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ABSTRACT 
We address the problem of integrating objects from a source 
taxonomy into a master taxonomy. This problem is not only 
currently pervasive on the web, but also important to the 
emerging semantic web. A straightforward approach to 
automating this process would be to learn a classifier that can 
classify objects from the source taxonomy into categories of the 
master taxonomy. The key insight is that the availability of the 
source taxonomy data could be helpful to build better classifiers 
for the master taxonomy if their categorizations have some 
semantic overlap. In this paper, we propose a new approach, co-
bootstrapping, to enhance the classification by exploiting such 
implicit knowledge. Our experiments with real-world web data 
show substantial improvements in the performance of taxonomy 
integration. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining; H.2.5 [Database Management]: Heterogeneous 
Databases; I.2.6 [Artificial Intelligence]: Learning; I.5.2 
[Pattern Recognition]: Design Methodology – classifier design 
and evaluation. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Semantic Web, Ontology Mapping, Taxonomy Integration, 
Machine Learning, Classification, Bootstrapping, Boosting. 

1. INTRODUCTION 
A taxonomy, or directory or catalog, is a division of a set of 
objects (documents, images, products, goods, services, etc.) into 
a set of categories. There are a tremendous number of 

taxonomies on the web, and we often need to integrate objects 
from a source taxonomy into a master taxonomy. 

This problem is currently pervasive on the web, given that many 
websites are aggregators of information from various other 
websites [2]. A few examples will illustrate the scenario. A web 
marketplace like Amazon 1  may want to combine goods from 
multiple vendors’ catalogs into its own. A web portal like 
NCSTRL 2  may want to combine documents from multiple 
libraries’ directories into its own. A company may want to merge 
its service taxonomy with its partners’. A researcher may want to 
merge his/her bookmark taxonomy with his/her peers’. 
Singapore-MIT Alliance3, an innovative engineering education 
and research collaboration among MIT, NUS and NTU, has a 
need to integrate the academic resource (courses, seminars, 
reports, softwares, etc.) taxonomies of these three universities.  

This problem is also important to the emerging semantic web [4], 
where data has structures and ontologies describe the semantics 
of the data, thus better enabling computers and people to work in 
cooperation. On the semantic web, data often come from many 
different ontologies, and information processing across 
ontologies is not possible without knowing the semantic 
mappings between them. Since taxonomies are central 
components of ontologies, ontology mapping necessarily involves 
finding the correspondences between two taxonomies, which is 
often based on integrating objects from one taxonomy into the 
other and vice versa [10, 14]. 

If all taxonomy creators and users agreed on a universal standard, 
taxonomy integration would not be so difficult. But the web has 
evolved without central editorship. Hence the correspondences 
between two taxonomies are inevitably noisy and fuzzy. For 
illustration, consider the taxonomies of two web portals Google4 
and Yahoo 5 : what is “Arts/Music/Styles/” in one may be 
“Entertainment/Music/Genres/” in the other, category 
“Computers_and_Internet/Software/Freeware” and category 

                                                             
1 http://www.amazon.com/ 
2 http://www.ncstrl.org/ 
3 http://web.mit.edu/sma/ 
4 http://www.google.com/ 
5 http://www.yahoo.com/ 
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“Computers/Open_Source/Software” have similar contents but 
show non-trivial differences, and so on. It is unclear if a 
universal standard will appear outside specific domains, and 
even for those domains, there is a need to integrate objects from 
legacy taxonomy into the standard taxonomy. 

Manual taxonomy integration is tedious, error-prone, and clearly 
not possible at the web scale. A straightforward approach to 
automating this process would be to formulate it as a 
classification problem which has being well-studied in machine 
learning area [18]. Normally the classifier would be constructed 
using objects in the master taxonomy as training examples, and 
the source taxonomy would be completely ignored during 
learning. However, the availability of the source taxonomy data 
could be helpful to build better classifiers for the master 
taxonomy if their categorizations have some semantic overlap, 
particularly when the number of training examples is not very 
large. 

