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ABSTRACT 

A number of papers have appeared on the subject of software 
science; claiming the existence of laws relating the size of a program 
and the number of operands and operators used. The pre-eminent theory 
was developed by Halstead in 1972. The thesis work focuses on the 
examination of Halstead's theory; with an emphasis on his fundamental 
assumptions. In particular, the length estimator was analyzed to 
determine why it yields such a high variance; the theoretical 
foundations of software science have been extended to improve the 
applicability of the critical length estimator. This elaboration of the 
basic theory will result in guidelines for the creation of counting 
rules applicable to specific classes of programs, so that it is possible 
to determine both when and how software science can be applied in 
practice. 
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1.0 INTRODUCTION 

Software metric requirements have increased from the simple measure 
of size and the execution speed of code to complex measures of program 
quality, and programmer productivity. With each new metric there is a 
growing need for standards, so that measuring improvement by comparison 
is possible. Software Science offers one form of software metric based 
on the software'product. This paper will discuss the problems found in 
tl~ software science field, and will highlight some of the controversy 
found in this metric. The foundations of software science will be 
examined in an effort to highlight some possible causes of error in the 
metric. A mathematical framework will be setup so that effects of 
counting rule changes may be predicted. Some of the attributes of 
software, and software science, will be examined within the mathematical 
framework. An experiment will be performed to determine if the model 
suggested by the mathematical framework is supported empirically. 

2.0 SOFTWARE SCIENCE 

Software Science is a theory developed to measure properties of 
algorithms, and their implementation in languages [1,3,7-11,19,21]. By 
counting the tokens comprising a program: the operators and operands, 
software science attempts to measure quality and complexity of software; 
and the productivity of programmers. Operands are defined as, "the 
constants or variables that an implementation of code employs [21]." 
Operators are the "op-codes, delimiters, arithmetic symbols, 
punctuation, et cetera, which act upon the operands." In order to apply 
software science estimators, a set of rules for counting operators and 
operands must first be designed. A given piece of software is measured 
by applying the counting rules, and calculating various software 
metrics, which are based on the resulting parameter values. This 
methodology is applied to a carefully selected data base to calibrate 
the estimator equations forming an empirical basis for software science. 

2.1 Anomalies Experienced With Software Science 

Published research shows that software science measures may produce 
some interesting results with respect to the average. The variance of 
values over a set of benchmark programs is often too large to draw 
meaningful concluslons.[13,15] In particular, the length estimator, is 
significant only with respect to average values. 

The length estlmator[8] is an equation parameterlzed in terms of 
the number of unique operators and operands found in a program. The 
length estimator itself, has been suggested as a metric [3,4,8,11] for 
checking for well programmed software, as well as, for predicting 
effort, programming time, and expected number of errors. In the 
literature it was found that even for well programmed software, the 
length estimator constantly over estimates small programs and under 
estimates large programs. 
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While reviewing the published data, it was discovered that every 
experiment uses a counting rule, which is unique to the experiment. 
There has been some research at IBM, Purdue, University of 
Automata-Mexico and General Motors [1,3,5,12,18] into the effect of 
changing the counting rule. The counting rules seem to change with the 
focus of the investigation: from just measuring the algorithm 
(Halstead) to measuring the entire software package (Fitsos). Counting 
rules can change the magnitude and dynamic range of the measures. By 
counting more tokens, the volume can be increased and ti, e program level 
can be decreased. To date, no one has been successful in devising 
counting rules that result in low variance. The differences in the 
counting rules used by various researchers makes comparing their 
empirical results a difficult task. 

2 . 2  Problem Statement 

2.2.1 Length Estimator - 

The survey of the literature and past experiments raise many 
questions dealing with the length estimator, the counting rules 
sensitivity, and structured software. The readings and the experiments 
suggests that program size may be a critical factor when considering the 
performance of the length estimator. It would seem that small, medium, 
and large programs have different behavior. It would be of interest to 
see how the performance of the estimator changes with the counting 
rules. The results of the error analysis of the length estimator 
implies that there are really three different slopes to the curve. What 
is the meaning of the different slopes? Is it a defect in the metric? 
Is it an artifact of the counting rules? Is it a fundamental phenomenon 
of programming? 

2.2.2 Counting Rule Sensitivity - 

The question of counting rule sensitivity must be addressed. To 
what extent can counting rules be changed and effect the behavior of the 
curve? If counting rules are changed in a "reasonable" way will the 
distribution change? What is controlling the distribution? Is there a 
counting rule that would linearize the estimator? Is there a counting 
rule that would improve the variance of the estimator? 

2.2.3 Structured Software - 

In a recent paper on software science by Fitsos[l], he commented on 
the lack of growth in the number of unique operators in PL/I code. 
Fitsos attributed this to the presence of structured software. He 
pointed out that the same measurements performed on assembly code did 
not observe a constant number of operator tokens. The question is, can 
a counting rule stress "quality" and "poor" programming? Would a 
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counting rule take poor programming and make it look good by increasing 
or decreasing the variance? Do counting rules exist, which will be 
sensitive to only quality or poor programming? 

