, l , . . . , m (3.4) 

Note that all the zeros are interior to [—1,1], while there are two extrema at the 

endpoints ± 1 , and m — 1 "true" alternate maxima and minima where the first 

derivative is 0. 

3.2 Approximation Theory 

As described before, polynomials are among the simplest classes of functions in 

the sense that they can be easily specified, compactly represented, and efficiently 

evaluated. However, there exist many other functions that are complex in nature. 

This is where approximation comes in - it is useful and sometimes essential to 
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approximate any given function / by a much simpler function /*, such that the 

approximating value f*(x) is very close to the corresponding real value f(x). In 

this section, we shall review the fundamental concepts of approximation theory, 

with an emphasis on uniform (minimax) approximation, and then introduce the 

minimax property of Chebyshev Polynomials. 

The approximation theory consists of three major components: 

1. A function class J- (containing all the functions to be approximated). 

2. A form (for the approximation function /*) that is parameterized by a few 

adjustable coefficients. This defines a set A of possible approximations to the 

3. A norm || • || (of the approximation error) that measures how good the approx

imation is. That is, | | / — /*| | defines the closeness of /* to / . 

There exists a vast body of literature on how to define different approximation 

problems by making appropriate selections of these components, however, in this 

thesis, our main focus is as follows: 

1. Function class T = Cp[a, b], that is, the set of £ p-integrable functions on [a, b], 

defined by: 

given / . 

T = Cp[a,b] = {h(x) for which / w(x)\h(x)\p dx exists} (3.5) 

where w(x) is a given nonnegative weight function, and 1 < p < oo. 

2. Form 

A = I I m = {f*(x) = Pm(x) = a0 + aix + • • • + amxm} (3.6) 

where the adjustable coefficients are ao,. . . , a, 
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3. Norm || • || = \\h\\p = £ p -norm where 

(3.7) 

Specifically, the Chebyshev (minimax) norm is: 

\\h maxa<x<b\h(x)\ (3.8) 

With respect to a specific function class, a form, and a norm, we are particularly 

concerned with the following questions: 

1. What is a best approximation? 

2. Does there always exist a best approximation? 

3. Is the best approximation unique? 

4. How do we construct a best approximation? 

Our polynomial approximation problem, as defined by Equations (3.5) through 

(3.8), is one of the classical problems in the literature. In the remainder of this 

section, we shall cite a few theorems to characterize the properties of a best ap

proximation, and delay the discussion of (4) to a later section. A l l the theorems are 

by themselves very important in numerical analysis, and they require an extensive 

amount of mathematical proof for which we shall refrain from going into details. 

Definition 3.2 An approximation fg in A is a best approximation to f if, for 

any other approximation f* in A, 

In the case of Coo-norm, we often use the terminology minimax in place o/best. 

u/-/sii<n/-r 
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Note that the above definition only shows what a best approximation looks like, but 

says nothing about whether one exists at all or whether there is more than one for 

the same function. The next Theorem establishes the existence and uniqueness of 

the best (polynomial) approximation. 

Theorem 3.2 (Weierstrass's Theorem) For any given continuous function f 

and for any given e > 0, there exists a polynomial Pm for some sufficiently large 

m such that \\f — Pm\\p < e for any p > 1. Furthermore, there exists a unique 

best polynomial approximation to any function f £ Cp[a,b] in the Cp-norm, where 

w(x) = 1 in the case p —* oo. 

Best approximations also exist in £ p -norm on finite point sets for 1 < p < oo and 

are unique if and only if p > 1. Such Cp norms are defined by: 

l l / - / l p = [X>i|/(zi)-/>i ) l p ]* 
i = i 

where {w^fLx are positive scalar weights and {xi}f=l is a discrete set of fitting 

points. 

In particular, Theorem 3.2 guarantees the existence of a unique best approx

imation in the minimax norm; however, it does not tell us how to recognize such an 

approximation. Rather surprisingly, it is possible to do so explicitly, as the following 

powerful Theorem illustrates. 

Theorem 3.3 (Alternation Theorem for Polynomials) For any continuous 

function f a unique minimax polynomial approximation Pm exists and is uniquely 

characterized by the "alternating or equioscillation property" that there are at least 

m + 2 points in [a,b] at which f(x) — Pm(x) attains its maximum absolute value with 

alternating signs. 
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It is clear from Theorem 3.1 and Figure 3.1 in Section 3.1 that the Chebyshev 

Polynomial Tm(t) has m + 1 extrema with alternating signs on the interval [—1,1]. 

By invoking Theorem 3.3, we have: 

Theorem 3.4 The polynomial 21~mTm(t) is the minimax approximation on [—1,1] 

to the zero function by a monic polynomial of degree m. 

3.3 Orthogonality 

In the last section, we showed that their minimax property have earned Cheby

shev Polynomials a key position in the development of approximations. On the 

other hand, Chebyshev Polynomials also possess another equally important prop

erty, namely, they are a family of orthogonal polynomials. The orthogonality of 

those polynomials, in addition to having a strong linkage with £2 (or least-squares) 

approximations, lends itself to the subject of series expansions. 

Definition 3.3 Two functions f(x) and g(x) in £.2[a,b] are orthogonal on the in

terval [a,b] with respect to a given continuous and nonnegative weight function w(x) 

then the orthogonality condition (3.9) is equivalent to saying that f is orthogonal to 

if 

(3.9) 

If we use the "inner product" notation 

(3.10) 

9 if 

(f, 9) = 0. (3.11) 
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Furthermore, with this notation of inner product, the C2-norm is 

\h\\ = \\h\\2 := yft^h). (3.12) 

Definition 3.4 A family of polynomials {(f>i(x) : i = 0 ,1 , . . . } is orthogonal on the 

interval [a,b] with respect to a given continuous and nonnegative weight function 

w(x) if and only if for each i = 0,1, . . . , and j = 0 ,1 , . . . 

1. 4>i[x) is of degree i. 

2. (c6i(x)>0i(aO> = °> 

3. = ll&ll2 > 0 . 
The family is orthonormal if, for all i, (4>i(x),4>i{x)) = 1 = ||c/>i||2. 

If we define the inner product (3.10) using the interval and weight function 

[a,6] = [ - l , l ] , w(t) = ( l - t 2 ) - l 2 

then the following theorem holds for the inner product between Chebyshev Polyno

mials: 

Theorem 3.5 

(Ti,Tj)= 

0 ifi + j 

1 ifi = j^0 

n if i = j = 0 

(3.13) 

The system {Ti} is therefore orthogonal with respect to w(t) but not orthonormal. 

Hereafter we shall refer to 

w(t) = ( i - t2yh 

as the Chebyshev weight function. 
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3.4 Series Expansions 

One of the best ways to approximate a given function is to expand-it in terms of 

infinite series of an orthogonal family of simpler functions. Indeed, many expansion 

techniques have been studied before, including the familiar Taylor series, Laurent 

series and Fourier series. We may write the Chebyshev series expansion of a given 

function /(£) as 

where S^if) denotes the partial sum of the infinite series ST-)(f). 

The following Theorem asserts that S^,(/) is in fact £2-convergent with 

respect to the Chebyshev weight function, provided that / is £2-integrable with 

respect to the same weight function. 