Possible useful semantic relationships between a master category  
C  and a source category S  include: 
•  C S=  (identical): an object belongs to C  if and only if it 

belongs to S ; 
•  C S = ∅∩  (mutual exclusion): if an object belongs to S  it 

cannot belong to C ; 
•  C S⊇  (superset): any object that belonging to S  must also 

belong to C ; 
•  C S⊆  (subset): any object not belonging to S  also cannot 

belong to C ; 
•  C and S overlap but neither is a superset of the other. 
In addition, semantic relationships may involve multiple master 
and source categories. For example, a master category C  may be 
a subset of the union of two source categories aS  and bS , so if 

an object does not belong to either aS  or bS , it cannot belong to 

C . The real-world semantic relationships are noisy and fuzzy, 
but they can still provide valuable information for classification. 
For example, knowing that most (80%) objects in a source 
category S  belong to one master category aC  and the rest (20%) 

examples belong to another master category bC  is obviously 

helpful. The difficulty is that knowledge about those semantic 
relationships is not explicit but hidden in the data. 

In this paper, we propose a new approach, co-bootstrapping, to 
enhance the classification by exploiting such implicit knowledge. 
Our experiments with real-world web data show substantial 
improvements in the performance of taxonomy integration. 

The rest of this paper is organized as follows. In §2, we give the 
formal problem statement. In §3, we describe a state-of-the-art 
solution. In §4, we present our approach in detail. In §5, we 
conduct experimental evaluations. In §6, we review the related 
work. In §7, we make concluding remarks. 

2. PROBLEM STATEMENT 
Taxonomies are often organized as hierarchies. In this work, we 
assume for simplicity, that any objects assigned to an interior 
node really belong to a leaf node which is an offspring of that 
interior node. Since we now have all objects only at leaf nodes, 
we can flatten the hierarchical taxonomy to a single level and 
treat it as a set of categories [2]. 

Now we formally define the taxonomy integration problem that 
we are solving. Given two taxonomies: 
•  a master taxonomy M with a set of categories 1 2, ,..., MC C C  

each containing a set of objects, and 
•  a source taxonomy N with a set of categories 1 2, ,..., NS S S   

each containing a set of objects, 
we need to find the categories in M for each object in N.  

To formulate taxonomy integration as a classification problem, 
we take 1 2, ,..., MC C C  as classes, the objects in M as training 

examples, the objects in N as test examples, so that taxonomy 

integration can be automatically accomplished by predicting the 
classes of each test example. Such a classification problem is 
multi-class and multi-label, in the sense that there are usually 
more than two possible classes and one object may be relevant to 
more than one class.  

3. A STATE-OF-THE-ART SOLUTION 
Agrawal and Srikant recently proposed an elegant approach to 
taxonomy integration by enhancing the Naïve Bayes algorithm 
[2]. 

The Naïve Bayes (NB) algorithm is a well-known text 
classification technique [18]. NB tries to fit a generative model 
for documents using training examples and apply this model to 
classify test examples. The generative model of NB assumes that 
a document is generated by first choosing its class according to a 
prior distribution of classes, and then producing its words 
independently according to a (typically multinomial) distribution 
of terms conditioned on the chosen class [15]. Given a test 
document d , NB predicts its class to be arg max Pr[ | ]C C d . The 

posterior probability Pr[ | ]C d can be computed via Bayes’s rule:  

Pr[ | ]C d  
Pr[ , ]

Pr[ ]

C d

d
=  

Pr[ ]Pr[ | ]

Pr[ ]

C d C

d
=  Pr[ ]Pr[ | ]C d C∝  

( ) ( , )
Pr[ ] Pr[ | ]

n d w

w d
C w C

∈
= ∏ ,  

where ( , )n d w  is the number of occurrences of w  in d . The 

probability Pr[ ]C  can be estimated by the proportion of training 

documents in C . The probability Pr[ | ]w C  can be estimated by 

( )
( , )