2.3 Plan For Answering The Questions 

Before attempting to answer these questions, the foundation for the 
metrics must be examined. Halstead and others [8-10,18,23] made 
critical assumptions about how software is created that bear directly on 
the variance of these measures. In particular, Halstead's assumptions 
do not hold for extremely large or extremely small programs. Language 
characteristics may also introduce new factors. It is very important to 
determine what types of software and languages fall into the categories 
defined by Halstead's model. This knowledge can be used to define when 
Halstead's measures are applicable. Smlth[21] indicates in his survey 
that about 20 percent of his software falls into the area where 
Halstead's length metric is accurate. 

A mathematical framework will be developed to model the measured 
length and length estimator equations. Elements of the equations, which 
could cause invariance or variance of the measures will be studied. The 
effect of token distributions, and size of a program will also be 
modeled. Finally, the combined effects of operator and operands will be 
included in the mathematical framework. The mathematical framework can 
be used to show the effect of counting rule changes on the length 
estimator. 

A number of attributes connected with the length estimator will be 
examined. The percent variation of the length estimator with respect to 
the actual length will be viewed within the mathematical framework. 
This will help predict the effect of token distributions, and the 
counting rules role in the distributions. A measurement fundamental to 
the length estimator is the log base. The log base will be examined 
within the mathematical framework to see if it is token distribution 
dependent. Finally, the role of counting rules in structured 
programming will be examined. 

The attribute level study will suggest a number of models that must 
be confirmed with a comprehensive experiment. The experiment will 
confirm or deny empirically whether the models are correct. 

3.0 FOUNDATIONS OF SOFTWARE SCIENCE 

In 1972 Dr. Maurice Halstead, at Purdue University, observed 
several quantitative relationships in computer programs. Halstead had 
been involved in decompilation work, taking object code and 
disassembling the code back into assembly code. He observed that the 
operator and operand token distribution seem to follow an inverse 
distribution. Halstead recognized that the same inverse distribution 
was desribed by Zipf[22] for natural languages. The regularity of token 
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distributions suggested to Halstead that software could be measured at 
each stage of the software cycle, from high level language to assembly 
code. 

3.1 Length Estimator 

The software science theory developed by Halstead stated that as a 
program which consists of n unique tokens and N total tokens grows in 
size -- additional unique tokens are added -- the total tokens will grow 
n*log2(n ). Halstead used an analytical procedure and a probability 
model of software generation to develop the length estimator. He later 
used a combinatoric model as a means of deriving the length estimator. 
His derivation while taking into account the existence of operators and 
operands assumes no interaction between them. Halstead favorably 
compared both his theoretical model for software generation, and his 
length estimator to empirical data. All of the software science 
estimators were derived from the relationship shown by the length 
estimator. 

3.1.1 Derivation Of The Length Estimator - 

The Halstead-Bayer[10] derivation used identical procedures to 
formulate an estimator for the operator and operand terms. Informally, 
Halstead°s length estimator equation was formulated as follows: the 
number of unique operators (nl) and the total number of operators (NI) 
could not be less than 2 because the shortest program consists of an 
assignment operator followed by the program terminator operator, in 
which case the ratio, Nl/nl-1. Halstead observed that if one or more of 
the functional operators were added, the ratio would be greater than 
one. Halstead's basic assumption was that the rate of increase of N1/n I 
with n I varies inversely with nl, then the integration will produce a 
logarithmic term. If the smallest possible programs that can be written 
are allowed, the condition that N1/nl~l at n1~2 requires that the base 
equal 2, and hence the length estimator for the expected number of 
operators N 1 is given by the equation: 

N I = n I log2(nl) 

Halstead°s reasoning with respect to the estimator for the total number 
of operands is basically similar to the above: the number of unique 
operands (n2) and the total number of operands (N2) will behave in a 
similar fashion to the operators, yielding a total number of operand 
estimator N2: 

N 2 = n 2 l o g 2 ( n 2 )  

Since the length N of a program is just the sum of the total number of 
operators and operands, the total length estimator (N) is given by the 
equation: 
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N-estimate = nllOgbl(nl) + n21ogb2(n2) 

The base of the logarithmic terms may be calculated empirically by using 
the total tokens and the number of unique tokens, for example: 

base-operator-term=e((nl/Nl)*in(nl)) 

n I - number of unique operators, and 
N I - total number of operators 

Halstead concluded that since the rate of increase of N/n with n varies 
inversely with n, then the integration will produce a logarithmic term. 
The base would be a constant of two due to the initial conditions of the 
ratio N/n. 

3.1.2 Halstead's Combinatoric Model - 

Halstead's combinatoric model[8,9] for the length estimator assumes 
that in addition to the N tokens, the upper limit of the combination of 
n I and n 2 unique tokens include all possible subsets of the ordered set 
of tokens comprising a particular program. This was equated to the 
number of ways of selecting n I tokens from a group of n I unique tokens, 
and selecting n 2 tokens from n 2 unique tokens. The comblnatoric model 
is an expression of a software generation process. Halstead did not 
take into account aspects of software that would change the number of 
combinations. Operator-operand interaction and operand span would tend 
to change the relationship implied by the model. 