Theorem 3.6 / / f(t) is ti-integrable with respect to the inner product (3.10), then 

its Chebyshev series expansion (3.14) converges in £2, in other words, 

00 

(3.14) 

j\l-t>)-\[f(t)-Sl(m)?dx^Q as m 00 

Thus, we may write: 
00 

/(*) = $£(/)(*) = EC*3H*) (3.15) 
i=0 

It follows, by taking inner products with Tj, that 

00 

(f,Tj) = Y,ci(Ti,Tj) = cj{Tj,Tj) 
i=0 

since (Ti,Tj) — 0 for i ^ j. Therefore, 

3 Irn. rp\ (3.16) 

(3.17) 
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j = WW) = - / - i T f ^ F f o r J - ( 3 - 1 8 ) 

Note that in the above formulae, for Co and Cj ' s , the constants differ by a factor of 

2. This is a direct consequence of the second and third cases shown in Theorem 3.5 

(i.e., 7r versus 7r/2). 

For a particular degree m, the error function for the partial sum S^f is 

emf = I ~ Smf a n d it satisfies: 

K / l l 2 = (f-SlfJ-Slf) 

= (f,f)-2(f,ST

lf) + {SL]f,SU) 

= l l / l | 2 - 2 E ^ 0 c i m ! / ) + E £ o c f ( T i , T i ) 

2 _ o r m p-TLr- 4- V m 

2 ' 7r v ^ m „2 

From Theorem 3.6, eL\f —> 0, as m —> oo, therefore, we obtain an important 

convergence Theorem for Chebyshev Coefficients: 

Theorem 3.7 

£ ^ = ^ l l / l l 2 = ^ / 1 ( 1 - * 2 ) " ' / 2 ( * ) * - (3-19) 
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Chapter 4 

Indexing wi th No False 

Negatives 

In this Chapter, we focus on 1-dimensional spatiotemporal trajectories, that is, 

time series. In Chapter 5, we shall generalize our framework to higher dimensional 

trajectories. Figure 4.1 summarizes all the symbols used in this thesis. 

Given a collection of time series of length N, we intend to represent each 

time series by its Chebyshev approximation of degree m, with m <g; N. To facilitate 

fast searching, the n = m + 1 Chebyshev coefficients are to be stored in a multi

dimensional index structure. As such, n is typically small, say below 25. 

To show that indexing the time series is reduced to indexing their Chebyshev 

coefficients, we follow the GEMINI framework [9]. We first establish a distance 

metric for the Chebyshev coefficients. In this thesis, we use the Euclidean distance 

(denoted as Disteuc) to measure the distance between two time series S i ,$2- We 

propose in Section 4.4 a natural Euclidean variant (denoted as Distcby) for measuring 

the distance between the two corresponding vectors of Chebyshev coefficients C\,C2-
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Notations Meanings 

Tm{t) Chebyshev Polynomial of degree m 
m the degree of the polynomial Tm (t) 

also the degree of the approximated polynomial 
n the number of Chebyshev coefficients, i.e., n = m + 1 
c» the coefficient of Ti(t) in an approximation 
M the number of trajectories 
N the (padded) length of each trajectory 
d the dimensionality of the trajectories 
V a vector of arity d 
S a spatiotemporal trajectory ( ( i i , v±),..., (tjv, wjv)) 

C the vector of n Chebyshev coefficients for S 

/(*) an interval function defined for trajectory S 

Disteuc Euclidean Distance 

Disteucw Weighted Euclidean Distance 

Figure 4.1: Summary of Notation 

We then establish the important Lower Bounding Lemma in Section 4.5: 

Distcby(Ci,C2) < Disteuc(Si,S2) 

This lemma is critical in guaranteeing no false negatives in using the index as a 

filter. And the tighter the lower bound, the smaller is the number of false positives. 

4.1 Assumptions 

Concerning the studies of time series and trajectories in the literature, the following 

assumptions may be made: 

• Same-length: That every time series has the same length, i.e., N time points. 

• Power-of-2: That every time series has a length 2k for some positive integer 

k. 

• Same-set: That every time series has the same set of time points { t i ; . . . , t^}. 

Thus, this assumption automatically includes the same-length assumption. 

However, the width between a pair of successive time points U and U+\ is not 

necessarily the same as the width between any other pair. 
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• Same-set-uniformly-spaced: This extends the same-set assumption to re

quire that the width between a pair of successive time points be the same 

everywhere, i.e., (£; — = (U+i — *i) for i = 2 , . . . , iV — 1. 

In this study, like most frameworks on trajectory matching, we make the 

same-length assumption. If the time series are not of the same length, padding tech

niques may be applied (see Matlab for example). Unlike some other frameworks, 

like wavelet decompositions [7, 58, 17, 37], we do not require the power-of-2 assump

tion. Furthermore, we make the same-set assumption to make the ensuing analysis 

easier. If this assumption is not met, interpolation techniques may be applied. The 

results to be presented in this thesis do not require the same-set-uniformly-spaced 

assumption. 

4.2 Chebyshev Approximation of a Time Series 

Given a time series, we begin with the computation of the Chebyshev coefficients. 

However, Equations (3.17) and (3.18) are not immediately applicable because the 

given formulae are restricted to interval functions. By "interval functions", we mean 

functions whose domain is an interval (in our case, the interval [-1,1])- The function 

may or may not be continuous, but is defined everywhere over the interval. 

In contrast, the time series is a discrete function, as the domain is a discrete 

set, rather than an interval. Specifically, let the time series be S = ((t\,vi),..., (tjv, v^)) 

where — l < i i < . . . < £ j v < l . (Recall that time t is normalized into the range 

[-1,1].) This can be rewritten in functional form below: 

S(t) = 
Vi if t — ti 

(4.1) 
undefined otherwise 
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To apply Equations (3.17) and (3.18), we need to extend the above discrete 

function into an interval function. We first divide the interval [—1,1] into N disjoint 

subintervals as follows: 

' [ - 1 , ^ ) if * = 1 

[h^±th+h±x) if 2 < i < AT - 1 (4.2) 

[ t N-* 2

+ t N, 1] ]fi = N 

A n obvious choice for an interval function would be the following step func

tion: 

g(t) = Vi if t € Ii, (for 1 < i < N) (4.3) 

To create an interval function based on the original time series in Equation 

(4.1), the above function defines the previously undefined parts as follows. Between a 

pair of successive time points ti and ti+\, the mid-point t l + t ^+ 1 is used as a "divider" -

the first half retains the value Vi, while the second half adopts the value vi+i. Special 

attention is paid to the boundary conditions: i i with respect to the left end-point 

of the interval, and with respect to the right end-point. 

While the above function is simple, it does not immediately satisfy the Lower 

Bounding Lemma. A key result to be proven later in this thesis is that the lemma is 

satisfied with the inclusion of the Chebyshev weight function (defined in Section 3.3) 

and the length of each subinterval: 

/(*)= ( f o r l < i<A0 (4.4) 
y/w(t)\Ii\ 

where g(t) is as defined in Equation (4.3) and |it| is the length of subinterval Ii. 

At this point, we need to use an known result in integral calculus [51]: 

Lemma 4.1 A function is integrable over interval [a,b] if it is bounded and has a 

finite number of discontinuities on [a,b]. 
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Now, by applying Equation (4.4) and Lemma 4.1 we can claim that: 

Lemma 4.2 f(t) is C^-integrable with respect to the Chebyshev weight function. 