( , )
i

iw V

n C w

n C w

η
η

∈

+
+∑

, where ( , )n C w  is the number of 

occurrences of w  in training documents in C , V is the 
vocabulary of terms, and 0 1η< ≤  is the Lidstone’s smoothing 
parameter [1]. Taking logs, we see that NB is actually a linear 
classifier: 

 log Pr[ | ]C d  ( )( )( , )
log Pr[ ] Pr[ | ]

n d w

w d
C w C

∈
∝ ∏  

( ) log Pr[ ]( , ) log Pr[ | ]
w d

Cn d w w C
∈

= × +∑ . 

The enhanced Naïve Bayes (ENB) algorithm [2] uses the 
categorization of the source taxonomy to get better probability 
estimations. Given a test document d  that is know to be in 

category S  in N, ENB predicts its category in M to be 

arg max Pr[ | , ]C C d S . The posterior probability Pr[ | , ]C d S can 
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be computed as Pr[ | , ]C d S  
Pr[ , , ]

Pr[ , ]

C d S

d S
=  

Pr[ ]Pr[ , | ]

Pr[ , ]

S C d S

d S
=  

Pr[ , | ]C d S∝ . ENB invokes a simplification that assumes d  

and S  are independent given C , therefore  
Pr[ , | ]C d S  Pr[ | ]Pr[ | , ]C S d S C=  Pr[ | ]Pr[ | ]C S d C=  

( ) ( , )
Pr[ | ] Pr[ | ]

n d w

w d
C S w C

∈
= ∏ .  

The probability Pr[ | ]w C  can be estimated in the same way of 

NB. For the probability Pr[ | ]C S  , ENB estimates it by 

( )
i

i iC

C C S

C C S

ω

ω

× ←

× ←∑
, where C  is the number of documents 

in C , C S←  is the number of documents in S  classified into 

C  by the NB classifier, and 0ω ≥  is a parameter reflecting the 

degree of semantic overlap between the categorizations of M 

and N. The optimal value of ω  can be found using a tune set (a 

set of objects whose categories in both taxonomies are known). 
The tune set can be made available via random sampling or 
active learning [2]. Taking logs, we see that ENB is still a linear 
classifier:  

log Pr[ | , ]C d S  ( )( )( , )
log Pr[ | ] Pr[ | ]

n d w

w d
C S w C

∈
∝ ∏  

( ) log Pr[ | ]( , ) log Pr[ | ]
w d

C Sn d w w C
∈

= × +∑ .  

Comparing the classification functions of NB and ENB, it is 
obvious that all ENB does is to shift the classification threshold 
of its base NB classifier, no more and no less. 

To achieve multi-class multi-label classification that is required 
by taxonomy integration, we use the “one-vs-rest” method to 
create an ensemble of binary (yes/no) NB or ENB classifiers, one 
for each category C  in M.  

4. OUR APPROACH 
Here we present our approach in detail. In §4.1, we introduce the 
boosting technique. In §4.2, we propose the co-bootstrapping 
method. In §4.3, we discuss the advantages of our approach. 

4.1 Boosting 
In our approach to taxonomy integration, we utilize a powerful 
machine learning method, boosting [17, 23], to build classifiers. 
The main idea of boosting is to combine many weak hypotheses 
(simple and moderately accurate classification rules), into a 
highly accurate classifier. In this paper, we focus on boosting for 
text classification. Generalization to other kinds of data and 
learning algorithms would be straightforward.  

4.1.1 Term-Features 
Text objects (documents) can be represented using a set of term-
features 1 2{ , ,... }T T T T nF f f f= . The term-feature Thf (1 )h n≤ ≤  

of a given object x  is a binary feature indicating the presence or 

absence of hw  (the h-th distinct word in the document collection) 

in x , i.e., 
1  if  

0  if  
h

Th
h

w x
f

w x

∈
=  ∉

.   