Halstead's probability model for the software generation process 
was used to justify the logarithm form of the estimator. Since the 
probability model is a classical occupancy problem, it derives to the 
poisson distribution, and thus supports the logarithm form. The model 
was analyzed, and found not to support the form of the logarithm base as 
a constant of two. The log base curves have been plotted in three 
dimensions (see Graph i). Since the operator curve was symmetric with 
the operand curve, only one graph is presented. 

The assumption is made by the author that the logarithm base is not 
constant, and is a function of the number of unique operators and 
operands. A survey of software was performed using the Purdue counting 
program. The program produced a logarlthmbase as follows: 

nl>n 2 b I approx. 3-5 
nl=n 2 b I approx. 2+ 
n2>n I b I approx. 1.0+ 

b 2 a p p r o x .  1 -3 ;  
b 2 a p p r o x .  3 - 4 ;  and 
b 2 a p p r o x .  4 - 9 9 .  

The importance of the log base relationship is that if the token 
curves follow a constant inverse distribution, then the log base should 
be constant. The behavior of the software generation model and the 
empirical data suggests the converse is true. For different size 
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programs, the token curves follows a distribution different from 
inverse. The change in the token distribution over size would account 
for the length estimator behavior. 

The previous work focused on possible sources of error due to flaws 
in the foundations of software science. Since all software science 
metrics are performed by measuring software following some counting 
rules, there is still the question of effects of changes in the counting 
rules. There are many different types of counting rules. Each define 
operators, operands, create new tokens, or eliminate tokens from 
counting. What is needed is a mathematical framework that can be used 
to judge the effects of changes in counting rules. The model should 
also take into consideration changes in token distributions. 

3.2 Mathematical Framework Of Length Measurement And Length Estimator 

A mathematical model of the equations is developed; in order to 
discuss the effect of changes in the definitions of operators and 
operands on the length estimator. The model will be approached from the 
point of view of what kind of change could be made either in the length 
calculation or the length estimator that would cause one or both of the 
equations to vary. The relationship between the two equations is of 
i~terest since an explanation for the percent variation is desired. The 
length estimator is given by the equation: 

p = nl*log2(nl) + n2*log2(n 2) 

Halstead Length Estimator Equation 

where n ! is the number of unique operators and n 2 is the number of 
unique operands. The length of the program may be described by the 
following equation: 

n I n 2 
L= Oi+ Vi 

i=l i=l 

Length of a Program Calculation 

where 0 i is the frequency of the operator tokens and V i is the frequency 
of the operands tokens. The tokens n I and n 2 have the same definition 
as in the length estimator equation. The notation was changed from 
prior software science papers in order to easily distinguish between the 
length estimator and the measured length. 

Both equations have operator and operand terms. Each term must be 
examined separately. It is recognized that once the individual terms 
are modeled, both terms may be combined in a limited way. There are 
many factors that could cause one equation to change while the other 
remains constant. Without entering into the question of counting rules, 
there are two elements of the equation that can vary; the number of 
unique tokens and the frequency of the individual token. 
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3.2.1 Operator Term Of The Equations - 

The first term that will be examined will be the operator term. If 
two elements of the equations are varying, a problem can occur when they 
vary in the same sign. The problem becomes one of determining which 

variable is changing more. It is necessary to assume that the tokens 
are following a defined distribution. There are two major types of 
distributions considered in this model: Uniform, and Inverse. Study of 
software shows these two distributions are typical. This inclusion of 
token distributions allows size of a program, and whether a token is 
rare or frequent to be factored into the analysis. 

The results of the math analysis is given in the table below. 

Number - 

of 0 

Unique + 
Tokens 

Uniform Distribution 
Frequency of Tokens 

- 0 + 

L>P L>P L>P 

P>L L=P L>P 

P>L P>L P>L 

m 

0 

+ 
+ 

Inverse Distribution 
Frequency of Tokens 

- 0 + 

rare L>P L>P L>P I 
freq P>L I 

P>L L=P L>P i 
rare P>L P>L P>L 1 
freq L>P~ 

At the points where the number of unique tokens and the frequency of 
unique tokens are changing in the same direction, the distribution of 
tokens will dictate how the two equations will relate. Size of the 
program did not effect the calculated relationship. 

3.3 Attribute Level 

There are three attributes connected with the length estimate that 
will be examined. The percent variation of the length estimator with 
respect to the calculated length not only gives a complete picture of 
the accuracy of the length estimator, but seems to differentiate between 
small, medium, and large programs. The log base is calculated from the 
unique number and total number of tokens. Experimental data indicates 
the operator log base shows the same size bias as the length estimator. 
The third attribute under study is the role counting rules play in 
scanning for structured software. 

3.3.1 Percent Variation - 

The percent variation of the length estimator has demonstrated a 
definite size bias. For small programs the estimator will over 
estimate, for medium size programs the estimator will be accurate, and 
for large programs the estimator will over estimate. The same behavior 
has been observed even when the definition of what constitutes a module 
is different. The IBM definition of module size is the entire assembly 
of subroutines and functions making up a product. The Purdue definition 
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of a module is the unique subroutine or function. 