Because f(t) is also an interval function, we can use the formulae to compute 

the coefficients of the Chebyshev approximation. Furthermore, for better approxi

mation quality, we can use all ./V data points and values of the time series. Of course, 

to reduce dimensionality, we only keep the first n = m + 1 Chebyshev coefficients 

for indexing. More specifically, we have the following formulae: 

(4.5) 

for all 1 < i < (n - 1). 

For a complex function f(x), it might not be easy or efficient to evaluate 

the integrals exactly. We would rather evaluate them numerically using Gauss-

Chebyshev quadrature. 

Theorem 4.1 For any C^-integrable function F(t) with respect to the Chebyshev 

weight function w{t), 

JX_w{t)F{t)dt~^F{ti) (4.6) 

where tj = cos^ ^ (j = 1,2,... , N) is the jth root o/T/v(i), as in Equation (3.3). 

Thus, the discretized version of Equation (4.5) is: 

co = jjZU f(h)To(ty) = kzULi f(tj) 
(4.7) 

d = # £ £ = 1 f(tj)Ti(tj), l < i < ( n - l ) 

It should be obvious that the complexity of computing each Cj is O(N). 

Thus, the total complexity for approximating a time series is 0(nN) for computing 
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DFT v.s. P A A v.s. A P C A v.s. C H E B Y approximations 
2.5 I 1 1 1 1 1 1 1 

t 

Figure 4.2: A Comparison of Approximation Schemes (n = 4) 

all n coefficients. Because n is intended to be a small constant (e.g., < 25), the 

complexity for Chebyshev approximation can thus be regarded as O(N). 

4.3 An Example 

Figure 4.2 and Figure 4.3 show the time series of the opening stock price of a Fortune 

500 company called A L C O A (ticker symbol: AA) for the period from February 28, 

1978 to October 24, 2003 (for a total length of 6480 trading days). For n = 4, 

Figure 4.2 shows the original time series, and the Chebyshev, D F T , P A A and A P C A 

approximations. Figure 4.3 shows the approximations for n = 8. The x-axis is 

normalized to the interval [-1, 1], and the y-axis is normalized according to the 

A P C A framework. 
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DFT v s . P A A v s . A P C A v.s. C H E B Y approximations 
2.51 , , , , , , , 

-1 - 0 .8 -0 .6 -0.4 - 0 . 2 0 0.2 0.4 0.6 0.8 1 
t 

Figure 4.3: A Comparison of Approximation Schemes (n = 8) 

Note that, if n is a power of 2, the P A A approximation is exactly the same 

as the wavelet transform. Also note that under A P C A , because each piece is not of 

equal length, each piece requires two values for storage. Thus, for n = 8, there are 

only 4 pieces under A P C A , as opposed to 8 pieces under P A A (and 8 coefficients 

for the Chebyshev approximation and DFT) . 

From the two Figures, it is easy to see that the Chebyshev approximation 

is different from the others. However, just based on the naked eye, it is hard to 

observe the minimax property of the Chebyshev approximation. Table 4.1 shows 

the maximum deviation under the various schemes, normalized into the y-range of 

[-2, 2.5]. 

The second and third column of the table show the situation for n = 4 and 

n = 8 respectively. Notice that for D F T as n increases, there is no guarantee that 
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Approximation Maximum Maximum 
Scheme Deviation (n = 4) Deviation (n = 8) 
Chebyshev 1.88 1.84 
D F T 2.00 2.09 
A P C A 2.35 2.23 
P A A 2.31 2.28 

Table 4.1: Maximum Deviations for Different Approximation Schemes 

the maximum deviation decreases. Having said that, the general trend is that the 

maximum deviation decreases as n increases, as exhibited by the other schemes. In 

any event, for both values of n, the maximum deviation of the Chebyshev approxi

mation is by far the smallest among the ones shown. 

4.4 A Metric for Chebyshev Coefficients 

Given two time series S i , S2, the previous section shows how to compute their cor

responding vectors of Chebyshev coefficients, denoted by 61,62 respectively. The 

next task is to define a distance function between the two vectors. Such a definition 

depends on the distance function used for the original time series S i , £2-

Definition 4.1 Let Si, £2 be two time series of length N, and let 61,62 be the 

corresponding vectors of Chebyshev coefficients. Specifically, let C? = [ao,..., am] 

and Cj = [60, • • • ,bm]. (T denotes the transpose of the vector.) Define: 

Distcby(Ci,C2) = 
\ 

m 
^ ( o i - f t i ) 2 (4-8) 

The distance function Dist^y is basically a Euclidean distance function on 

the coefficients. It is weighted by the constant | for the eventual Lower Bounding 

Lemma to work out. The following lemma is obvious. 

49 



Lemma 4.3 Distcby is a metric distance function. 

4.5 The Lower Bounding Lemma 

We are now in a position to establish the Lower Bounding Lemma: Distcby (C\, C 2 ) < 

Disteuc(S\,S2). 

Given S\ = ( ( t i . i t i ) , . . . , (tN,uN)), and S2 = ((ti, t>i),..., (tiv.vjv)), we 

consider the time series Z = ((t\,ui — v\), ..., (£#,UN — VN))- Let zj = Uj — Vj for 

all 1 < j < N. Then it is clear that the Euclidean distance between S\,S2 satisfies 

the following equality: 

£>wtLc (Si ,5 2 ) = Y , { u ] - v j f = Yjz2

j (4.9) 

Recall from Section 4.2 how an interval function is defined for a time series. 

Let the interval functions corresponding to S\, 5 2 and Z be /1, / 2 and fz respectively. 

The lemma below is easy to establish by following Equations (4.3) and (4.4) in 

Section 4.2. 

Lemma 4.4 For a l H e [-1,1], fz(t) = fi(t) - f2(t). 

Proof: Vz = 1,..., N, let x € Ii be arbitrarily given. 

vSfc' " [ E q u a t i o n (4-4) ] • 
= V^ f tM [Equation (4.3)] 

= vSta [Definition of Z] 

= h[x)-f2lx) [Equation (4.4)] 

• 
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The above lemma can then be used to establish a useful result for Cheby

shev approximation. Let us consider the Chebyshev approximation of Z based on 

Equation (4.7). Let the corresponding vector of Chebyshev coefficients be denoted 

as Cz- Given that Z is the "difference" between Si,S2, the following lemma says 

that the vector of Chebyshev coefficients preserves the difference. 

Lemma 4.5 Let Ci,C2 and Cz be the vectors of Chebyshev coefficients for Si,S2 

and Z respectively. Specifically, let C f = [oo,..., a m ] , C2 = [bo, • • •, bm] and = 

[co,..., Cm]. Then for all 0 < i < m, it is the case that Cj = aj — b{. 

Proof: In the following, we only focus on c; for 1 < i < m; the situation is almost 

identical for CQ. 

Ci = £ £ f = i fzitjWitj) [Equation (4.7)] 

= %Z"=i[h(tj)-f2(tj)]Ti(tj) [Lemma 4.4] 

= ai — bi [Equation (4.7)] 

• 

Based on the above lemma and Definition 4.1, it is clear that: 

m oo 

Distlby(CuC2) = fE c?<|E ci (4-!0) 
Z i=0 Z i=0 

Lemma 4.2 tells us that, the function f(t), as defined in Equation (4.4), is £2-

integrable with respect to the Chebyshev weight function. By invoking Theorem 3.7 

in Chapter 3, we can finally put the various pieces together and conclude with the 

following theorem. 

