
Tools for Design of Composite Web Services
(Tutorial Abstract)

Richard Hull
Bell Labs

Lucent Technologies

hull@lucent.com

Jianwen Su �

Department of Computer Science
U C Santa Barbara

su@cs.ucsb.edu

1. INTRODUCTION
The web services paradigm promises to enable rich, flexible, and

dynamic interoperation of highly distributed and heterogeneous
web-hosted services. Substantial progress has already been made
towards this goal (e.g., emerging standards such as SOAP, WSDL,
BPEL) and industrial technology (e.g., IBM’s WebSphere Toolkit,
Sun’s Open Net Environment and JiniTM Network technology, Mi-
crosoft’s .Net and Novell’s One Net initiatives, HP’s e-speak). Sev-
eral research efforts are already underway that build on or take ad-
vantage of the paradigm, including the DAML-S/OWL-S program
[8, 25, 19], the Semantic eWallets project [18], ActiveXML [3],
and automata-based models for web services [6, 21, 4]. But there
is still a long way to go, especially given the ostensible long-term
goal of enabling the automated discovery, composition, enactment,
and monitoring of collections of web services working to achieve
a specified objective. A fundamental question right now concerns
the design and analysis of composite web services. Specifically,
are existing tools for design and analysis of software systems suffi-
cient for web services, or are new techniques needed to handle the
novel aspects of the web services paradigm? This raises a variety
of questions, several of which are relevant for the database research
community. These include: What is the right way to model web
services and their compositions? What is the right way to query
them in order to support automated composition and analysis algo-
rithms? And how can the data management aspects of composite
web services be incorporated into current web services standards?
This tutorial will provide the groundwork needed to address these
questions, by describing emerging frameworks for studying com-
posite services, and identifying emerging tools and techniques for
both automated design and analysis of composite web services.

The tutorial will begin with an overview of the underlying goals
and assumptions of the web services paradigm, from the perspec-
tives of both emerging standards and the semantic web services
community (Section 2). It then reviews key standards in the area,
as these provide some of the basic building blocks to be used by
the web services paradigm, and will influence the form that this
paradigm eventually takes (Section 3).

�

Supported in part by NSF grants IIS-0101134 and IIS-9817432.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

The tutorial will identify fundamental aspects for modeling of
web services and their compositions. Research and standards are
exploring a variety of approaches, which can be broken along sev-
eral dimensions. A key dimension concerns whether the focus is
on message passing (as found in WSDL and BPEL) or actions per-
formed (as found in OWL-S and elsewhere) (Section 4). Another
key dimension concerns how behaviors should be modeled, includ-
ing both the behavior of individual web services and also the de-
sired or actual behaviors of compositions of web services. Possi-
bilities here include flowchart-based approaches (e.g., from work-
flow, BPEL), automata-based models, or goal-driven approaches
(e.g., OWL-S). The tutorial discusses several variations that arise
from the underlying operational model (Section 5). This includes
issues such as whether messages passed are synchronous or asyn-
chronous, whether unbounded queues are permitted, and the topol-
ogy for compositions, e.g., peer-to-peer or hub-and-spoke.

The tutorial then examines approaches and technologies that are
relevant to the problem of (manual or automated) composition of
web services (Section 6). This includes examination of technolo-
gies that emerged before the web services paradigm came into be-
ing, such as automated synthesis as found in the verification com-
munity and automated workflow design from inter-task dependen-
cies. It also includes in-depth discussion of recent research on com-
position for web services. Analysis of composite web services is
then considered (Section 7). This includes again more classical re-
sults, e.g., from the workflow and verification communities, and
several recent results based on various models of composite web
services.

The final topic of the tutorial concerns research questions aris-
ing from the web services paradigm that are very interesting to the
database community (Section 8). These focus on issues such as the
development of abstractions to enable querying and manipulating
web services and behavior models.

The work on web services described above is based on a variety
of established fields including, e.g., automata theory [20], process
algebras [26], temporal logics [12], and situation calculi [30]; re-
view of selected results from these fields will be sprinkled through
the tutorial.

The tutorial described here is focused primarily on issues of de-
sign and analysis of composite web services, primarily from the
perspectives of models, languages, and algorithms. Many topics
will be addressed only in passing or not at all; these include trans-
actional properties and ontology-based reasoners.