There is the question of what is going on in the programs at the 
different size ranges. If a small program adds a previously used token, 
then the distribution of the tokens will dictate whether the length 
estimator will over estimate or under estimate the actual length. If 
the tokens distribution is uniform, then the length estimator will over 
estimate the actual length. For a uniform distribution, the ratio of 
total tokens to unique tokens is assumed to be a constant of one 
regardless of program size. This may occur only for small programs. If 
the token distribution is inverse, the question of whether a token is 
rare or frequent will determine the behavior of the estimator. If the 
token added is rare, the length estimator increase will be larger than 
the calculated length increase. If the token added is frequent, the 
calculated length could increase faster than the length estimate. When 
a program is large, the typical token added would be frequent. Since 
the metric is under estimating for large programs, it is also likely 
that the token curve follows an inverse distribution. 

3.3.2 Length Estimator Log Base - 

The log base was assumed to be a constant of two in Halstead's 
length estimator derivation. The constant value came about by 
considering the initial conditions for a small program. The minimum 
number of unique tokens must be two, and the total number of tokens must 
be two. The length estimator derivation implied that the rate of change 
of the ratio of total tokens to unique tokens will follow a inverse 
curve. The only way that the log base could be constant is if the ratio 
of total tokens to unique tokens follows a logarithmic curve. If the 
token distribution is uniform, a different behavior is observed. As new 
tokens are added to the set, the ratio of total tokens to unique tokens 
remains constant. The uniform distribution implies that the log base 
would rise as new tokens are added. The operator log base has been 
observed to change with the size of the program. This would imply that 
the operator token distributions also change as the program ranges in 
size. The operator log base for small programs has been observed to be 
greater than two. As the programs become larger, the log base has 
dropped below two. The operand log base, for small programs, has been 
observed to be greater than two. As the program size increases, the log 
base converges to approximately two. This would imply that the operand 
token distribution approaches inverse as the program size increases. 

3.3.3 Relationship To Structured Software - 

The two attributes that have been discussed deal only with the 
actual length metric. The differences between the predicted measurement 
and the actual measurement may be connected to changes in the token 
distribution. The implications of the token distributions to structured 
software is the third attribute that will be studied. In Fitsos's 
paper[l] the lack of growth of new operator tokens was attributed to the 
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presence of structured PL/I code. As a contrast, IBM assembly language 
was analyzed, and did not exhibit the same behavior. In addition, the 
length of the program was viewed as a function of the number of unique 
operands. 

In order to evaluate whether the IBM counting rules stress 
structured software, it is first necessary to define what 
characteristics and tokens would be expected from structured and 
unstructured software. It is not the point of the paper to define 
structured software; however, there are some general characteristics 
that may be discussed. Structured software has the characteristic of 
being designed with a top down, hierarchical design approach, with block 
oriented code, and well defined communications to other routlnes.The 
structured code will have a definite communications path in the 
hierarchical design scheme, and would not use an excessive number of 
unique CALLs. In keeping with the bloc~ structured format, branching 
and GOTOs would be keep to a minimum. 

In order to evaluate the conclusion that structured software has a 
constant set of operator tokens, it is necessary to examine the IBM 
counting rules. The counting rules are similar to the Purdue counting 
rules, with some major exceptions. CALLs to procedures are counted as 
the unique operator CALL. The module is defined as the entire 
collection of subroutines and functions. GOTO-labels are considered 
unique operators by both counting rules. A detailed example of the 
Purdue counting rule is found in the appendix. 

It is clear from looking at the IBM counting rule, that if a branch 
to label was present, then the number of unique tokens would rise. If 
excessive CALLs is an example of unstructured code, and the IBM rule 
does not show the presence of the additional CALLS, then the conclusion 
that the PL/I software is structured may not be correct. It is also 
possible that a counting rule may be devised that shows the same type of 
constant token behavior. By counting GOTO-labels as a unique operator 
GOTO and the unique operand LABEL, the operators may appear constant. 

3.4 Summary Of Attributes 

A number of conclusions may be drawn from the above analysis. The 
length estimator makes the assumption of constant form of a token 
distribution. The percent variation and log base attributes that have 
been observed would seem to suggest that the distributions are not 
constant. In addition, the conclusion that the unique operator tokens 
are constant for structured software are counting rule dependent. A 
experiment in counting rules has been performed to verify these 
conclusions. The experiment in counting rules will also demonstrate the 
effect of counting rule changes on token distributions. 
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4.0 EXPERIMENT 

The purpose of the experiment will be to collect data that will 
either confirm or deny the theory that the operator and operand token 
distributions are the cause of the percent variation and log base error. 
The experiment will also demonstrate the relative effect on changing the 
counting rules by comparing the software science measurements of a data 
base with two very different counting rules. Two software analyzers are 
available which measure FORTRAN-IV source code: Purdue metric program 
and SAP/H program. The Purdue metric program is based on the paper by 
Karl Ottenstein[20] and has been expanded by Scott Woodfield, and was 
modified by the author to run on a VAX 11/780. The SAP/H program 
(Source Analysis Program/Halstead) was developed for Goddard Space 
Flight Center by CSC, and was converted to run on the VAX 11/780 by 
General Electric. 