Theorem 4.2 (The Lower Bounding Lemma) Let Si, S2 be two time series, 

and Ci,C2 be the corresponding vectors of Chebyshev coefficients. Then: 

Distcby(Ci,C2) < Disteuc(Si, S2) 
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Proof: 
Dist'iCxA) < | E £ 0 c 2 [Equation (4.10)] 

= J^Jji^dt [Theorem 3.7] 

= EjLi\Ij\^ [Equation (4.4)] 

- 72 

= Dist2

euc(S1,S2) [Equation (4.9)] 

• 
1 f2 (t) M z2 

Notice that a key step in the above proof is / _ x ^dt = Ej=i \Ij I 

This is due to the fact that the integrand is a step function, and hence stepwise 

integrable. The result of the integration at each step is the area under the curve, 
z2 

which is the width |7j| multiplied with the height j^, that is, z2. 

4.6 E x t e n s i o n t o the W e i g h t e d E u c l i d e a n F r a m e w o r k 

In this Section, we shall extend the strict Euclidean framework into a generalized 

weighted version. 

Definition 4.2 For any two time series S\ = ((£1, ui),..., (tjv, UN)) and S2 = 

((t\,vi),..., (tpf,vpf)), the weighted Euclidean Distance between them is: 

N 

^ £ W i ( « i - V i ) 2 (4-11) DisteuCw(Si,S2) = 

where { W j } ^ are nonnegative scalar weights. 

We redefine the function g(t) (as in Equation (4.3)) as follows: 

g(t) = y/WiVi if t e Iit (for l<i<N) (4.12) 
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where subintervals {Jj}^. 1 are defined in Equation (4.2). 

. We then define another function f(t) as: 

f(t) = - ^ = at eh (iovi<i<N) (4.13) 

It is clear that fit) is yCVintegrable with respect to the Chebyshev weight function. 

Therefore, we can apply Gauss-Chebyshev quadrature (Equation (4.6)) to obtain: 

(4.14) 
Ci = 

2_ 
N Ef= i HtjWfa), l < i < ( n - l ) 

where tj = c o s ^ - ^ (j = 1,2,. . . , N) is the jth root of TN(t). 

Definition 4.3 Let S i , £2 be two time series of length N, and let 01 ,62 be the 

corresponding vectors of Chebyshev coefficients obtained by applying Equation 

(4.12) through Equation (4.14). Specifically, suppose Cf = [ao,... ,am] and C2 = 

[bo,..., bm}. (T denotes the transpose of the vector.) Define: 

Distcbyw(Ci,C2) = 

Thus, the Lower Bounding Lemma for the weighted Euclidean framework is: 

m 

Z i=0 

Theorem 4.3 Let S i , S2 be two time series, and Ci,C2 be the corresponding vec

tors of Chebyshev coefficients. Then: 

Distcbyw(Ci,C2) < Dist 
eucw (Si,S2) 

Proof: Let Z = ((h,zi),..., (£JV, <ZJV), where Zj — Uj — Vj for j — 1,. . . , N. Note 

that, if the interval functions corresponding to S i , S2 and Z are fi, f2 and fz 

respectively (Equations (4.12) and (4.13)), then both Lemma 4.4 and Lemma 4.5 
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are also valid for our weighted Euclidean framework. Therefore, 

Dist2

cbyJCuC2) < fESoA2 [Equation (4.10)] 

= j \ J ^ d t [Theorem 3.7] 

= E^il^mf^ [Equation (4.13)] 

= E f = i ^ 2 

= Dist2

euc(Si,S2) [Equation (4.11)] 
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Chapter 5 

I n d e x i n g M u l t i d i m e n s i o n a l 

T r a j e c t o r i e s 

So far, we have established indexing based on Chebyshev approximation for 1-

dimensional time series. In this Chapter, we extend the framework to d-dimensional 

(d > 1) spatiotemporal trajectories. Then we present algorithms for indexing and 

kNN searches. 

5.1 Lower Bounding for the Multidimensional Case 

Let S be a d-dimensional spatiotemporal trajectory of the form ((ti, vi),..., (t^, u/v)), 

where Vi is of arity d. Let the d dimensions be {Dim\,..., Dim^}. Then S is decom

posed into d 1-dimensional series: Srjimi > • • • > ^Dimd' Let each of these series Srjimi 

be approximated and represented with the vector (7, of Chebyshev coefficients. The 

vector Ci is of arity n,, and needs not be of the same arity as Cj for j i. Finally, 

let C be the vector of Chebyshev coefficients for 5, i.e., CT = [C[, • • •, Cj]. 

We generalize Definition 4.1 to give a metric distance function between two 
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vectors of Chebyshev coefficients for two d-dimensional trajectories. 

Definition 5.1 Let S,R be d-dimensional spatiotemporal trajectories. Let their 

vectors of Chebyshev coefficients be CT = [Cf,..., Cj] and DT = [Df,..., D%] 

respectively. Define: 

The following corollary is a simple extension of Theorem 4.2 generalizing the 

the Lower Bounding Lemma from 1-dimensional to d-dimensional trajectories. This 

is because the d-dimensional distance is based on the sum-of-squares distances along 

each dimension. 

5.2 Algorithms for Building and Searching A Single In-

Having established the Lower Bounding Lemma in Corollary 5.1 for the d-dimensional 

case, we can build an index of Chebyshev coefficients. Figure 5.1 shows a skeleton 

of an algorithm which takes M d-dimensional spatiotemporal trajectories, obtains 

the Chebyshev coefficients for each trajectory, and inserts the vectors of coefficients 

into a multidimensional index. 

Recall from Section 4.2 that the complexity of step (4) of the algorithm is 

O(N), where N is the length of each trajectory. Thus, it is clear from Figure 5.1 

that building the index takes 0(dMN) time. 

Corollary 5.1 Let S,R be d-dimensional spatiotemporal trajectories, and C,D be 

the corresponding vectors of Chebyshev coefficients. Then: 

Disced) < Disteuc{S,R) 

dex 
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Algorithm BuildOneIndex(£)B, Index, n\,... ,nd) { 
/* input: a database DB of M d-dimensional trajectories */ 
/* input: Index, a multidimensional index which may already 

contain some entries */ 
/* input: ni (1 < % < d) denotes the number of Chebyshev 

coefficients to be used for the ith dimension */ . 
/* output: the trajectories approximated and added to Index */ 
for each trajectory S { 

(1) initialize C to be empty 
(2) project S to its d dimensions {Dim\,... ,Dimd} 

creating SDimiSDimd 

(3) for (1 < i < d) { 
(4) apply Equations (4.2) to (4.7) to SDimi 

(5) add all the computed ni coefficients to C 
} /* end for-loop */ 

(6) insert the coefficients in C as a single 
multi-dimensional point .into Index 

} /* end for-loop */ 
} /* end algorithm */ 

Figure 5.1: Algorithm for Building a Single Index of Chebyshev Coefficients 

Next we consider range and kNN searches. In both cases, the search is rather 

straightforward, following the GEMINI framework [9]. Figure 5.2 shows a skeleton 

of the range search algorithm, and Figure 5.3 shows a skeleton of the kNN search 

algorithm. 