2. GOALS OF WEB SERVICES
A good starting point for understanding the web services para-

digm is to consider the stated goals, as found in the literature and
the standards communities. The basic motivation of standards such

as SOAP and WSDL is to allow a high degree of flexibility in com-
bining web services to create more complex ones, often in a dy-
namic fashion. The current dream behind UDDI is to enable both
manual and automated discovery of web services, and to facilitate
the construction of composite web services. Building on these, the
BPEL standard provides the basis for manually specifying com-
posite web services using a procedural language that coordinates
the activities of other web services.

Much more ambitious goals are espoused by the OWL-S coali-
tion [8] (formally known as DAML-S), and more broadly the se-
mantic web services community (e.g., [9]). These goals are to
provide machine-readable descriptions of web services, which will
enable automated discovery, negotiation with, composition, enact-
ment, and monitoring of web services.

A kind of middle ground is also emerging, which provides ab-
stract “signatures” of web services that are richer than WSDL but
retain a declarative flavor. Most popular here is the use of automata-
based descriptions of permitted sequencing patterns of the web ser-
vices, with a focus on either activities performed [4] or messages
passed [21].

3. WEB SERVICE STANDARD STACK
The underlying structure for the web services paradigm will most

likely be guided by already established standards and practices.
Some of the current standards are illustrated by the layered struc-
ture shown in Figure 1. Briefly, web services interact by passing
XML data, with types specified using XML Schema. SOAP can be
used as the communication protocol, and the i/o signatures for web
services are given by WSDL. All of these can be defined before
binding web services to each other. Behavioral descriptions of web
services can be defined using higher level standards such as BPEL,
WSCI, BPML, DAML-S, etc.

Data

Type

Interface

Behavior

Message

BPEL, DAML-S,WSCI

W
eb

 S
er

vi
ce

 S
ta

nd
ar

ds

Im
pl

em
en

ta
tio

n
P

la
tfo

rm
s

WSDL

SOAP

XML Schema

XML M
ic

ro
so

ft
 .N

et
Su

n
J2

E
E

IB
M

 W
eb

Sp
he

re

Figure 1: Web Service Standards Stack
Web service development based on these standards is supported

by different (and competing) implementation platforms such as Mi-
crosoft’s .Net, Sun’s J2EE, IBM’s WebSphere, etc. It should be
noted that the choices of communication paradigms, e.g., including
SOAP or JMS (Java Message Service), can have implications on
how service compositions are formed. For example, SOAP primar-
ily allows the sender to “pass” the message to the receiver, while
JMS provides a message server that relays messages from sender
to receiver on a first-come-first-serve basis.

4. BEHAVIOR MODELING
The model used to represent the behavior of individual and com-

posite web services has fundamental implications on how they can
be discovered, combined, and analyzed. It is not surprising that
several paradigms for behavioral modeling are used in current stan-
dards and research explorations on web services composition.

In broad terms, the behavior of a service describes the changes
of its “states”. Depending on specific research topics, a state can

be (a) the actual internal execution state, (b) only a part of the state
of relevance to the parties connected with the service, or (c) the
state of the “external world”. Furthermore, different models rely
on different kinds of “actions” to change state; these might be (i)
messages, (ii) activities, and (iii) events.

The WSDL standard focuses heavily on passing messages be-
tween web services. This leads naturally to behavioral models that
use messages as the “actions”, and use (abstract) internal states for
individual web services as the states that messages transition be-
tween [6]. This perspective is closely related to work on process
algebras [26] and in the verification community [7], all of which
study distributed automata with message passing of one form or
another. It can also support investigations based on partial informa-
tion of the internal states, as typical in the verification community.

The workflow community has traditionally focused on activity-
based models. These represent a process by combining activities
with essentially some forms of control flow. The typical formalisms
in workflow community are flowcharts, Petri nets, and finite state
machines or state charts.

The semantic web services community also favors an activity-
based perspective. Much of that work assumes that atomic services
perform activities, which have the effect of changing the state of an
“external world”. A situation calculus [30] is typically used to pro-
vide formal underpinnings. The emerging PSL standard [32] has
also been advanced for this purpose [19]. These approaches permit
the use of logic-based axiomatizations and reasoning about how
composite web services affect their “external” world, and thereby
permit the use of goals-based planning algorithms for automated
construction of compositions.

