A Note on the Multiplication of 4×4 Matrices

R.K. Shyamasuindo.t

National Centre for Software Development
and Computing Techniques
Tate Institute of Fundamental Research
Homi. Bhabha Road, Bombay 400005

In this note, it is shown that the multiplication of two 4×4 matrices can be done using only 48 multiplications, using a result due to Winograd (1968).

Winograd's Result is stated below:

Winograd's Result (Winograd (1968)):

Let E be an $\mathrm{m} x \mathrm{n}$ matrix, and F and $\mathrm{n} \mathrm{x} p$ matrix. Performing the product is equivalent to giving $N=m+p$ vectors and performing $m . p$ inner products. Now the inner product of two n dimensional vectors x and 3 is giro by

$$
\begin{aligned}
& \lfloor n / 2\rfloor \\
& (x, y)=\left\{\begin{array}{l}
\sum_{j=1}\left(x_{2 j-1}+y_{2 j}\right)\left(x_{2 j}+y_{2 j}-1\right)-\xi_{j}-\text { if } n \text { is even } \\
\lfloor n / 2\rfloor \\
\sum_{j=1}\left(x_{2 j-1}+y_{2 j}\right)\left(x_{2 j}+y_{2 j-1}\right)-\left\{-\eta+x_{n} y_{n} \text { if } n\right. \text { is odd }
\end{array}\right. \\
& \text { where } \xi_{j}=\sum_{j=1}^{\lfloor n / 2\rfloor} x_{2 j-1} x_{2 j} \text {, } \\
& Y=\sum_{j=1}^{\lfloor n / 2 \mid} y_{2 j-1} y_{2 j}, \text { and } \\
& \text { (} t \text {) denotes the integer part of } t \text {. }
\end{aligned}
$$

It can be easily observed that the number of raltiplications necessary for multiolying E and F is given by

$$
(n+p) n+(m \cdot p-m-p)\lfloor(n+1) / 2\rfloor
$$

Applying this result to. the computation of two (4×4) matrices we get the following result:

The number of multiplications required for multiplying two 4×4 matrices is equal to $\frac{1}{2}(4 \times 4 \times 4)+(16-4-4)\lfloor 5 / 2\rfloor=48$.

Renarks: It should be noted this cannot be used recursively unlike the Strassen's schene (See Aho, Hoperoft and Ullman (1974)). This is due to the fact that Winograd's result uses comatativity。 Thus this result improves the conlexity only by a constant factor.

The point to be noticed is the fact that 4×4 matrices can be multiplied using only 7^{2} multiplientions (using Strassen's scheme). An asymptotic improveriont can bo obtaincd if 4_{x} is 4 atrincos can be multiplied using only 48 multiplications (see Aho, Hoperoft and Ullman (1974)).

Reforences

A.V. Aho, J.E. Hopcroft and J.D. Ullman (1974) "The Dosign and Analysis of Corputer Algorithns, Addison-Wesley, Reading.
S. Winograd (1968), "A new algorithri for inner product", IEEE Trans., Vol. C-17, pp. 693-694.