5.3 A l g o r i t h m s for B u i l d i n g a n d S e a r c h i n g M u l t i p l e In

d ices 

A keen reader would notice that the algorithm presented in Figure 5.1 does not scale 

very well with the dimensionality of the trajectories. For' example, if the trajecto

ries have a dimensionality of 10, then even as few as four coefficients per dimension 

would result in an index of 40 dimensions, which is clearly unacceptable, due to 

the dimensionality curse problem of multidimensional indices. In this Section, we 
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Algorithm RangeSearchOneIndex(Q, Index, r) { 
I* input: a d-dimensional query trajectory Q */ 
/* input: the index of Chebyshev coefficients Index */ 
/* input: a radius r for range search */ 
/* output: all trajectories within distance r of Q 

with respect to Disteuc */ 
(1) apply Equations (4.2) to (4.7) to obtain the vector of 

coefficients for Q 
(2) find all trajectories in Index within distance r of Q using Distcoy 

(3) retrieve from disk the corresponding (full) trajectories 
(4) compute the true distances using Disteuc and 

discard all the false positives 
} /* end algorithm */ 

Figure 5.2: Algorithm for a Range Search in a Single Index 

shall propose an alternative approach, in which we "distribute" the Chebyshev coef

ficients of trajectories to multiple indices instead of using a single index. Figure 5.4 

illustrates how we build multiple indices based on the Chebyshev coefficients of each 

trajectory in a collection of M d-dimensional spatiotemporal trajectories. Figure 5.5 

gives an algorithm for range search, and Figure 5.6 is for kNN search. 

Note that, in Step (5) of Figure 5.4, there are many ways to choose I. In fact, 

there are exponentially many ways to distribute the sets of Chebyshev coefficients 

to indices, and we shall leave the optimization of distributions as a topic of future 

research. 

5.4 P r o p e r t i e s o f C h e b y s h e v I n d e x i n g 

Recall from Section 1.2.3 that we have outlined a list of desirable properties for 

indexing techniques. In this Section, we shall argue that Chebyshev indexing satisfies 

all those criteria: 

• Indexing is intrinsically much faster than sequential scanning in terms of query 
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Algorithm kNNSearchOneIndex(Q, Index, k) { 
/* input: a d-dimensional query trajectory Q */ 
/* input: the index of Chebyshev coefficients Index */ 
/* input: k a positive integer */ 
/* output: the k most similar trajectories to Q 

with respect to Disteuc */ 
(1) apply Equations (4.2) to (4.7) to obtain the vector of 

coefficients for Q 
(2) find the /c-nearest neighbours to Q in Index using Distcby 

(3) retrieve from disk the corresponding (full) trajectories 
(4) compute the true distances using Disteuc and 

record the maximum max 
(5) invoke the range search RangeSearchOneIndex(Q, Index, max) 
(6) retrieve from disk the corresponding (full) trajectories 
(7) compute the true distances using Disteuc and 

retain the nearest k trajectories 
} /* end algorithm */ 

Figure 5.3: Algorithm for a kNN Search in a Single Index 

performance, since it partitions the search space into hierarchical components 

and does not require access to every data page. As long as the dimensionality 

is not too high, indexing always dominates sequential scanning. This is also 

confirmed by our experimental results in Chapter 6. 

• As n is quite small, our indexing structure does not take much space and is 

supposed to be memory resident. 

• Chebyshev indexing allows both whole matching and subsequence matching. 

• For each trajectory in the database, we compute its Chebyshev coefficients 

based only on the trajectory itself. Unlike SVD, Chebyshev approximation is 

incremental. 

• No false negatives are guaranteed (Theorem 4.2 and Corollary 5.1). 

• It is clear to see from Figure 5.1 that the index building process takes 0(dMN) 
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Algorithm BuildMultipleIndices(DB, Indexi,..., Indexg, m,...,rid) { 
/* input: a database DB of M d-dimensional trajectories */ 
/* input: Indexi,..., Indexg, g indices which may already 

contain some entries */ 
/* input: rij (1 < i < d) denotes the number of Chebyshev 

coefficients to be used for the ith dimension */ 
/* output: the trajectories approximated and indexed */ 
for each trajectory S { 

(1) initialize C\, • • •, Cg to be empty where Cj is 
the collection of coefficients to be inserted into Index j 

(2) project S to its d dimensions {Dimi,..., Dinid} 
creating SDimi, • • •, Soimd 

(3) for (1 < i < d) { 
(4) apply Equations (4.2) to (4.7) to Spirm 

to get the set of Chebyshev coefficients Vi for Soim, 
(5) add all the coefficients in Vi to C; for some I 

} /* end for-loop */ 
(6) for (1 < j < g) { 
(7) insert the coefficients in Cj as a single 

multidimensional point into Index j 
} /* end for-loop */ 

} /* end for-loop */ 
} /* end algorithm */ 

Figure 5.4: Algorithm for Building Multiple Indices of Chebyshev Coefficients 

time. Thus, Chebyshev indexing is scalable with respect to all of d, M and N. 

• As shown in Chapter 4, our framework can handle both the Euclidean distance 

and the weighted Euclidean distance. 
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Algor i thm RangeSearchMultipleIndices(Q, Index\,..., Indexg, r) { 
/ * input: a d-dimensional query trajectory Q * j 
/ * input: the indices of Chebyshev coefficients * / 
/ * input: a radius r for range search * / 
/ * output: a l l trajectories wi th in distance r of Q 

with respect to Disteuc */ 
(1) apply Equations (4.2) to (4.7) to obtain the vector C of 

coefficients for Q 
(2) for (l<j<g){ 
(3) project C onto the dimensions on which Indexj is based 
(4) find all trajectories in Index j wi th in r of Q using Distcby 

(5) retrieve from disk the corresponding (full) trajectories 
(6) compute the true distances using Disteuc and 

discard all the false positives 
} / * end for-loop * / 

} / * end algorithm * / 

Figure 5.5: Algorithm for a Range Search in Multiple Indices 

Algor i thm kNNSearchMult ipleIndices(Q, Indexi,... ,Indexg, k) { 
/ * input: a d-dimensional query trajectory Q */ 
/ * input: the indices of Chebyshev coefficients * / 
/ * input: k a positive integer * / 
/ * output: the k most similar trajectories to Q 

with respect to Disteuc */ 

(1) apply Equations (4.2) to (4.7) to obtain the vector C of 
coefficients for Q 

(2) initialize set U to be empty 
(3) for (1 < j < g) { 
(4) project C onto the dimensions on which Indexj is based 
(5) find the fc-nearest neighbours to Q in Indexj using Distcby 

(6) add those neighbours into set U 
} / * end for-loop * / 

(7) retrieve from disk the corresponding (full) trajectories 
(8) compute the true distances using Disteuc and 

record the kih smallest distance ks 
(9) invoke the range search 

RangeSearchMultipleIndices(Q, Index\,..., Indexg, ks) 
(10) retrieve from disk the corresponding (full) trajectories 
(11) compute the true distances using Disteuc and 

retain the nearest k trajectories 
} / * end algorithm * / 

Figure 5.6: Algorithm for a kNN Search in Multiple Indices 
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Chapter 6 

E x p e r i m e n t a l E v a l u a t i o n 

6.1 Data Sets and Programs Used 

We conducted an experimental evaluation on many real data sets. The following 

table provides a summary of those reported here. 

The Stocks data set consists of the daily opening prices of 500 companies 

traded on the New York Stock Exchange for the past 25 years. The data set was 

obtained from http://finance.yahoo.com. The E R P data set was provided to us by 

Eammon Keogh. Both of these data sets consist of long 1-dimensional time series. 