The two counting rules implemented in the Purdue metric program and 
the SAP/H program differ in several key areas: GOTOs, I/O, Data 
statements,and IF statements. A comparison of the two counting rules is 
given in the appendix. Both of the counting rule programs have been 
modified by the author to perform regression analysis[2] on each of the 
operator and operand distributions. The slope, Intercept, correlation 
coefficient, and F value of the regression is calculated. The SAP/H 
program also outputs a data base, which may be used to build a 
statistical picture of a module. 

4.1 Data Selection 

For the purposes of the experiment it is desired to select a data 
base that will guarantee that the results are statistically valid. The 
conclusions of the experiment should be stated with a high degree of 
confidence that the results are not subject to a reverse interpretation 
due to lack of significance of the data. Important questions while 
setting up the evaluating the data, will be: what results constitute an 
outlier; and what results are in an area where the data is not 
statistically significant. 

The desired approach is to use published or production software. 
The data base will reflect software in a production and analysis 
environment, and will be from many sources. In addition to the General 
Electric software, the source to the International Mathematical and 
Statistical Libraries (IMSL) was available on the VAX 11/780. The IMSL 
source represents a product software package that is maintained by the 
leasing company. The source code largely has statistical and numerical 
analysis routines. The assumption is made that the IMSL library 
represents a single example of a large system that is under very tight 
configuration controls. The IMSL library is not claimed to be an 
example of totally structured software. However, the assumption is made 
that the IMSL library is of better quality then the random collection of 
simulators, assemblers, and analysis routines assembled as the General 
Electric data base. 
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4.2 Outputs From The Experiment 

The two data bases have been evaluated by the Purdue and SAP/H 
counting programs. The results of the counting programs are presented 
in a number of graphs found in the appendix. 

Length Estimate vs Length (Measured), 
Percent Error of the Length Estimator vs Length (Measured), 
Log Base of Operator Term vs Length (Measured), 
Log Base of Operand Term vs Length (Measured), 
Intercept of Operator Token Distribution, 
Slope of Operator Token Distribution, 
Intercept of Operand Token Distribution, 
Slope of Operand Token Distribution, 
Program Vocabulary Ranked by Program Length, and 
Histogram of Operators and Operands 

5.0 CONCLUSIONS 

The data from the experiment is sufficient to draw some conclusions 
about the behavior of the length estimator and the role of counting 
rules in software science. The first group of questions that were 
asked, pertain to the size dependence of the length estimator and the 
log bases. The token distributions are suggested as the answer to the 
size dependence questions. The counting rules effect the type of 
distribution by either creating or eliminating rare and frequent tokens. 

5.1 Percent Variation Of Length Estimator 

In small programs, the length estimator over estimates the measured 
length. The mathematical framework suggests if the token distribution 
is closer to uniform, the length estimator will over estimate. This was 
supported by the experiment. 

In medium sized programs, the length estimator is accurate. The 
length estimator derivation suggests if the token distributions are 
equal, then the length estimator will be an accurate metric. If the 
process generating the operand tokens is approached as a probability 
model, then from the literature, it would appear that a Markov model is 
appropriate. The mathematical framework, therefore, suggests the token 
distribution be an inverse function. This is supported empirically. 

In a large program, the estimator under estimates the length. The 
choice of new operators becomes restricted to GOTO~s, subroutine CALL~s, 
and I/O statements. If the program size is still growing, the typical 
token encountered would be a frequent one. The mathematical framework 
suggests when the frequency of a token is increased, and the number of 
unique tokens is held constant, then the measured length will be greater 
than the estimated length. Since the length estimator is accurate for 
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inverse distributions, the distribution may be approaching inverse 
squared. This is supported by the experiment. 

The role that counting rules have in the token distribution, is the 
choice of creating frequent, less frequent, and rare tokens. The Purdue 
counting rule allows the existence of the rare tokens: GOTO-Label, I/0, 
and CALL-Label. This allows the set of operators to grow, thus keeping 
the slope of the distribution closer to inverse in the large case. The 
SAP/H counting rule only allows the rare token CALL-Label. The set of 
operators is restricted in its growth to frequent types and few rare 
types. The extreme number of frequent types force the token 
distribution slope much less than -i. It would appear that the SAP/H 
counting rule has a operator distribution slightly closer to the inverse 
squared, than the Purdue counting rule. Both counting rule operand 
distributions approach the inverse. 

It may be concluded that the counting rule may alter the token 
distribution of large programs to the point where the operator token 
distributions are inverse. However, for cases where the program is 
small, the length estimator will probably always over estimate the 
length. The net result is: No change in counting rules will correct 
the anomalies observed in the length estimator. 