4.1.2 Weak Hypotheses 
Let X  denote the domain of possible objects, and let Y  be a set 

of k  possible classes. A labeled example is a pair ( , )x Y  where 

x ∈ X  is an object and Y ⊆ Y  is the set of classes which x  

belongs to. We define [ ]Y l  for l ∈ Y  to be 
1  if  

[ ]
1  if  

l Y
Y l

l Y

+ ∈
= − ∉

. 

A hypothesis is a real-valued function :h × →RX Y . The sign 

of ( , )h x l  is a prediction of [ ]Y l  for x , i.e., whether object x  is 

contained in class l . The magnitude of  ( , )h x l  is interpreted as 
a measure of confidence in the prediction. 

Based on a binary feature f , we are interested in weak 

hypotheses h  which are simple decision stumps of the form 

1

0

  if  1
( , )

  if  0
l

l

c f
h x l

c f

=
=  =

, where 1 0,l lc c ∈ � . 

4.1.3 AdaBoost Algorithm 
The most popular boosting algorithm is AdaBoost introduced in 
1995 by Freund and Schapire [12]. Our work is based on a multi-
class multi-label version of AdaBoost, AdaBoost.MH [24, 25], 
which is described in Figure 1. 

 
Given m  training examples 1 1( , ),...,( , )m mx Y x Y  where each 

ix ∈ X , iY ∈ Y , AdaBoost.MH dynamically maintains a 

distribution tD  over all objects and classes. Initially this 

distribution 1D  is uniform. In the t-th round, the optimal weak 

hypothesis th  is selected based on the set of training examples 

and the current distribution tD . Then a parameter tα  is chosen, 

and the distribution tD  is updated in a manner that puts more 

weights on “difficult” examples (object-class pairs) that are 
misclassified by th . Please be referred to [24, 25] for the details 

on computing optimal th  and tα . This procedure repeats for T 

rounds. The final hypothesis ( , )H x l  is actually a weighted vote 

Given: 1 1( , ),...,( , )m mx Y x Y  where each ix ∈ X , iY ∈ Y . 

Initialize 1( , ) 1 ( )D i l mk= . 

for 1,...,t T=  do 

    Pass distribution tD  to weak learner. 

    Get weak hypothesis :ht × →RX Y . 

    Choose tα ∈ � . 

    Update: 

        1
( , )exp( [ ] ( , ))

( , ) t t i t i
t

t

D i l Y l h x l
D i l

Z

α
+

−
=  

        where tZ  is the normalization factor 

end for 
Output the final hypothesis: 

    
1

( , ) ( , )
T

t t

t

H x l h x lα
=

=∑ . 

 
Figure 1: The boosting algorithm AdaBoost.MH. 
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of weak hypotheses 
1

( , )
T

t t

t

h x lα
=
∑ , and the final prediction can be 

computed according to the sign of ( , )H x l .  

4.2 Co-Bootstrapping 
Thus far we have completely ignored the categorization of N. 

Although M and N are usually not identical, their 

categorizations often have some semantic overlap. Therefore the 
categorization of N contains valuable implicit knowledge about 

the categorization of M. Hereby we propose a new approach, co-

bootstrapping, to enhance the classification by exploiting such 
implicit knowledge. 

4.2.1 Category-Features 
If we have indicator functions for each category in N, we can 

imagine taking those indicator functions as features when we 
learn the classifier for M. This allows us to exploit the semantic 

relationship among the categories of M and N without 

explicitly figuring out what the semantic relationships are. More 
specifically, for each object in M, we augment the ordinary 

term-features with a set of category-features 

1 2{ , ..., }NF f f f=N N N N  derived from N. The category-feature 

jfN (1 )j N≤ ≤ of a given object x  is a binary feature 

indicating whether x  belongs to category jS  (the j-th category 

of N), i.e., 
1  if  

0  if  

j
j

j

x S
f

x S

∈=  ∉
N .   

In the same way, we can get a set of category-features 

1 2{ , ..., }MF f f f=M M M M  derived from M to be used for 

supplementing the features of objects in N. The remaining 

problem is to obtain these indicator functions, which are initially 
not available. 