Event-based formalisms have been used primarily in the context
of workflows [31]. An event can be viewed as an abstract version
of an activity. Event-based models allow declarative, logic based
semantics and provide an alternative to analysis of workflow spec-
ifications [10].

In general, we can define a transition as a (single) change of
states possibly with input and output. On every input (of the appro-
priate type), a transition produces an output of the defined type.

The correspondences between the three formalisms (message-
based, activities-based, and event-based) have not been explored
in depth. Activity-based models are simpler than message-based
models and it is easy to group related behaviors into “modules”.
Message-based models allow processes to remain very much in-
dependent in their control, and interact only when it is necessary.
Clearly, loose coupling is a better framework for web services and
such features of message-based models are better suited for integra-
tion and composition of web services. Activity- and event-based
models seem easier to associate semantics, while message-based
models focus more on the mechanisms for composition.

5. VARIATIONS IN BEHAVIOR MODELS
Having identified the the major approaches to modeling web ser-

vice behavior, it is informative now to drill more deeply into varia-
tions that arise within those approaches.

One fundamental parameter is the communication protocol. Un-
der the synchronous communication protocol, the sender of a mes-
sage waits for a reply after sending the message. The asynchronous
protocols allow the sender to proceed with its computation; they
can be further divided into two categories: the ones with message
queues and the ones without. In queued asynchronous case, a mes-
sage queue can be either at the receiver’s side or at the sender’s
side (conceptually). Non-queued asynchronous protocol is useful
in cases when messages are expected to be consumed quickly. Ci-
tations [6, 16] provide a formal framework for investigating the im-

plications of permitting queues with bounded or unbounded lengths.
The process of producing a web service composition can be gen-

erally viewed as starting with some global properties or dependen-
cies that must be satisfied. Given those, design of composite web
services is to orchestrate individual web services so that collec-
tively they satisfy the global dependencies. Depending on whether
and when the knowledge of the global dependencies is known, there
are two different approaches to composing web services. In a me-
diated approach, all global dependencies are known to at least one
service (called the mediator) prior to the execution, while in a peer-
to-peer approach, every individual service knows only a subset of
but not the full global dependencies.

Most workflow systems (e.g., Flowmark) are designed using the
mediated approach and the synchronous communication protocol.
The BPEL language together with WSDL and SOAP can be used
to “program” mediators in the way similar to a high level program-
ming language, although in theory BPEL also allows peer-to-peer
type of composition over asynchronous messages (without queues).
The Sun’s J2EE package has an option of asynchronous communi-
cation with queues using JMS.

The notion of hierarchical composition, as used in some planning
algorithms, will be important in the manual or automated creation
of service compositions. Reference [24] explores the use of lim-
ited hierarchical composition in a framework based on “generic”
compositions and user customizations.

6. AUTOMATED DESIGN
We now turn to approaches and techniques for creating compos-

ite web services. Pragmatic approaches, based on creating media-
tors (e.g., using BPEL) will be discussed, but the focus is on auto-
mated approaches.

One approach we will examine is the automated workflow de-
sign. In [33], the global dependencies are given as a tree, with “op-
tional” and “choices” on some dependencies, resembling the event
algebra [31]. An algorithm was given to map to a Petri net that gen-
erates the root of the tree without violating the dependencies. In a
simpler model, [23] starts from a pair of pre- and post-conditions
and assembles the workflow by selecting tasks from a library.

The synthesis problem for finite state specifications has been
studied intensely within the automata theory and verification com-
munity [5, 1]. Consider synthesis of a collection of finite automata
interacting via bounded queues. The synthesis problem has a vari-
ant for open and closed systems. In the closed case, a “folkloric” re-
sult is that synthesis from a temporal logic formula can be decided
by linear reduction to the satisfiability test for the logic. Hence, it
can be done in PSPACE for LTL and in PTIME for � -regular sets
represented explicitly by an automaton. The open case is undecid-
able [29] in general, but decidable when services are connected in
a linear topology [22].

We will discuss results specific to the web services context. Re-
cent work [4] has developed an approach to automated composition
of web services, based on a model involving activity-focused finite
state automata. One input to this approach is a set of descriptions
of “atomic” web services, each given as an automaton. (Think of
these as residing in a UDDI++ repository.) The second input is a
desired global behavior, also specified as an automaton, that de-
scribes the possible sequences of activities. The output is a sub-
set of the atomic web services, and a delegator (a specialized kind
of mediator) that will coordinate the activities of those services,
through a form of delegation. Finding a delegator, if it exists, can
be done in EXPTIME.