The operand distribution curves show a great deal of variance 
compared to the operator distributions. When there is at least one 
distribution with a high variance, the estimator will have a high 
variance. The variance is possibly due to the open ended selection of 
unique operands. For very large programs, the operand distribution 
begins to look like a classic Zipf distribution. As in any statistical 
process, until the number of samples becomes large, the variance will be 
high. This implies the variance will never be reduced due to counting 
rule changes. 

5.2 Log Base 

The log base data was consistent with the prior analysis. When the 
token distribution is between uniform and inverse the log base is 
greater than two. When the token distribution has a steeper curve than 
inverse (approaching inverse squared) the log base will be below two. 
The log base length dependancy is the best indication that the token 
distribution is not a constant inverse as assumed by Halstead. 

5.3 Structured Software 

The question about screening software for structured and 
unstructured code was answered with a qualified yes. The counting rules 
could be setup to penalize the existence of tokens corresponding to 
unstructured code, if the definition of structured code is correct. A 
counting rule that counts each GOTO-Label, CALL-Label, and I/O as a new 
operators will see a growing set of tokens for unstructured code. It is 
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possible to setup a counting rule that will produce a constant set of 
operators for structured and unstructured code. 

5.4 Role Of Probability Models In Software Science 

The d i s t r i b u t i o n s  o f  o p e r a t o r  and ope rand  t o k e n s  make an  
i n t e r e s t i n g  p o i n t  a b o u t  t h e  s o f t w a r e  g e n e r a t i o n  p r o c e s s  and p r o b a b i l i t y  
m o d e l s .  The s o f t w a r e  g e n e r a t i o n  p r o c e s s  i s  v e r y  c o m p l i c a t e d ,  and a 
model t h a t  a t t e m p t s  t o  p r e d i c t  e v e r y  p e r f o r m a n c e  o f  t h e  p r o c e s s  w i l l  
likely be inaccurate, due to the many variables, and unobserved facets 
of the problem. However, as in many language problems the process does 
seem to approach a consistent behavior as the program grows very large. 
This type of behavior can be modeled by a Markov process. If the 
counting rules are slanted, so that they favor a probability process 
rather than a psychological process, then for large programs, consistent 
performance of the metric might be observed. Counting rules based on 
cause and effect of a process must face the burden of proving the cause 
is correct. When a process that may be caused by a set of conditions is 
indistinguishable from a random process, then causality is difficult to 
prove. If a probability process is assumed, then a calculation of 
expected variance becomes possible. In addition, a framework which 
allows expansion for new metrics becomes possible. Unless a clear 
picture of the underlying process for software science is found, the 
only foundation that can be supported empirically is based on 
probability. 
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6.0 LENGTH ESTIMATOR PERFORMANCE 

GE Software - Purdue Counting Rules - 870 Data Points Read 

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR 

BO ffi 57.92957 +- 5.608710 

BI ffi 0.8141532 +- 1.0185177E-02 

BO ffi 57.92957 +- 7.200943 

BI = 0.8141532 +- 1.3076604E-02 

BO = 57.92957 +- 8.583219 

BI - 0.8141532 +- 1.5586756E-02 

FVALUE ffi 10510.12 FOR 868.0000 

XBAR = 308.4218 YBAR = 309.0322 

RXY = 0.9610977 S = 106.8603 

80 % CONF LIM 

80 % CONF LIM 

90 % CONF LIM 

90 % CONF LIM 

95 % CONF LIM 

95 % CONF LIM 

DEGREES OF FREEDOM 

IMSL Data file - Purdue Counting Rules - 569 Data Points Read 

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR 

BO ffi 79.36093 +-- 20.56283 

BI = 0.6396490 +- 2.8854221E-02 

BO = 79.36093 4-- 26.40457 

BI = 0.6396490 +- 3.7051491E-02 

B0 ffi 79.36093 4-- 31.47876 

BI = 0.6396490 +- 4.4171702E-02 

FVALUE = 808.9830 FOR 567.0000 

XBAR = 493.3111 YBAR ffi 394.9069 

RXY = 0.7667642 S = 275.8971 

80 % CONF LIM 

80 % CONF LIM 

90 % CONF LIM 

90 % CONF LIM 

95 % CONP LIM 

95 % CONF LIM 

DEGREES OF FREEDOM 
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GE Software - SAP/H Counting Rules - 864 Data Points Read 

