RECENT TECHNICAL REPORTS

```
{Technical report listings are as receiveo, with slignt
editorial and format changes in most cases. Abstracts are
included when received, but in the case of very long
abstracts, some condensation may be necessarv. Reports in
languages other than English are listed it an F.nglish
language title or abstract is provided. It shoulci be
assumed that the text is in the language of the title,
unless otherwise indicated. Currently, onlv technical
reports available without charge are listed. -Ed.]
```

MATHEMATISCHE CENTRUM
Available from: Library
Mathematische centrum
2c Boerhaavestraat 49
AMSTERDAM 1005
The Netherlands
IW 23/75 CALL-BY-VALUE VERSUS CALI-RY-NAME: A PROOF-PHEGREIC COMPARISON
W. P. de Roever

Minimal fixed point operators were introduced by SCOTT and DE BAKKER
in order to describe the input-output behaviour of recursive procedures
As they considered recursive procedures acting upon a monolithic state only, i.e., procedures acting upon one variable, the problem remained open how to describe this input-output behaviour in the presence of an arbitrary number of components which as a parameter may be either called-by-value or called-by-name. More precisely, do we need different formalisms in order to describe the input-output behaviour of these procedures for different parameter mechanisms, or do we need different minimal fixed point operators within the same formalism, or do different parameter mechanisms give rise to different transformations, each subject to the 5 ame minimal fixed point operator?
Using basepoint preserving relations over cartesian products of sets with unique basepoints, we provide a single formalism in which the different combinations of call-by-value and call-by-name are represented by different products of relations, and in which only one minimal fixed point operator is needed. Moreover this mathematical description is axiomatized, thus yielding a relational calculus for recursive procedures with a varie ty of possible parameter mechanisms.

IW 39/75 HOW PROGRAM STATEMENTS TRANSFORN FREDICATES L. Ammeraal

This paper deals with relationships between conditions that hold before the initiation of a statement and on its completion. Statements are semantically defined by statement functions which are transformations in the state space. They induce predicate transformers which map state space subsets to such subsets. The predicate transformers and their inverses are explicitiy given for some well-known constructs including the conditional statement and the while statement. A number of examples illustrate how predicate transformers can be used.

[^0]```
Without the restriction to \lambda-freeness such a trade-off is posslble
since the recursively enumerable languages are generated in both cases.
By stating the results in thelr strongest form a complece classification
of the consldered language famllies is obtained since the hierarchies
Induced by the involved parameters (\lambda-freeness, determinism, number of
tables, imount of context, closure under various types of homomorphlsms)
basically collapse to the recursively enumerable languagcs, context
sensltive languages and DLBA languages.
Ih 52/75 KEPAIRING THE PAPENTHESIS SKELEION OF ALGOL 68
 PROGRAMS: PROOFS OF CORRECINESS
L. G. L. T. Meertens and J. C. van Vlict
The error-correction problem for structures of nested parentheses bears
sone resemblance to the problem of finding the shortest path in a
direected graph. Not surprisingly, the algorithm for determining the
optimal "reparation" lends itself'to a neat and concise (min, +)-algebra-
ic notation, thus permitting abstraction from the respresentation used
in a practical implementation. The correctness proof for this abstract
algorithm may then be given with only a few inductive assertions.
IW 55/76 CORRECTNESS PFOOFS FOR ASSIGNMENT STATEMENTS
J. W. de Bakker
Correctness proofs for assignment statements are usually based on Hoare's or Floyd's assignment axion. We observe that these axioms do not apply (directly) to assignment for subscripted variables. A refined definition of substitution for subscripted variables, which preserves the validity of Hoare's axion, and which is used in the formulation of an extension of Floyd's axiom, is proposed. For both axioms, a validity proof is given within the framework of denotational semantics of \(\$ \cot\) and Strachey. Horeover, it is shown that they yield the weakest precondition and strongest postcondition, respectively.