4.2.2 Co-Bootstrapping Algorithm 
When building the classifier for M, the training examples are 

the objects in M and the test examples are the objects in N. To 

leverage the categorization of N to reinforce classification, our 

classifier uses term-features TF  as well as category-features 

FN . However, we do not know the exact values of FN  of the 

training examples.  

Our proposed algorithm overcomes the above obstacle by 

utilizing the bootstrapping idea. Let ( )r FTB  denote a boosting-

classifier for taxonomy T’s categorization based on feature set 

F  at step r . Initially we build a classifiers 0 ( )TFBN  based on 

only term-features, then use it to classify the objects in M (the 

training examples) into the categories of N, thus we can predict 

the value of each category-feature jf F∈N N  for each object 

x ∈ M . At next step we will be able to build 1 ( )TF F∪M

NB  

using the predicted values of FN  of the training examples. 

Similarly we can build 0 ( )TFMB  and 1 ( )TF F∪N
MB . The new 

classifier 1 ( )TF F∪N
MB  ought to be better than  0 ( )TFBN  

because 1 ( )TF F∪N
MB  leverages more knowledge. Hence we 

can predict the value of each category-feature jf F∈N N  for 

each object x ∈ M  more accurately using 1 ( )TF F∪N
MB  

instead of 0 ( )TFBN , and afterwards we can build 

2 ( )TF F∪M

NB . Also  2 ( )TF F∪M
NB  is very likely to be 

better than 1 ( )TF F∪M
NB  because 2 ( )TF F∪M

NB  is based 

on a more accurate prediction of FN . This process can be 

repeated iteratively in a “ping-pong” manner. We name this 
approach co-bootstrapping since the two classifiers 

( )r TF F∪BM N  and ( )r TF F∪BN M  collaborate to bootstrap 

themselves together. Figure 2 presents the co-bootstrapping 
algorithm, and Figure 3 depicts its process. 

4.3 Discussion 

4.3.1 Why Choose Boosting 
We have selected to employ the boosting technique to build 
classifiers in our co-bootstrapping approach to taxonomy 
integration because of its following virtues.  
•  Boosting has shown outstanding classification performance on 

many kinds of data such as text documents [17, 23, 24]. 
•  Boosting finds the optimal combination of heterogeneous 

weak hypotheses automatically, therefore alleviates the 
problem of how to weight ordinary features (e.g. term-features) 
and category-features appropriately. In contrast, approaches 
based on other machine learning algorithms like Support 
Vector Machines (SVMs) [9] would require to adjust relative 
combination weights, which is a non-trivial problem. 

•  Boosting generates descriptive and human-readable 
hypotheses as the final classifier, and the learned classifier is 
usually sparse despite the large feature set. 

Although boosting looks an ideal choice, other machine learning 
algorithms can also be utilized in the co-bootstrapping approach. 
We have not investigated this issue yet. 

4.3.2 Comparison with ENB 
Although ENB [2] has been shown to work well for taxonomy 
integration, we think that a more general approach is still 
attractive. It has been experimentally shown that AdaBoost is 
more promising than NB for text classification [24]. The co-
bootstrapping approach allows more powerful machine learning 
algorithms like AdaBoost to be utilized. 

Both ENB and our co-bootstrapping approach exploit the 
categorization of N to enhance classification. While all ENB 

does is to shift the classification threshold of its base NB 
classifier (see §3), co-bootstrapping has the ability to achieve 
more complex adjustments on the classification function of its 
base classifier.  
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Furthermore, ENB needs a stand-alone tune set to find the 
optimal value of parameter ω  which controls the influence of 
source categorization information on classification, whereas co-
bootstrapping based on boosting does not have such burdens. 

Although co-bootstrapping looks more effective, ENB still holds 
an advantage in efficiency.  