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR 

B0 = 38.94392 +- 5.100722 80 % CONF LIM 

BI = 0.7810361 +- 1.1587721E-02 80 % CONF LIM 

B0 = 38.94392 4-- 6.548766 90 % CONF LIM 

BI ffi 0.7810361 +- 1.4877360E-02 90 % CONF LIM 

B0 ffi 38.94392 +- 7.805895 95 % CONF LIM 

BI ffi 0.7810361 +- 1.7733281E-02 95 % CONF LIM 

FVALUE ffi 7472.798 FOR 862.0000 DEGREES OF FREEDOM 

XBARffi 250.2662 YBAR ffi 234.4109 

RXY ffi 0.9468743 S ffi 96.16884 

IMSL Data file - SAP/H Counting Rules - 556 Data Points Read 

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR 

B0 = 101.6805 +-- 6.994767 

BI = 0.5058271 +- 9.1956351E-03 

BO = 101.6805 +- 8.982014 

BI ~ 0.5058271 +- 1.1808158E-02 

B0 ~ 101.6805 +- 10.70823 

BI ffi 0.5058271 +- 1.4077513E-02 

FVALUE ffi 4981.300 FOR 554.0000 

XBAR ffi 506.0863 YBAR ffi 357.6727 

RXY = 0 . 9 4 8 6 3 7 0  S ffi 9 5 . 9 6 6 9 0  

80 % CONF LIM 

80 % CONF LIM 

90 % CONF LIM 

90 % CONF LIM 

95 % CONF LIM 

95 % CONF LIM 

DEGREES OF FREEDOM 
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7.0 COUNTING RULE COMPARISONS 

COUNTING RULE COMPARISONS 

FORTRAN-IV element 
ACCEPT 
BACKSPACE 
CALL 

DATA 

DO 

END 
ENDFILE 
GOTO LABEL 

GOTO(),VAR 
IF()STATEMENT 

IF()LABEL,LABEL,LABEL 

PRINT 
READ 
RETURN 
REWIND 
STOP 
TYPE 
WRITE 
VarzExpression 

Comma (,) 

() 

+ - , I ** 
Logical Operators 
END OF STATEMENT 
Function Calls 

"LITERAL STRINGS" 
Subscripts 
Variables 

I/0 Variables 

PURDUE COUNTING RULE 
Counted 
Counted 
Counted paired with 
routine name 
Counted 

Counted 

Not Counted 
Counted 
Counted As GOTO Lable 

Counted 
Counted, () seperate 

Counted, each lable is 
a seperate GOTO lable 
Counted 
Counted 
Counted 
Counted 
Counted 
Counted 
Counted 
Evaluated and counted 

Counted 

Counted~ when in 
counted statement 
Counted, when in 
counted statement 
Counted 
Counted 
Counted 
Counted as operators 
and operands 

Counted as operands 
Counted 
Counted as operands 

Counted 

SAP/H RULE 
Not Counted  
Not Counted  
Counted same as 
Purdue rule 
Not Counted 
Counted, Paired 
with =,~ 
Not Counted 

Not Counted 
Counted as GOTO 
Label is operand 
Counted 
Counted~ grouped 
with () 
Counted as IF() 
Labels not counted 
Not Counted 
Not Counted 
Not Counted 
Not Counted 
Not Counted 
Not Counted 
Not Counted 
Evaluated and 
counted 
Counted, except 
from DO 
Counted, when in 
counted statement 
Counted, from 
arithmetic express. 
Counted 
Counted 
Counted 
Counted as operators 
when used in arith 
statements, else 
as operands 
Not Counted 
Not Counted 
Counted as operands 
if in counted 
statements. 
Not Counted 

65 



8.0 BIBLIOGRAPHY 

BIBLIOGRAPHY 

[l]Christensen, K.,Fitsos, G. P., and Smith, C. P.,"A Perspective on 
Software Science", IBM Systems Journal, Vol 20, No.4, 1981. 

[2]Draper, N., and Smith, H., Applied Regression Analysis, Wiley 
Interscience, 1966. 

[3]Elshoff, J. L., Studies of Software Physics using PL/I Computer 
Programs, General Motors Research Publication GMR-2444. June 1977. 

[4]Elshoff, J. L., Measuring Commercial PL/I Programs using Halstead's 
Criteria, General Motors Research Publication GMR-2012, Nov 1975. 

[5]Fitsos, G. P., Software Science Counting Rules and 
Methodology, IBM Technical Report TR 03.075, September 1979. 

Tuning 

[6]Fitsos, G. P., Vocabulary Effects in Software Science, IBM Technical 
Report TR 03.082, Jan 1980. 

[7]Fitzsimmons, A., Love, T., A Review and Evaluation of Software 
Science, Computing Surveys, Vol.lO, No.i, March 1978, pp. 3-18. 

[8]Halstead, M. H., Elements of Software Science, American Elsevier, 
1977. 

[9]Halstead, M. H., Advances in Software Science, 
Computers, Vol. 18, 1980, Academic Press. 

Advances in 

[i0] Halstead, M.H., and Rudolf Bayer. Algorithm Dynamics, Proceedings 
of ACM Annual Conference, Atlanta, Aug. 1973. pp.126-135. 

[ll]Halstead, M. H., Gordon, R. D., Elshoff, J. L., On Software 
Physics and GM's PL/I Programs, General Motors Research Publication 
GMR-2175, June 1976. 

[12]Halstead, M. H., Zweben, S. H., The Frequency Distribution of 
Operators in PL/I Programs, IEEE Trans on S/W Eng., VoI.SE-3, No.2, 
March 1979, p91-95. 

[13]Hamer, P.G., Frewin, G. D., M. H. Halstead's Software Science - A 

Critical Examination, ITT Technical Report No. STL 1341, July 1981. 

[14]Gordon, R. D.,Measuring Improvements In Program Clarity, IEEE 
Trans. On S/W Eng., Vol.SE-5, No.-2, March 1979.pp. 79-90. 