Another approach to automated composition has been developed
in the context of OWL-S [8]. The basic question in that work is

whether a given collection of atomic services can be combined,
using the OWL-S constructors, to form a composite service that
accomplishes a stated goal. The approach taken is to encode the
underlying situation calculus world view, the desired goal, the in-
dividual services (or more specifically, their pre-conditions and ef-
fects), and the OWL-S constructors into a Petri net model. This
reduces the problem of composability to the problem of reachabil-
ity in the Petri net.

In a third approach [6, 16], the desired global behavior is a con-
versation (a family of permitted message sequences) specified as
a finite state automaton. Under certain conditions, the automaton
can be “projected” to build (abstract) web services, which when
combined will realize the desired conversation.

7. ANALYSIS AND VERIFICATION
The need for analysis is particularly acute for composite ser-

vices, especially if they are to be created from pre-existing ser-
vices using automatic algorithms. The ultimate goal is to be able to
statically verify properties (e.g., in temporal logic) for composite
services. We will discuss some of the known results on this topic.

Based on workflows represented in concurrent transaction logic,
[10] studied the problem of whether a workflow specification sat-
isfies some given constraints similar to the Event Algebra of [31].
Algorithms were given for such analysis. An alternative approach
is developed in [33], which maps conventional workflows to Petri
nets, and then applies standard results to analyze properties such
as termination and reachability for workflows. Similar results have
been obtained for OWL-S compositions [27].

There are two recent projects that use model checking techniques
to verify BPEL composite web services. In [15], mediated com-
posite services specified in BPEL were verified against the design
specified using Message Sequence Chart and Finite State Process
notations, with a focus on the control flow logic. In [17], finite au-
tomata were augmented with (i) XML messages and (ii) XPath ex-
pressions as the basis for verifying temporal properties of the con-
versations of composite web services. The extended model makes
it possible to verify designs at a more detailed level and to check
properties about message content. A framework is presented where
BPEL specifications of web services are translated to an intermedi-
ate representation, followed by the translation of the intermediate
representation to the verification language Promela, input language
of the model checker SPIN. Since the SPIN model checker is a
finite-state verification tool, the tool can only achieve partial ver-
ification by fixing the sizes of the input queues in the translation.
Sufficient conditions for complete verification are also obtained.

8. QUESTIONS FOR THE DATABASE RE-
SEARCH COMMUNITY

The web services paradigm raises a vast array of questions, in-
cluding many that will be of interest to, and can benefit from, the
database research community. These questions fall roughly into
two categories. First is the question of finding appropriate mod-
els and abstractions for representing behavioral systems, which are
suitable to the web services paradigm, and can support efficient
querying and manipulation as needed by web service composition
and analysis algorithms. For example, we expect that UDDI de-
scriptions of services will expand to include automata-based spec-
ifications and/or OWL-S based specifications. In either case auto-
matic discovery and composition algorithms will need to be able
to query the UDDI++ repository. More broadly, to what extent can
the problem of automated composition be re-cast to be a problem
in writing and answering one or several queries against behavioral

descriptions of services? Another aspect concerns the application
of XML constraint-checking techniques to perform compile-time
or run-time checking of web service specifications (e.g., in WSDL
and BPEL, or in emerging behavioral specification languages).

A second category of questions is how to bring data manipulation
more clearly into the web services paradigm and their associated
standards. The standards and most research at present are focused
primarily on process model and i/o signatures, but not on the data
flow and the manipulation of the data as it passes through this flow.
One exception to this trend is recent work on XL [14], that blends
XML query processing and web service composition constructs,
and on XButler [28, 13], which essentially incorporates a WSDL
stack into the Galax XQuery engine. Is there value in associating
integrity constraints with web service i/o signatures? What is an
appropriate way to model the data transformations occurring in a
web service, which will enable reasoning about the behavior of data
being passed or written to databases by a composite web service?
Are there specialized models of web service composition that will
be more suitable for applications that are targeted primarily at data
processing? (A starting point here might be [2, 11].) Finally, it
is useful to examine approaches such as ActiveXML [3], which
use the web services paradigm to create richer data manipulation
capabilities, such as distributed data access and query processing.

9. REFERENCES
[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and

unrealizable specifications of reactive systems. In Proc. Int.
Colloq. on Automata, Languages and Programming, 1989.