STATF UNIVERSITY OF NEW YORK AT ALBANY
Available from: Department of Computer Science SUNY at Albany 1400 Washington Avenue Albany, New York 12222
\#75-1 ON UNSOLVARILITY IN SUBRECURSIVE CLASSES OF PREDICATES F. D. Lewis
\#75-2 ON ONE FAMILY OE BOOLEAN EUNCTIONS
Y. Breitbart
\#76-1 SUBRECURSIVE REDUCIBILIIIES AND COMPLETENESS (PRELIMINARY VERSION)
F. D. Lewis
\#76-2 HOW NOI TO ESTABLISH COMPLEXITY BOIUNDS FOR THE CONTEXT FREE LANGUAGES
F. D. Lewis
\#76-3 COMPLEXITY OF MINIMAL SUM OF PRODUCTS FOR ONE BOOLEAN FUNCTION
Y. Breitbart
INIERNATIONAL BUSINESS MACHINES
Available from: Distribution Services, 7-066 IBM T. J. Watson Research Center P. O. Box 218
Yorktown Heights, N. Y. 10598
```

RC 6108 ON IHE NUMBER OF PRIME IMPLICANTS
Ashok $K$. Chandra and George Markowsky
ABSTRACT: It is shown that any Boolean expression in dinfunctive normal form having $k$ confuncts, can have at most $2^{k}$ prime implicants. However, there exist such expressions that have $2^{k / 2}$ prime firplicants. It is also shown that any Boolean expression on $n$ aistinct propositional variables can have at most $0\left(\frac{3^{n}}{\sqrt{n}}\right)$ prime implicante, and there exist expressions with $0\left(\frac{3^{n}}{n}\right)$ prime implicants.
RC 6116 FATIONAI. ALGERRAIC THEORIES AND FIXED-POIAT SOLUTIONS J. B. Kright, J. A. Goguen, J. W. Thatcher \& E. G. Waqner

ABSTRACz: In a wide variety of situations, computer science has found it convenient to define complex objects as (fixed-point) solutions of certain equations. This has been done in both algebraic and ordertheoretic settings, and has often been contrasted with other approaches. This paper shows how to formulate such solutions in a setting which encompasses both algebraic and order-theoretic aspects, so that the advantages of both worlds are available. Moreover, we try to show how this is consistent with other approuches to defining complex objecto, through a mumber of appllcations, including: languages defined by context-free gramars; flow charts and their interpretations; and monadic recursive program schemes. The main mathematical results concern free rational theories and quotients of rational thoories. However, the main goal has been to open up what we belinve to be a beautiful and powerful new approach to the syntax and semantics of complex recursive specifications.

RC 6151 A NEW LINEAR-TIME ON-LINE RECOGNITION ALGORITHM FOR "PALSTAF"
Zvi Galil of Joel Seiferas
ABSTRACT: Let $P_{1}=\left\{\omega \in \Sigma^{*}: \omega=w^{k},|w|>1\right\}$ be the set of all nontrivial
palindromes over $\Sigma$. A linear-time on-line recognition algorithm is presented for $\mathrm{P}_{1}{ }^{*}$ ("palstar") on a random-accéss machine with addition and uniform cost criterion. Also presented are a linear-time on-line recognition algorithm for $\mathrm{P}_{1}{ }^{2}$ on a multitape Turing machine and a recognition algorithm for $P_{1}{ }^{2}$ on a two-way deteministic pushioun automaton. The correctness of these algorithos is based on a new
"cancellation lenmas" for the languages $P_{1}{ }^{*}$ and $P_{1}{ }^{2}$.
RC 6154 A COMPUTATIONAL. ALGORITHM FOR QUEUE DISTRIFUTIONS VIA FULYA THEORY OF ENUMERATION Hisashj Kobayashi
ABSTRACT: We present a new computational algorithum for evaluating the queue distribution in a general Markovian queuing network, based on polya theory of counting. We formulate queue size vectors, as counting schemata -
equivalence classes - relative to a symutric group. The normalization constant of the queue-distribution then corresponds to the pattern inventory - the sum of weights of schemata relative to the permutation group in the polya theory.

RC 6164 PROBAEILISTIC ALGCRITHMS
Michael O. Rabin
ABSTRACT: We study the implications of randomization within an algorithm on the computational complexity of certain problems. One version of this approach produces a substantial reduction in expected computation time for every instance of the problem of finding the nearest pair in a set of $n$ points. Another version, which allows a controllable swall margin of error, yields an extremely fast test for pritwality of any given large number.

