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The general problem of recognizing the set of pairs (G,k), where 

k is a positive integer and G is a graph which is k-colorable, is 

polynomial complete as defined by Karp [I]. It is shown here that this 

problem is still complete even for pairs (G,k) where k = 3 and G is a 

planar graph. We assume that the reader is familiar with the definitions 

and notation of [1]. 

The problems to be considered are the following. 

3-COLORABILITY 

INPUT: Gra~.h G with nodes N and arcs A. 

PROPERTY: There is a function f: N-~ [1,2,3] such that if u, v are 

adjacent then f(u) # f(v). 

PLANAR 3-COLORABILITY 

INPUT: Planar graph G. 

PROPERTY: Same as above. 
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2a) Vl,V2,Vl', v2' are nodes of some face of G (for some 

embedding of G in the plane) and they appear in that 

order as the cycle of edges bounding the face is 

traversed in some direction. 

! 
2b) v I and Wl' are bound and v 2 and v 2 are bound. 

A cross-over graph G C is shown in Fig. 2, although it may not be 

the simplest example. G C is planar and satisfies condition (2a) by 

inspection. To verify that G C is 3-colorable and satisfies (2b), consider 

the subgraph G F of G C shown in Fig. 3. Clearly G F is 3-colorable and 

u and v are bound. This implies that v 2 and v 2' are bound in G C. We 

leave it to the reader to convince himself that if v I and v I' are also 

colored the same then a 3-coloration is possible, and if v I and v I' are 

colored differently then a 3-coloration is impossible. 

Now let G be a given graph with nodes [Ul,...,Un}. A planar graph 

G' is constructed such that G' is 3-colorable iff G is 3-colorable. The 

nodes of G' include a p(n) by n array of nodes [vij I i = l,...,p(n), 

j = l,...,nl, for some polynomial p(n) _< 0(n2). 

G' has the property that for each row i = 2,3,...,p(n), there is a 

permutation a.~: II,...,n} -~ II,...,n} such that Vlj and vi,ai(j ) are bound 

for all j = l,...,n. Each row [Vil,...,Vin ] of nodes is "connected" to the 

next row [Vi+l,l,...,Vi+l,n} by copies of G C and G F. The rows are connected 

in such a way that for each arc lUk,U~] in G, there is some row i and some j, 
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Now G is 3-colorable iff Di,...,D is satisfiable. Suppose G is 
r 

3-colorable and let f: N-~ ~1,2,3} be a coloring. The arc ~tl,t2} ensures 

that f(tl) # f(t2) so we may assume that f(tl) = 1 and f(t2) = 2. Now 

f(a) E ~2,3} for all literals a E L because of the arcs Itl,a], and 

f(ui) # f(ui) for all i because of the arcs lui,ui]. The graphs G i 

ensure that no clause contains literals all colored 2. Therefore S = 

~a E L I f(a) = 3} is a consistent truth assignment which satisfies Di,...,D r . 

The converse is similar. This completes the proof of I). 

The proof above can easily be extended to show that k-eolorability is 

complete for any fixed k ~ 3. In particular, let G = (Ni,A I) be any 

graph and Km = (N 2,A 2) be the complete graph on m nodes. If G' = (N',A') 

is defined as N' = N I U N 2 and A' = A I U A 2 U (lu,v} I u ~ Ni, v ~ N2} , 

then G' is (k+m)-colorable iff G is k-colorable. 

2). 3-COLORABILITY o~ PLANAR 3-COLORABILITY 

The proof follows from the existence of a "cross-over" graph which 

enables one to eliminate cross-overs, thereby converting an arbitrary 

graph into a planar graph, while preserving 3-colorability. 

We say that two nodes u,v of a given graph G are 3-color bound 

(or simply bound) if u and v must be assigned the same color in any 

3-coloration of G. 

A cross-over graph is defined to be a finite graph G with the 

properties that 

i) G is planar and 3-colorable. 

! ! 
2) There are four distinct nodes Vl,Vl,V2,V 2 of G such that 
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Theorem. 3-COLORABILITY and PLANAR 3-COLORABILITY are polynomial 

complete. 

Proof. i) SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE o~ 3- 

COLORABILITY. 

Let Di,D2,...,D r be the clauses and L = (Ul,...,Um, Ul,...,Um] the literals 

of a given satisfiability problem. Let D. = r l [~ii,(7i2,~i3 ] c L, i = i,..., . 

Consider the graph G with nodes N = [Vl,V2,...,v6] and arcs A shown as 

solid lines in Fig. I. Suppose G is connected to nodes Sl,S2,S 3 as shown. 

G has the following properties: 

i) If Sl,S2,S 3 are constrained to have the same color c, then v 6 

, 
must be colored c in any 3-coloring of G 

ii) 

= ,A i Let G i (N.1 ) ,  i = 1 , . . . , r ,  be r c o p i e s  o f  G 

If Sl,S2,S3 are constrained to be colors at least two of 

which are different, then for all c 6 {1,2,3} there is a 

3-coloring of G in which v 6 is colored c. 

Let N.l = ( V i l ' ' ' ' ' v i 6 ]  

as in Fig. i. G = (N,A) is the following. 

. i 

N = [ t l , t 2 ]  U [Ul,...,Um,Ul,...,u m] 
r , 

U U N i . 

A = [(tl,t2] } U [[tl,@}la E L] U [[ui,ui] I i = l,...,m] ~[[aij,vij}l 

i = l,...,r; j = 1 ,2 ,3 ]  U [{t2,vi6 ] 1 i = 1 , . . . , r ]  U t A~ • 
i=l 
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I ~ j ~ n-l, such that Vlk and vii. are bound and Vl~ and v.l,j+l are bound. 

The arc [Uk,U~} in G can be added as the arc [~ij' vi,j+l} in G' without 

destroying the planarity of G'. 

A careful description of G' is somewhat tedious. Fig. 4 illustrates 

how G' is constructed for G = K 5. Copies of G C and G F have been abbreviated 

as in Fig. 2 and 3. Numbers written next to nodes indicate the bindings. 

All nodes with the same number are bound. The reader should have no 

trouble generalizing this construction to an arbitrary non-planar graph G. 

G F has been used in the above construction only to simplify the 

description of G' Nodes in the array which are bound by a chain of 

copies of G F can be merged into a single node while keeping G' planar. 

This completes the proof of 2). 

It is known that 2-colarability can be checked in polynomial time 

for any graph [2] and that k-colorability, k ~ 5, is trivial in the planar 

case. The only open question, planar 4-colorability, hinges on the 4 color 

conjecture. However, it might be possible to show that any algorithm, A, 

which actually produces a 4-coloring of a planar graph input (or states that 

none exists if that is the case) is polynomial complete in the sense that 

some complete problem becomes deterministic polynomial time recognizable 

in the presence of an A subroutine. 
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