 

 

5. EXPERIMENTS 

5.1 Datasets 
We have collected 5 datasets from Google and Yahoo. One 
dataset includes the slice of Google’s taxonomy and the slice of 
Yahoo’s taxonomy about websites on one specific topic, as 
shown in Table 1. 

 
In each slice of taxonomy, we take only the top level directories 
as categories, e.g., the “Movie” slice of Google’s taxonomy has 
categories like “Action”, “Comedy”, “Horror”, etc. 

 
For each dataset, we show in Table 2 the number of categories 
occurred in Google and Yahoo respectively. 

In each category, we take all items listed on the corresponding 
directory page and its sub-directory pages as its objects. An 
object (list item) corresponds to a website on the world wide web, 
which is usually described by its URL, its title, and optionally a 
short annotation about its content. Here each object is considered 
as a text document composed of its title and annotation. All 
documents are pre-processed by removal of stop-words and 
stemming. 

 
For each dataset, we show in Table 3 the number of objects 
occurred in Google (G), Yahoo (Y), either of them (G∪Y), and 
both of them (G∩Y) respectively. The set of objects in G∩Y 
covers only a small portion (usually less than 10%) of the set of 
objects in Google or Yahoo alone, which suggests the great 
benefit of automatically integrating them. This observation is 
consistent with [2].  

 

Figure 3: The co-bootstrapping process. 

 

Given: two taxonomies M  and N . 

•  Build classifier 0 ( )TFBM , then use it to predict the 

value of each category-feature if F∈M M  for  each 

object x ∈ N . 

•  Build classifier 0 ( )TFBN , then use it to predict the 

value of each category-feature jf F∈N N  for  each 

object x ∈ M . 
for 1,...,r R=  do 

•  Build classifier ( )r TF F∪BM N , then use it to 

predict the value of each category-feature 

if F∈M M  for  each object x ∈ N . 

•  Build classifier ( )r TF F∪BN M , then use it to 

predict the value of each category-feature 

jf F∈N N  for  each object x ∈ M . 

end for 
•  For each object x ∈ N , if the value of its category-

feature if F∈M M  is positive, then we classify it 

into iC ∈ M . 

•  For each object x ∈ M , if the value of its category-
feature jf F∈N N  is positive, then we classify it 

into jS ∈ N . 

Figure 2: The co-bootstrapping algorithm. 

Table 1: The datasets. 

 Google Yahoo 
Book / Top/ Shopping/ 

Publications/ Books/ 
/ Business_and_Economy/ 
Shopping_and_Services/ 
Books/ Bookstores/ 

Disease / Top/ Health/ 
Conditions_and_Diseases/ 

/ Health/ 
Diseases_and_Conditions/ 

Movie / Top/ Arts/ Movies/ 
Genres/ 

/ Entertainment/ 
Movies_and_Film/ 
Genres/ 

Music / Top/ Arts/ Music/ Styles/ / Entertainment/ Music/ 
Genres/ 

News / Top/ News/ By_Subject/ / News_and_Media/ 

 

Table 3: The number of objects. 

 Google Yahoo G∪Y G∩Y 
Book 10,842 11,268 21,111    999 
Disease 34,047   9,785 41,439 2,393 
Movie 36,787 14,366 49,744 1,409 
Music 76,420 24,518 95,971 4,967 
News 31,504 19,419 49,303 1,620 
 

Table 2: The number of categories. 

 Google Yahoo 
Book 49 41 
Disease 30 51 
Movie 34 25 
Music 47 24 
News 27 34 
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The number of categories per object in these datasets is 1.54 on 
average. This observation justifies the necessity of building 
multi-class multi-label classifiers.  

5.2 Tasks 
For each dataset, we pose 2 symmetric taxonomy integration 
tasks: G←Y (integrating objects from Yahoo into Google) and 
Y←G (integrating objects from Google into Yahoo). 