```
RC E193 MAXIMAL PARALLELISN IN MATRIX MULTIPLICATION
Ashok K. Chanara
ABSTRACT: It is shown that Strassen's matrix multiplication algorithm which
runs in time O(n [087) on one processor, can be made to run in time
O(n}\mp@subsup{}{}{\operatorname{log}7}/\textrm{p})\mathrm{ on }\textrm{p}\mathrm{ processors, for p maximum number of processors that can be used effectively, \(\mathrm{viz}, 0\left(\mathrm{n}^{\log 7} / \log \mathrm{n}\right)\) 1s, of course, tight since matrix multiplication requires time at least \(0(\log n)\). The matrix multiplication algorithm can be used for other problems including transitive closure and context free recognition.
RC 6214 SPECIFICATION OF ABSTRACT DAMA TYPES USING
 CONDITIONAL AXIOMS
J. K. I'hatcher, E. G. wagner & J. B. wright
RC 6230 ON THE ALGERRAIC STKUCTURE OF ROOTED TREES Calvin C. Elgot, Stephen L. Bloom \& Ralph Tindell
```

ABSiRACT: Man kinds of plysical phenomena are studied with the aid of (rooted) diacraphe such as those findicated by Figure 1.1 and rigure 1.2.

these two hiagraple, winle different, usually represent the same phenemeron say, the same "comptational process." Our interest in rooted trees etens fron the fact that these two diagraphs "unfold" into the SAfE infinite tas. Il some cases at jeast it is also true that different (i.e. non-lsomorohic) troes represont different phenomena (of the sawe tind). In these cases the inholdings (i.e. the trees) are surrogates for the phenomenz.

## HERIUI-WATT UNIVERSITY

## Available from: [epartment of Computer Science Heriot-Watt University 79 Grassmarket Edinburah EHI 2 fJ Scotland

## \#3 AN INPRCVED I'ERATIVE ALGORITHM FOR GLOBAL DATA FLOW ANALYSIS R. C. Backhouse

Kam and Ullman have presented two algorithms for solving general data flow analysis and code optimisation problems and have discussed conditions under which their algorithms are efficient. In this paper we present an algorithm which always terminates in the same number or fewer iterations than both the algorithms of Kam and Ullman. Noreover, the number of function applications required by the algorithm is always less than the number of function applications required by both the algorithms of Kam and Ullman. The improvement is gained by making a simple modification to the order in which edges are accessed during each iteration of the Kam and Ullman algorithms.

It. should be stressed that this is not a worst-case or average-case analysis but is quite independent of the input.
\#A FACIOR GRAPHS, FAILURE FUNCIIONS AND BI-TREES
R. C. Backhouse and $\mathrm{K} . \mathrm{K}$. Lutz

The factors and factor matrix of a regular language are defined
and their properties stated. It is then shown that the factor matrix
of a language $Q$ has a unique starth root - called the factor
graph of $Q$ - which is a recogniser of $Q$. An algorithm to calculate
the factor graph is presented. The Knuth, Moris and Pratt pattern
matching algoritha, its extensions and Weiner's substring identifier
Algorithm are outlined and are all shown to be equivalent to finding
the factor graph of scme regular 1 anguage.

CARNEGIE-MELLON UNIVERSITY
Available from: Carneqie-Mellon University
Computer Science Department Pittsburgh, Pennsylvania 15213
'IGE MEAN DISTANCE IN 2-SPACE
G. Yuval

An $O(\mathbb{N})$ lower bound is proven for the mean distance belween $N$ points in 2-space, using methods from complex function theory; but if any finite error is allowed, an $O(N \log N$ ) algorithm is shown for computing the mean distance to within that finite error.

ALL ALGEBRAIC FUNCTIONS CAN BE COMPUTED FAST H. T. Kung and J. F. Iraub

The expansions of algebraic functions can be computed "fast" using the Newton Polygon Process and any "normal" iteration. Let WKj) be the number of operations sufficient to multiply to jth degree pelynomials. It is shown that the first $N$ terms of an expansion of any algebraic function defined by an nth degree polynomial can be computed in $O(n(M) N$ ) $)$ operations, while the classical method needs $O\left(N^{\prime}\right)$ operations. Among the numerous applications of algebraic functions are symbolic mathematics and combinatorial analysis. Reversion, reciprocation, and nth root of a polynomial are all special cases of algebraic functions.