[15]Johnston, D. B. and Lister, A. M.,(1979), "An Experiment in 
Computer Science", Proceedings of the Symposium on Language Design and 
Progamming Methodology, Sydney, 10-11 Sept. 1979; in Lecture Notes in 
Computer Science, Vol. 79, Springer-Verlag, 1980. 

66 



[16]Kavipurapu, K. M., Frailey, D. J., Quantification of Architectures 
Using Software Science, Computer Architecture News, Oct 1979, No. i0, 
p2-6. 

[17]Kernighan, B. W., and Plauger, P. J., The Elements of Programing 
Style, McGraw Hill, N.Y., 1974, p. 108. 

[18]Magidin, M., Viso, E., On the Experiments in Algorithm Dynamics, 
Technical Report, Dept of Math, Universidad Autonoma 
Metropolitana-Iztapalapa, Mexico, Vol. i, No. 14., Oct 1976. 

[19]Mohanty, S. N., Models and Measurements for Quality Assessment of 
Software, Computing Surveys, Vol.ll, No.3, Sept 1979, pp. 251-275. 

[20]Ottenstein, K. J., A Program to Count Operators and Operands for 
ANSI-Fortran Modules. Technical Report 196, Computer Science 
Department, Purdue University, June 1976. 

[21]Smlth, C. P.,A Software Science Analysis of IBM Programming 
Products, IBM Technical Report TR 03.081, Jan. 1980. 

[22]Zlpf, G. K. Human Behavlour and the Principle of Least Effort. 
Reading, M_A: Addlson-Wesley, 1949. 

[23]Zweben, S. H., A Study of The Physical Structure of Algorithms, 
IEEE Trans on S/W Eng, VoI.SE-3, NO.3, May 1979, pp. 250-258. 

67 



GRAPH 1 OPERATOR LOG BASE - FROH HALSTEAD/BAYER HODEL B 

N 

G 
fl 
l 
T 
U 
D 
[ 

LOG 

BASE 

1132 

68 



G E DATA BASE - PURDUE COUNTING RULES 
~ e e o  . . . .  ? . S  L 

LENGTH eeee -" ~ ~ ; '~ OPERATOR 

. ~  BASE , • 
- ; ' . ,V , - -"  " ; -  ",~ : . - .  

e ~ i ~ i i | J I J j J J I i . . . .  m ' l  w ' l  i i i | i i w 
i 

o tooo  L, ooo 3000 q tooo zooo  m e  

LENGTH LENGTH 

PERCENT ' .~ ' "  .~1 I" l" " :  ° . . " " ,  . , ~ t ~ ~  :'  -.'. I °~'~° r'-.:- 'L L,;I..I  ESTTHATOR e ,;1~ - t  ' , "  ,," " 
It N i l l  

ERROR BASE 

"~" ' ' "  ' ' ' ' ' I ! ' ' ' '  I '  ' ' " 1 ' ' ' '  I 
• t l e l  Nee 21LND • lete leet lINle 

LENGTH LENGTH 

6 9  



OPERATOR 

INTERCEPT 

(LOG SCALE) 

l e  ' 

$ 

o 

G E DATA BASE - PURDUE COUNTING RULES 

l u ~  ~$':..~..-. 

I I I I I I I I T" I I I 

1o 

OPERAND 
S 

INTERCEPT 

(LOG SCALE) 

O 

tO00 BOO0 300O 

LENGTH 

4 

I ' I  I I 

I I N N I  

• . .  ; 
. X . ~ -  

.No  • 

I i 1 i 

LENGTH 

• : :  , .  
D v • 

I i l ' i '  

eOOO ~OeO 

OPERATOR 

SLOPE - 6  

- 4  

,.,..~ . : ~ "  .~.,~'.~;:"~. ":" 

i I I t 

8 0 0 0  

I I I I 

LENGTH 

'i i i i 

OPERAND 

SLOPE - i l  

- 4  ' 

O 

I I I I I 'l I I 

I O N  00410 31000 

LENGTH 

7 0  



G E DATA BASE - PURDUE COUNT]NG RULES 

ET~I - ET~a U9 LENGTH 

3OO 

' i I 

CO 20O ~ ..... • ' ii 18 
'1 ,, 

I . 

~ - 

• • J at dSle 
'1 

Jl • J t ' ~  

le te apa~8 n 

toe  • ;J • " " "  fm imal m r e  

• • • ; L ~ , ~ ' ~ ' ,  

• 'a, .;,~_ I p ,.,,j."'~.m. 
w • ~ tal  'lkD 

, le, SmNa n 
0 I I 

• tOO 400 600 IJ0O t o m  

0itlNEKD I ~  1Ll~11g 

71 



So 

G E DATA BASE - PURDUE COUNTING RULES 

NUHBER 
25 

OF 

HODUL ES 

40 

IS 60 76 

UNIQUE OPERATORS 

100 111; ISO S?S 

NUHBER 

OF ae 

HODULES 

S4 i m  

UNIQUE OPERANDS 

-72 