As described in §2, we formulate each task as a classification 
problem. The objects in G∩Y can be used as test examples, 
because their categories in both taxonomies are known to us [2]. 
We hide the test examples’ master categories but expose their 
source categories to the learning algorithm in training phase, and 
then compare their hidden master categories with the predictions 
of the learning algorithm in test phase. Suppose the number of 
the test examples is n . For G←Y tasks, we randomly sample n  
objects from the set G-Y as training examples. For Y←G tasks, 
we randomly sample n  objects from the set Y-G as training 
examples. This is to simulate the common situation that the sizes 
of M and N are roughly in same magnitude. For each task, we 

do such random sampling 5 times, and report the classification 
performance averaged over these 5 random samplings.  

5.3 Measures 
As stated in §2, it is natural to accomplish taxonomy integration 
tasks via building multi-class multi-label classifiers. To measure 
classification performance for each class (category in M), we 

use the standard F-score (F1 measure) [3]. The F-score is defined 
as the harmonic average of precision (p) and recall (r), 

2 ( )F pr p r= + , where precision is the proportion of correctly 

predicted positive examples among all predicted positive 
examples, and recall is the proportion of correctly predicted 
positive examples among all true positive examples. The F-
scores can be computed for the binary decisions on each 
individual category first and then be averaged over categories. Or 
they can be computed globally over all the M n×  binary 
decisions where M  is the number of categories in consideration 
(the number of categories in M) and n  is the number of total 

test examples (the number of objects in N). The former way is 

called macro-averaging and the latter way is called micro-
averaging [27]. It is understood that the micro-averaged F-score 
(miF) tends to be dominated the classification performance on 
common categories, and that the macro-averaged F-score (maF) 
is more influenced by the classification performance on rare 
categories [27]. Providing both kinds of scores is more 
informative than providing either alone. 

5.4 Settings 
We use our own implementation of NB and ENB. The Lidstone’s 
smoothing parameter η  is set to an appropriate value 0.1 [1]. 
The performance of ENB would be greatly affected by its 
parameter ω . We run ENB with a series of exponentially 
increasing values of ω : (0, 1, 3, 10, 30, 100, 300, 1000) [2] for 
each taxonomy integration task,  and report the best experimental 
results. We use BoosTexter [24] for the implementation of 
AdaBoost, taking single words as terms. We set the boosting 

rounds 1000T =  and the co-bootstrapping iteration number 
8R =  (see Figure 1 & 2). In the following sections, we denote 

the normal AdaBoost approach by AB, and denote the co-
bootstrapping approach based on AdaBoost algorithm by CB-AB. 

5.5 Results 

 

 

 
The experimental results of NB and ENB are shown in Table 4. 
We see that ENB really can achieve much better performance 
than NB for taxonomy integration. 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

maF(G←Y) miF(G←Y)

maF(Y←G) miF(Y←G)

Figure 4: The taxonomy integration performance 
increases along with the number of co-bootstrapping 
iterations, on the Book dataset. 

 

Table 5: Experimental Results of AB and CB-AB. 

AB CB-AB   
maF miF maF miF 

Book 0.1740 0.4499 0.2540 0.6030 
Disease 0.5375 0.6674 0.6533 0.7703 
Movie 0.1930 0.4892 0.3172 0.6716 
Music 0.3316 0.5025 0.4851 0.6826 

G←Y 

News 0.2150 0.4625 0.3083 0.6218 
Book 0.2436 0.3853 0.3516 0.6341 
Disease 0.3719 0.6350 0.4371 0.7287 
Movie 0.2559 0.5214 0.3922 0.7154 
Music 0.4369 0.6397 0.5799 0.7994 

Y←G 

News 0.3774 0.4942 0.4340 0.6421 

Table 4: Experimental Results of NB and ENB. 