ANALYSIS OF THE BINARY EUCLIDEAN ALGORITHM
Richard P. Brent

The binary Euclidean algorithm of Silver and Terzian and Stain finds the greatest common divisor (GCD) of two integers, using the arithmetic operations of substraction and right shifting (i.e., division by 2). Unlike the classical Euclidean algorithm, no divisions are required. Thus, an iteration of the binary algorithm is laster than an iteration of the classical algorithm on many binary computers.
TOKYU INSIITUTE OF TECHNOLOGY
Available from: Tokyo Institute of Technoloqy
Department of Information Science Oh-Okayama, Mequroku, Tokyo 152 Japan
C-1 A NOTE ON EXTENDING EOUIVALENCE IHEORIES OF' ALGORITHMS Kojiro Kobayashi
By an equivalence theory of algorithms we mean an axiomatic theery in which functional equivalences of programs expreared in a prograniming language are proved. Under the assumption that all partial recursive functions are exoressible in the progranming language, we show that from any equivalence theory of algoritinms $E$ we can effectively constfuct an extended equivalence theory of algorithms $E$ such that for any proyram $p$ there exists another progran "' wiose functional equivalence with $P$ is proved in $E^{\prime}$ but not in E .
C-2 GENERALIZATICIV OF FEGULAR SE'LS AND THEIR APPLICATION TO A STUDY OF CONTEXI-FREE LANGUAGES Masako 'lakahashi
We extend the notion of regular sets of strings to those of trees and of forests in a unified nathenatical approach, and investigace thoir properties. Then by taking certain one-uimensional expressions of these objects, we come to an interesting subclass of CE languages defined over paired alphabrets. They are shown to form a Boolcan algebea with the Dycir set as the universe, and to play an important role in the whole class of $C r^{r}$ languages. In particular, using the subclass we prove a rofinement of the well-knowr Chomsky-Schutzenberger Theorom, and also prove that the wecision procedure for parerichegis grammars can be extended to a broader shass of CF grammars.
C-3 THE FIFING SQUAD SYNChRONIZATION PROBLEM FOR AREITRARY TWODIMENSIONAL ARRAYS kojiro Kobayashi
We consider the firing squad symohronization problem Aor arbitrary two-djmensjomal arrays and arbitrary positions withe general, We construct (1) a solution havinefiring time $2: 1$ ( $N$ is the number of the cells in the given array), (2) solutions having minimal iiring time con arrays in some charses of ariays anc (3) (for each $K$ ) a solution having a "?inear" firing time for any array raving not more thar $K$ dúses. We also show examples of string-type arrays, $i, c$. ines of breadth i without loops (the position of the general a one of the ends), of length $N$ whose minimal firing time is :oss than $2 N-2$.

```
C-4 GENERALIZED PARENTHESIS GRAMMARS AND A DESCRIPIION OF ALGOL
 Masako 'rakahashi
```






```
 O; the grammazs by relating them to taee autonata. In pureicusaz,
 aizplyirg the reswit known in tree autumata tincozy, we give a cizrect :%oof
 of the fact that the equivaicnce probicon for the g;amars is suivabie.
 At last, we will give a detillou (but compatt; description of a subctovitai
 purt' of nlGGL, to exhibit the gencrating pover of the gwammaxs.
C-5 MINIMUM PIRING TIME OF THE IWO-DIMENSIONAL FIRING SQUAD
 SYNCHRONIZATION PROBLEM
 Kojiro Kobayashi
 We consider the flring squad symehroniadtion probiem for
 arbitrary two-dimenstunal arrays. For each array F, & finn (i)
 denotes the minimum firine time of the aruay F whore ail the
 solutions to this problemi are considered. We give one
 cnoractonization of this value tmin(F) in terms of geometric
 properties of the shape of the array F. From this we show an
 aigorltimi to calculate the value tmin}(F)
 LNIVERSIIYY OE ALBERTA
Available from: Department of Computing Science
 The University of Alberta
 Edmonton, Alberta, Canada 'l6G 2Hl
TR76-4 AN ALGORITHM FOR SOLVING SHORIEST ROU'ES FPOM A FIXED
 ORIGIN IN A DIRECIED GRAPH
 I-Ngo Chen
TR76-5 A FAST ME'IHOD FOR FINDING NEGATIVE CYCLES IN A DIRECTED
 GRAPH
 I-Ngo Chen
UNIVERSITY OF KARLSRUHE
Available from: Institut ftr Angewandte Informatik
 und Formale Beschreibungsverfahren
 Kolleqium am Schloss, Bau IV
 Universitat Karlsruhe
 7500 Karlsruhe l
 West Germany
```

\#46 CN GOOD EOL FORMS
H. A. hater, A. Salomaa \& D. Wooci

This paper continues the study of EOL forms. The notion of a good EOL form is introduced as an important generalization of the notion of conplcte and very complete EOL forms. Transformations preserving the property good are obtained and the existence of a variety of good and bad (i.e. not good) forms is demonstrated. It is further shown that good and complete (i.e. vompleto) EOL forms. do exist; that propagating EOL forms are bad except under very special circum stances; and that synchronized EOL forms are always bad.