Name Dimensionality Number of Trajectories Trajectory Length 
Stocks 1 500 6480 
E R P 1 496 6396 
N H L 2 5000 256 
Slips 3 495 400 
Kungfu 3 495 640 
Angle 4 657 640 

Table 6.1: Data Sets Used 
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The NHL data set consists of .5000 National Hockey League players' 2-

dimensional trajectories, each of length 256 time points. The trajectories were 

obtained by digitizing the Philadelphia Flyers' hockey games during the NHL 2001-

2002 season. The data were provided to us by an electronic games company. 

The Slips, Kungfu and Angle data sets were obtained from http://www.e-

motek.com/entertainment/index.htm. The site belongs to a company which oper

ates a motion capture facility for use by electronic game developers and medical 

professionals. The Slips data are 3-dimensional positions of body joints of a person 

slipping down and trying to stand up. The Kungfu data axe 3-dimensional positions 

of body joints of a person playing kung fu. Finally, the 4-dimensional Angle data 

record the four angles of the body joints of a person playing kung fu. 

The aforementioned data sets vary in dimensionality and length. But they 

axe rather small in number (not necessarily in total size). To complement the sit

uation so that scalability can be tested more thoroughly, we implemented a tra

jectory generator. Specifically, it uses a simple mixture contamination model, i.e., 

Z(t) = (1 — w)P(t) + wM. Z{t) is the generated 1-dimensional time series. With 

a probability of (1 — w) (e.g., w = 0.1), the generated values follow the values of 

a polynomial P(t) of a specified degree m (e.g., from 4 to 20). But with a proba

bility w, Gaussian noise A/"(0,1) is introduced. The polynomial P(t) of degree m 

has m roots, which are picked randomly within the range [-1,1]. This polynomial 

is then expanded and scaled. For a d-dimensional trajectory, the above generation 

procedure is invoked d times to generate the data on each dimension separately. 

We implemented Chebyshev approximation in C++, corresponding to Equa

tions (4.3) to (4.7). Recall from Figure 4.2 that there are various well-known schemes 

for time series indexing. As the study in [21] shows convincingly that A P C A is al-
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most always the best algorithm, we focus our empirical comparison only with A P C A . 

We obtained the A P C A code from Eammon Keogh, for which we are thankful. The 

A P C A code was implemented in Matlab. We implemented the Buildlndex, Range-

Search and kNNSearch procedures shown in Figures 5.1 to 5.3. 

Finally, many multidimensional indexing structures have been developed. 

See [10] for a comprehensive survey. For the results reported here, we used the 

DR-tree package developed by Christos Faloutsos and his group. 

To come up with a "straw man" algorithm for a comparative analysis for d-

dimensional trajectories, we developed another version of the Buildlndex procedure 

by replacing line (4) in Figure 5.1 with the A P C A code. Similarly, we developed 

A P C A versions of RangeSearch and kNNSearch procedures by basically replacing 

line (1) in Figures 5.2 and 5.3 with the A P C A code. 

6.2 Comparison Criteria: Pruning Power and Search 

Time 

Note that because the A P C A code is implemented in Matlab, and line (4) in Buildln

dex is looped many times, it is unfair to compare the execution times of the two 

Buildlndex procedures directly. However, the situation is different for the Range-

Search and kNNSearch procedures. Because line (1) in Figures 5.2 and 5.3 is called 

only once per query, we did not measure the execution time of this line, but mea

sured and compared the execution times of the rest of the procedures. We feel that 

this is a fair comparison between Chebyshev and A P C A on their search performance 

with indexing taken into account - modulo the time taken to approximate the initial 

query. 
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In addition to the execution times, we also compared the pruning power of the 

two schemes. Our definition of pruning power is slightly simpler than the one used 

by Keogh et al. [21]. Adopting a branch-and-bound strategy, we used a sequential 

scan to conduct a kNN search. Specifically, let Si,... ,Sk be the current fc-nearest 

trajectories based on their real Euclidean distances to query Q. Let maxeuc be the 

maximum distance according to these k current best. For the next trajectory R to 

be evaluated, we compare maxeuc with DistcbY(CQ,CR), where CQ,CR denote the 

vectors of coefficients of query Q and trajectory R respectively. If smaller, 

then by the Lower Bounding Lemma, R cannot possibly be nearer, thus saving one 

calculation of the real Euclidean distance Disteuc(Q, R). Otherwise, the real dis

tance Disteuc(Q, R) is computed and the current fc-nearest trajectories and maxeuc 

may need to be updated. Thus, the pruning power essentially measures the percent

age of saved real Euclidean distance calculations, as a result of the approximation. 

Note that this percentage depends on the initial k trajectories. To overcome this 

bias, we define the pruning power to be the average percentage of saved calculations 

over 10 randomly picked queries. 

Apart from search times, we feel that it is essential to compare the pruning 

power for two reasons. First, in a search time comparison with indexing included, 

there are biases introduced by implementation details, including the choice of the 

indexing structure. A pruning power comparison is free of those implementation 

biases. Second, as indexing is included in a search time comparison, the dimen

sionality curse of the indexing structure may dominate at some point, and mask 

the true pruning effectiveness of the approximation schemes. The latter is best 

measured directly by a pruning power comparison. 
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6.3 Pruning Power Comparison: Real Data Sets 

Figure 6.1 compares the pruning power of Chebyshev and A P C A approximations. 

The value of A; is 10 (i.e., 10-nearest neighbours). The figure consists of six graphs, 

one for each of the six real data sets. In all cases, the x-axis shows varying values of n 

(i.e., the number of coefficients allowed in the approximation). Notice that because 

A P C A approximates a trajectory with variable-length pieces, each piece requires 

two coefficients. Thus, n — 2 for A P C A corresponds to a single piece, which has 

little pruning power, and hence is omitted. Furthermore, the A P C A code requires 

that the length of a trajectory be a multiple of n. Thus, the values plotted on the 

x-axes for the six graphs vary from data set to data set. For example, the NHL 

trajectories are each of length 256; the values of n that can be used must be powers 

of 2. The y-axis shows the percentage of saved Euclidean distance calculations. 

Let us first take a closer look at the two 1-dimensional data sets: Stocks and 

ERP. As expected, as n increases, the pruning power increases. For the Stocks data, 

as n varies from 4 to 20, the pruning power of Chebyshev approximation increases 

from around 35% to about 70%. In contrast, the pruning power of A P C A only 

increases from 8% to 30%. In other words, even if 20 coefficients are used for the 

A P C A to approximate each trajectory, the pruning power it delivers is less than 

what the Chebyshev approximation can deliver with 4 coefficients. Thus, there is 

at least a 5-fold improvement in the dimensionality of the approximation. For the 

E R P data, as n varies from 4 to 12, the pruning power of Chebyshev approximation 

changes from 20% to 35%, whereas that of A P C A changes from 10% to 20%. Thus, 

it takes A P C A 12 coefficients to deliver the same pruning power as 4 Chebyshev 

coefficients can do. 