[2] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce. In Proc.
ACM Symp. on Principles of Database Systems, 1998.

[3] S. Abitegoul, A. Bonifati, G. Cobena, I. Manolescu, and
T. Milo. Dynamic XML documents with distribution and
replication. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that export
their behavior. In Proc. 1st Int. Conf. on Service Oriented
Computing (ICSOC), LNCS, Vol. 2910, pages 43–58, 2003.

[5] J. Buchi and L. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American
Mathematical Society, 138:295–311, 1969.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: A new approach to design and analysis of
e-service composition. In Proc. Int. World Wide Web Conf.,
2003.

[7] E.M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 2000.

[8] OWL Services Coalition. OWL-S: Semantic markup for web
services, November 2003.

[9] SWSL Committee. Semantic web services language
requirements (draft). http://www.daml.org/services/
swsl/requirements/swsl-requirements%.shtml.

[10] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Logic based modeling and analysis of
workflows. In Proc. ACM Symp. on Principles of Database
Systems, pages 25–33, 1998.

[11] A. Deutsch, L. Sui, and V. Vianu. Specification and
verification of data-driven web services. In Proc. ACM Symp.
on Principles of Database Systems, 2004.

[12] E. A. Emerson. Temporal and modal logic. In Handbook of
Theoretical Computer Science, volume B, Chapter 7, pages

995–1072. North Holland, 1990.
[13] M. Fernandez, R. Hull, N. Onose, and J. Simeon. Yoo-Hoo!

Building a presence service with XQuery and WSDL. In
Proc. ACM SIGMOD Int. Conf. on Management of Data,
2004.

[14] D. Florescu, A. Grünhagen, and D. Kossmann. XL: An XML
programming language for web service specification and
composition. In Proc. Int. World Wide Web Conf., 2002.

[15] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In Proc. the 18th
IEEE Int. Conf. on Automated Software Engineering
Conference (ASE 2003), 2003.

[16] X. Fu, T. Bultan, and J. Su. Conversation protocols: A
formalism for specification and verification of reactive
electronic services. In Proc. Int. Conf. on Implementation
and Application of Automata (CIAA), 2003.

[17] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL
web services. In Proc. Int. World Wide Web Conf., 2004.

[18] F. Gandon and N. Sadeh. A semantic eWallet to reconcile
privacy and context awareness. In Proc. 2nd Int. Semantic
Web Conf. (ISWC), Florida, October 2003.

[19] M. Grüninger. Applications of PSL to semantic web services.
In Proc. of SWDB’03, 1st Int. Workshop on Semantic Web
and Databases, 2003.

[20] J.E. Hopcroft and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley,
1979.

[21] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-services: A look behind the curtain. In Proc. ACM Symp.
on Principles of Database Systems, 2003.

[22] O. Kupferman and M. Y. Vardi. Synthesizing distributed
systems. In Proc. IEEE Symp. on Logic In Computer
Science, 2001.

[23] S. Lu. Semantic Correctness of Transactions and Workflows.
PhD thesis, SUNY at Stony Brook, 2002.

[24] S. McIlraith and T. Son. Adapting Golog for composition of
semantic web services. In Proc. the 8th Int. Conf. on
Knowledge Representation and Reasoning (KR2002), 2002.

[25] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. In IEEE Intelligent Systems, March/April 2001.

[26] R. Milner. Communicating and Mobile Systems: The
� -calculus. Cambridge University Press, 1999.

[27] S. Narayanan and S. McIlraith. Simulation, verification and
automated composition of web services. In Proc. Int. World
Wide Web Conf., 2002.

[28] N. Onose and J. Simeon. XQuery at your web service. In
Proc. Int. World Wide Web Conf., 2004.

[29] A. Pnueli and R. Rosner. Distributed reactive systems are
hard to synthesize. In Proc. IEEE Symp. on Foundations of
Computer Science, 1990.

[30] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT
Press, Cambridge, MA, 2001.

[31] M. Singh. Semantical considerations on workflows: An
algebra for intertask dependencies. In Proc. Workshop on
Database Programming Languages (DBPL), 1995.

[32] PSL Standards Group. http://ats.nist.gov/psl/.
[33] W. M. P. van der Aalst. On the automatic generation of

workflow processes based on product structures. Computer
in Industry, 39(2):97–111, 1999.