*47 'TREE CONTRULLED GFAMMARS K. Culik II \& i. A. Maurer

Language. are studied which can be generated by context-free grammars under a single simple restriction which must be satisfied by its derivation trees Using tree controlled grammars (TC grammars for short) all unarbigous and some inherently anioigous context-free languages, and also some non context-free languages can be parsed in time $0\left(n^{2}\right)$. The classes of regular, linear, contextfree, EOL, ETOL and type 0 languages is exhibited. Some normal forms for TC gramars are established but it is shown that many common normal forms (e.g. Greibach normal form) cannot be obtained for $T C$ gramars in general.
-- EIOL $\begin{aligned} \\ \text { OOMS }\end{aligned}$
H. A. Kaurer, A. Salomaa \& D. Wood

This paper explores the notions of "tabled form" and its "interpretations", which produce a family of structurally similar ETOL systems. Biologically this is the study of a family of organisms which are similar developmentally. In particular, the tables ensure a similarity of changing environmental conditions under which each organism develops.
We demonstrate a number of normal form results for ErOL forms, which carry over in a nontrivial way from ETOL systems. The main section of the paper investigates "completeness", this leads to the surprising discovery of a normal form in which the only rules for terminals are $a \rightarrow$ a.

UNIVERSITY OF FENNSYLVANIA

| Available from: | Cathi Marmalich <br> Department of Computer \& Information Science <br> Room 263, 'the hoore School <br> University of Pennsylvania <br> fnjladelphis, pa. 1 yl74 |
| :---: | :---: |
| 76-16 | CONSTRAINTS ON SIRUCIURAL DESCRIPIIONS: LOCAL IRANSFORMATIONS Aravind K. Joshi \& Leon S. Levy |

ABSTRACT: It is very ofton moro convenient and more meaningful to specify a set of structural descriptions analytically rather than generatively, i.e., by specifying, a set of constraints each structured description in the set has to satisfy. Peters and Ritchie (5) have show that if context-sensitive mules are used only for "aurlysis" then the string language of the set of trees is stijl context-free in this paper, we have generalized this result by considering context-free rules constrained by boolean combinations of proper analysis predicates and domination predicates. These rules, called "local transformations" not only make precise an informal and briefly discussed notion of Chonsky (2), but also, generalize it in an appopriate manner. It is shown that the Peters-Ritchie result can be generalized to local transformations. Linguistic relevance of this result has been also briefly discussed. Results in this paper are relevart to the following situation: Pactems of a class, say $A$, may be difficult to characterize generatively; but, it nay be possible to specify a suitable (non-trivial) augnentation, say B, of the class $A$, such that $B$ can be easily characterized generatively, and then $A$ is characterized by stating some restrictions on the class $B$. This suggests possible applications to progranming languages and pattern description languages.


[^0]:    CONTEXT SENSITIVE TABLE IINDENMAYEF LANGUAGES AND A RELATION TO THE LEA PROBLEF;
    P. M. E. Vitanyi

    Families of languages generated by classes of context sensitive
    Lindenmayer systems with tables using nonterminals are classified in the Chomsky hierarchy. It is shown that the family of languages generated by deterministic $\lambda$-free left context sensitive $L$ systems with two tables using nonterminals coincides with the context sensitive languages. Combined with the fact that the family of languages generated by deterministic $\lambda$-free context sensitive L. systems (with one table) using nonterminals is equal to the DLBA languages this shows the classic LBA problem to be equivalent to whether or not a trade-off is possible between one sided context with two tables and two sided context with one table for deterministic l-free l. systems using nonterminals.