Let us turn our attention to higher-dimensional trajectories. Note that the 
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Figure 6.1: Pruning Power Comparisons: Real 1- to 4-Dimensional Data Sets 

67 



Stocks * Kungfu « Angle | 
140 -, 

S 60 -
P 
o 40 -
e 

p 20 -

0 4 , , , , , , , r—I 
4 6 8 10 12 14 16 18 20 

Number of Coefficients, n 

Figure 6.2: Computing Chebyshev Coefficients 

value of n represents the number of coefficients for each dimension. For instance, 

for the graph in Figure 6.1(f), n = 20 corresponds to a total of 80 coefficients used 

for approximating the given 4-dimensional data. Note that we are not suggesting 

that in practice, we should build an 80-dimensional index. Rather, we focus here 

on examining pure pruning effectiveness, independent of the index structure. To 

continue with Figure 6.1(f), we observe that it takes A P C A 20 coefficients to de

liver what 4 Chebyshev coefficients can deliver, representing a 5-fold difference in 

dimensionality of approximation. Similar observation applies to the 2-dimensional 

and 3-dimensional data sets. 

6.4 Building Time and the Choice of n 

The above discussion focuses on comparing the dimensionality of Chebyshev ap

proximation and A P C A . Here we focus solely on Chebyshev approximation. In all 

the graphs shown in Figure 6.1, the larger the value of n, the higher the pruning 

power is. The obvious question to ask then is how large n could be. There are two 

key factors. The first factor is the dimensionality of the index, as the dimensionality 
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curse on the index structure may put a limit on the value of n. This issue will be 

addressed in Section 6.6. 

The second factor is the computation time of Chebyshev approximation. 

The key question here is how fast the C P U time taken to compute the Chebyshev 

coefficients grows with respect to n. Figure 6.2 answers this question for the 1-

dimensional Stocks data, 3-dimensional Kungfu data, and 4-dimensional Angle data. 

We omit the others to save space, as the same conclusion can be drawn. The x-axis 

of the graph shows varying values of n, and the y-axis shows the number of seconds 

in C P U time to compute the Chebyshev coefficients for all the trajectories. The 

machine used was an Intel P C with a single 1.8 GHz processor and 256 Mbytes of 

R A M . The timing figures represent averages of 10 randomly picked queries. 

Across the three curves in the graph, the absolute time taken is not that 

important, as the time depends on the size and length of each data set. What is 

important, however, is that for each curve, the time taken is shown to be linear with 

respect to n, as predicted from the earlier equations. What is noteworthy is how 

small the rate of growth turns out to be, i.e., the slope of the "straight" line. The 

reason is that, as shown in Equation (4.7), the bottleneck of the computation of the 

coefficients is for computing f(tj) for all 1 < j < N. This computation is done only 

once for all the n coefficients. The significance of this observation is that as long as 

increasing n delivers additional pruning power, the incremental building cost is not 

an obstacle at all. Of course, this does not represent the final verdict on the choice 

of n; later in Section 6.6 when indexing is included in our measurement, we shall 

return to this issue. 

We do not include the building time for A P C A here, as it takes at least an or

der of magnitude longer. But this is not a fair comparison as A P C A is implemented 
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in Matlab, whereas our Chebyshev code is implemented in C++. 

6.5 On Scalability: Generated Data 

So far, all the empirical evaluations are based on the real data sets, all of which 

are small in M, the number of trajectories. Here we used the generated data sets, 

as described in Section 6.1. Figure 6.3 shows a representative situation - based 

on a 3-dimensional generated data set with an underlying polynomial of degree 10 

and trajectory length of 720. Figures 6.3(a) and (b) compare the pruning power of 

Chebyshev approximation and A P C A . The rc-axis shows varying values of data set 

size M, and the y-axis shows the percentage of saved Euclidean calculations. To 

avoid crowding the graph, we only show the situation when n = 6,12 and 20. 

Recall from the earlier pruning power discussion that Chebyshev approxima

tion can deliver a 3- to 5-fold reduction in the dimensionality of the approximation. 

Let us examine the first two graphs in Figure 6.3 to see if the same conclusion can 

be drawn for larger data sets. Take M — 2000 as the first example. The pruning 

power of Chebyshev approximation using n = 6 coefficients is roughly the same as 

the pruning power of A P C A using n = 20 coefficients. Similar observations can 

be made for all other values of M shown in the graphs. Thus, this confirms the 

superiority of Chebyshev approximation for both real and generated data sets. 

Figure 6.3(c) shows that the time taken to compute Chebyshev coefficients 

is linear with respect to M. This shows the scalability of Chebyshev approximation. 

Furthermore, the graph shows that there is little difference in time whether 6 or 

20 coefficients are being computed, confirming an earlier observation surrounding 

Figure 6.2. This shows that the computation of Chebyshev coefficients is far more 

affected by the data set size M than by the number of coefficients n. 
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6.6 Comparisons with Indexing Included 

So far, our discussions have not taken account of the indexing structure. The com

parison between Chebyshev and A P C A is based on pruning power and sequential 

scans. In the remainder of this section, we compare these two schemes with indexing 

included - in terms of both I/O cost and C P U cost. I/O cost, if reported in seconds, 

may depend heavily on implementation and experimentation details, such as buffer 

space, speed of a random page read, etc. To eliminate these details, we report I/O 

cost as the sum of the number of index nodes/pages accessed and the number of 

page reads required to retrieve the specific trajectories needed by the kNNSearch 

procedure. We used a page size of lOKbytes. 

C P U time includes the time taken to navigate the index nodes, the time taken 

to compute the lower bounded distances Distcby(CQ,Cs), and the time taken to 

compute the real Euclidean distances Disteuc(Q, S), whenever needed. As discussed 

before, the time taken to perform the initial approximation of the query is not 

included, due to the fact that the A P C A code is written in Matlab. Even though 

the exact C P U time is highly dependent on the size of the data set and the length 

of the trajectories, the C P U time can at least be used as a relative measurement 

between Chebyshev and A P C A . Like the figures reported on pruning power, the 

timing figures reported here on I/O and C P U costs represent the averages over 10 

randomly picked queries. 

6.6.1 I/O C o s t C o m p a r i s o n 

Figure 6.4 shows the I/O and C P U costs for the Stocks data, the Kungfu data and 

the 3-dimensional generated data with 10,000 trajectories each of length 720. The 

x-axis of the graphs shows the number of coefficients used, n, for each dimension. 
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For graphs (a) to (c), the y-axis shows the I/O cost in page accesses. Given the 

differences in length and number of trajectories in each data set, the absolute values 

in graphs (a) to (c) are relatively unimportant; what is important are the curves 

within each graph. 

For the 1-dimensional Stocks data in graph (a), the reduction in page ac

cesses as n increases flattens off for n beyond 16. For the 3-dimensional Kungfu 

data in graph (b), the number of page accesses reaches a minimum when n = 8, 

corresponding to a 24-dimensional index. Beyond that, the dimensionality curse on 

the index structure sets in, and the number of total page accesses starts to rise. For 

the 3-dimensional generated data in graph (c), there is not yet any observed increase 

in total page accesses beyond n = 8. However, recall that total page accesses come 

from two sources: the number of data pages and the number of index nodes/pages. 

As n increases, the former decreases due to the increase in pruning power. In con

trast, the latter goes up due to increasing dimensionality, and accounts for a larger 

and larger percentage of total page accesses. Eventually, the latter dominates the 

former. 

Dimensionality curse aside, the number of page accesses required by Cheby

shev approximation in all cases is about 50% to 60% that of A P C A . This improve

ment is highly consistent with the pruning power results shown earlier in Figure 6.1 

and Figure 6.3. 