NB ENB   
maF miF maF miF 

Book 0.1286 0.2384 0.1896 0.5856 
Disease 0.4386 0.5602 0.5230 0.6895 
Movie 0.1709 0.3003 0.2094 0.5331 
Music 0.2386 0.3881 0.2766 0.5408 

G←Y 

News 0.2233 0.4450 0.2578 0.5987 
Book 0.1508 0.2107 0.2227 0.5471 
Disease 0.2746 0.4812 0.3415 0.6370 
Movie 0.2319 0.4046 0.2884 0.5534 
Music 0.3124 0.5359 0.3572 0.6824 

Y←G 

News 0.2966 0.4219 0.3639 0.6007 
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The experimental results of AB and CB-AB are shown in Table 5. 
Obviously AB beats NB, which is consistent with the conclusion 
of [24]. Also we find that CB-AB works better than AB for 
taxonomy integration, which suggests that co-bootstrapping 
makes effective use of the categorization of N to enhance 

classification for M. 

Figure 4 shows that the taxonomy integration performance 
increases along with the number of co-bootstrapping iterations, 
on the Book dataset. This implies that the two boosting-
classifiers learned from two taxonomies do mutually boost each 
other until they become stable.  

 

 
The experimental results of ENB and CB-AB are compared in 
Figure 5 and 6. It is clear that CB-AB outperforms ENB 
consistently and significantly.  

6. RELATED WORK 
Most of the recent research efforts related to taxonomy 
integration are in the context of ontology mapping on semantic 
web. An ontology specifies a conceptualization of a domain in 

terms of concepts, attributes, and relations [11]. The concepts in 
an ontology are usually organized into a taxonomy: each concept 
is represented by a category and associated with a set of objects 
(called the extension of that concept). The basic goal of ontology 
mapping is to identify (typically one-to-one) semantic 
correspondences between the taxonomies of two given ontologies: 
for each concept (category) in one taxonomy, find the most 
similar concept (category) in the other taxonomy. Many works in 
this field use a variety of heuristics to find mappings [7, 16, 19, 
21]. Recently machine learning techniques have been introduced 
to further automate the ontology mapping process [10, 13, 14, 20, 
26]. Some of them derive similarities between concepts 
(categories) based on their extensions (objects) [10, 13, 14], 
therefore they need to first integrate objects from one taxonomy 
into the other and vice versa (i.e., taxonomy integration). So our 
work can be utilized as a basic component of an ontology 
mapping system.  

As stated in §2, taxonomy integration can be formulated as a 
classification problem. The Rocchio algorithm [3, 22] has been 
applied to this problem in [14]; and the Naïve Bayes (NB) 
algorithm [18] has been applied to this problem in [10], without 
exploiting information in the source taxonomy. To our 
knowledge, the most advanced approach to taxonomy integration 
is the enhanced Naïve Bayes (ENB) algorithm proposed by 
Agrawal and Srikant [2], which we have reviewed and compared 
with our approach. 

In [6], AdaBoost is selected as the framework to combine term-
features and automatically extracted semantic-features in the 
context of text categorization. We also choose AdaBoost to 
combine heterogeneous features (term-features and category-
features), but it is for a different problem (taxonomy integration) 
and it works in a more complex way (through co-bootstrapping). 

In [8], an approach called co-boosting is proposed for named 
entity classification. Essentially co-boosting is a co-training [5] 
method that attempts to utilize unlabeled data to help 
classification through exploiting a particular form of redundancy 
in data: each instance is described by multiple views (disjoint 
feature sets) which are both compatible and uncorrelated 
(conditionally independent). However, the multi-view 
assumption does not hold in the context of taxonomy integration: 
the set of category features should not be considered as a view 
because category features alone are not sufficient for 
classification and they are strongly correlated with term features. 
In contrast to co-boosting (co-training), co-bootstrapping works 
with two taxonomies but not two views.  

7. CONCLUSION 
Our main contribution is to propose a new approach, co-
bootstrapping, that can effectively exploit the implicit knowledge 
in the source taxonomy to improve taxonomy integration.  

The future work may include: theoretical analysis of the co-
bootstrapping approach, incorporating commonsense knowledge 
and domain constraints into the taxonomy integration process, 
and so forth. 
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Figure 5: Comparing the macro-averaged F-scores of 
ENB and CB-AB. 
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