6.6.2 C P U C o s t C o m p a r i s o n 

For graphs (d) to (f), the y-axis shows the C P U time taken (in seconds) for the 

entire kNNSearch. Within each graph, we show the times taken by Chebyshev and 

A P C A , with indexing included. Furthermore, whenever the sequential scan strategy 

74 



(as described in Section 6.2) becomes competitive, the timing figures for scans are 

included as well. The key difference between indexing and sequential scans is that 

with the former, the dimensionality curse on the indexing structure will set in sooner 

or later. In graph (d), for the 1-dimensional Stocks data, the minimum C P U time 

occurs when n — 20. But for the 3-dimensional Kungfu and generated data in graphs 

(e) and (f), the minimum C P U time occurs when n = 4 or n = 6 (corresponding to 

a 12-dimensional or 18-dimensional index). And if the total time is considered by 

summing up the C P U and I /O costs, the best situation is when n = 6. 

As expected and consistent with the literature [55], our sequential scan strat

egy starts to dominate indexing. For graphs (e) and (f), this occurs when n = 10. 

As our sequential scan strategy is not optimized, it is conceivable that a more opti

mized sequential scan procedure may dominate even earlier. Recall from Figure 6.1 

that the pruning power continues to grow beyond n = 8. Thus, it is important 

to include sequential scans as a viable alternative to indexing for spatiotemporal 

trajectories. 

For the comparison between Chebyshev and A P C A , again the former dom

inates in C P U time taken. This is consistent with all the previous comparisons on 

pruning power and I/O cost. But besides pruning power, there is an additional 

reason why the C P U time for Chebyshev is lower than that for A P C A . As defined 

in Definition 4.1, the computation of the distance between two vectors of Chebyshev 

coefficients is 0(n). However, based on the distance measure given in [21], the cor

responding computation between two vectors of A P C A coefficients is in fact O(N) 

(where iV is the length of each trajectory), which requires extra C P U time. 
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6.6.3 Recommendations 

In closing, we make the following suggestions regarding indexing for d-dimensional 

spatiotemporal trajectories. They are based on the DR-tree we used and should be 

adjusted depending on the choice of the index structure. For the 1-dimensional case, 

using n = 20 Chebyshev coefficients appears to be the best. For the 2-dimensional 

case, the suggested value of n is 8-12 for each dimension. The corresponding sug

gestion is 4-6 for 3-dimensional trajectories. And finally, 4 coefficients for each 

dimension are recommended for 4-dimensional trajectories. For higher dimension

ality, or for additional pruning power, a sequential scan using a higher number of 

Chebyshev coefficients is recommended. 

6.7 A Single Index vs. Multiple Indices 

Until now, the highest dimensionality of trajectories in all the experimental data 

sets used is 4, but there are many examples of higher dimensionality in real life. In 

this Section, we shall explore the performance of our algorithms with respect to the 

dimensionality of trajectories, focusing only on Chebyshev approximation. 

We use our trajectory generator to generate five databases, each having 

M — 5000 trajectories, N = 500 in length, but with different dimensionalities 

(d = 2,4,6,8,10). We compare the performance under three situations (where 

n = 3 and 5): 

1. Singlelndex corresponds to the scenario where n coefficients are computed for 

each attribute and a single index of 3d dimensions is used. 

2. Multiplelndices corresponds to the scenario where n coefficients are computed 

for each attribute and the coefficients for two attributes are grouped into one 
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index. In total, | indices of 6 dimensions are used. 

3. SequentialScan corresponds to the scenario where n coefficients are computed 

for each attribute and kNN search is conducted using sequential scan. 

Figure 6.5 and Figure 6.6 show the comparisons in terms of pruning power, 

I/O cost and C P U cost, respectively. They both display a similar trend as dimen

sionality increases from 2 to 10. When d is small, putting all the coefficients together 

in one' single index appears to be the best, but as d gets larger, the dimensionality 

curse sets in, and sequential scanning starts to dominate. It is interesting to note 

that, when d > 6, distributing Chebyshev coefficients to multiple indices turns out 

to be better than the single index approach, and the difference becomes more ob

vious as d increases. On the other hand, however, sequential scan is definitely the 

winner over the two indexing schemes at very high dimensionalities. 

6.8 S u b s e q u e n c e M a t c h i n g 

A l l the previous Sections, whether indexing is included or not, whether a single 

index or multiple indices are used, are devoted to the problem of whole matching. 

In this Section, our focus is subsequence matching, as discussed in Section 2.1.2. 

We use our trajectory generator to create a database of M = 500 time series, 

each of which has a length of N — 500. Queries of length w = 180 are randomly 

generated and radius searches with a radius r = 10 are performed. In total, there 

are (N — w + 1) * M — 160500 subsequences of length w. 

Note that, in the subsequence matching algorithm described in Section 2.1.2, 

both Chebyshev and A P C A can be used for the dimensionality reduction step. In 

Figure 6.7, we compare Chebyshev approximation and A P C A approximation in 
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Figure 6.5: A Single Index vs. Multiple Indices (n = 3) 
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terms of pruning power, I/O cost and C P U cost, respectively. As expected, the 

results are highly consistent with those for whole matching in Section 6.6. 
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Chapter 7 

C o n c l u s i o n s 

In this thesis, we explore how to apply Chebyshev polynomials for approximating 

and indexing d-dimensional spatiotemporal trajectories. Chebyshev polynomials 

enjoy the property that they are almost identical to the minimax polynomials; yet 

they are easier to compute. Computing Chebyshev coefficients is linear with respect 

to the data set size M, as well as to the trajectory length N. Our experimental 

results further show that computing extra Chebyshev coefficients takes negligible 

time (i.e., increasing n incurs little extra cost). 

In order for Chebyshev approximation to be used for indexing, a key analytic 

result of this thesis is the Lower Bounding Lemma. To achieve this result, we need 

to extend a discrete trajectory into an interval function, so that Chebyshev approxi

mation becomes applicable. We also need to define a distance function between two 

vectors of Chebyshev coefficients. 

To evaluate the effectiveness of the minimax property of Chebyshev polyno

mials on indexing, we conducted an extensive experimental evaluation. From 1- to 

4-dimensional, real to generated data, Chebyshev dominates the widely-used A P C A 
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in pruning power, I/O costs and C P U costs. Our empirical results indicate that 

Chebyshev approximation can deliver a 3- to 5-fold reduction on the dimensionality 

of the index space. That is, it only takes 4 to 6 Chebyshev coefficients to deliver 

the same pruning power produced by 20 A P C A coefficients. This is a very impor

tant advantage. As the dimensionality curse on the indexing structure is bound to 

set in sooner or later, Chebyshev coefficients are far more effective than A P C A in 

delivering additional pruning power before that happens. 

In ongoing work, we would like to extend the Lower Bounding Lemma to 

other distance functions, such as the dynamic time-war ping distance [4] and the 

longest common subsequence distance [53]. We would also like to expand our frame

work to conduct sub-trajectory matching. The fixed-window strategy proposed in [9] 

is applicable; yet we seek to exploit properties of Chebyshev approximation for fur

ther optimization. The experimental results reported here are based on using the 

same number of coefficients for each dimension. In ongoing work, we would ex

plore how to allocate a fixed number of Chebyshev coefficients to the d dimensions 

according to the "need" of each dimension. Finally, we would explore how to de

velop an optimized sequential scan algorithm to use in conjunction with Chebyshev 

coefficients. 
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