
FOUNDATIONS AND EXPERIMENTS IN SOFTWARE SCIENCE

by

Nicholas Beser

23 Mar 82

General Electric Company

Space Division

Valley Forge Space Center

P.O. Box 8555

Philadelphia, Pa. 19101

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1982 ACM 0-89791-086-9/82/0300-0048 $00.75

48

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010675.807795&domain=pdf&date_stamp=1982-08-30

ABSTRACT

A number of papers have appeared on the subject of software
science; claiming the existence of laws relating the size of a program
and the number of operands and operators used. The pre-eminent theory
was developed by Halstead in 1972. The thesis work focuses on the
examination of Halstead's theory; with an emphasis on his fundamental
assumptions. In particular, the length estimator was analyzed to
determine why it yields such a high variance; the theoretical
foundations of software science have been extended to improve the
applicability of the critical length estimator. This elaboration of the
basic theory will result in guidelines for the creation of counting
rules applicable to specific classes of programs, so that it is possible
to determine both when and how software science can be applied in
practice.

49

1.0 INTRODUCTION

Software metric requirements have increased from the simple measure
of size and the execution speed of code to complex measures of program
quality, and programmer productivity. With each new metric there is a
growing need for standards, so that measuring improvement by comparison
is possible. Software Science offers one form of software metric based
on the software'product. This paper will discuss the problems found in
tl~ software science field, and will highlight some of the controversy
found in this metric. The foundations of software science will be
examined in an effort to highlight some possible causes of error in the
metric. A mathematical framework will be setup so that effects of
counting rule changes may be predicted. Some of the attributes of
software, and software science, will be examined within the mathematical
framework. An experiment will be performed to determine if the model
suggested by the mathematical framework is supported empirically.

2.0 SOFTWARE SCIENCE

Software Science is a theory developed to measure properties of
algorithms, and their implementation in languages [1,3,7-11,19,21]. By
counting the tokens comprising a program: the operators and operands,
software science attempts to measure quality and complexity of software;
and the productivity of programmers. Operands are defined as, "the
constants or variables that an implementation of code employs [21]."
Operators are the "op-codes, delimiters, arithmetic symbols,
punctuation, et cetera, which act upon the operands." In order to apply
software science estimators, a set of rules for counting operators and
operands must first be designed. A given piece of software is measured
by applying the counting rules, and calculating various software
metrics, which are based on the resulting parameter values. This
methodology is applied to a carefully selected data base to calibrate
the estimator equations forming an empirical basis for software science.

2.1 Anomalies Experienced With Software Science

Published research shows that software science measures may produce
some interesting results with respect to the average. The variance of
values over a set of benchmark programs is often too large to draw
meaningful concluslons.[13,15] In particular, the length estimator, is
significant only with respect to average values.

The length estlmator[8] is an equation parameterlzed in terms of
the number of unique operators and operands found in a program. The
length estimator itself, has been suggested as a metric [3,4,8,11] for
checking for well programmed software, as well as, for predicting
effort, programming time, and expected number of errors. In the
literature it was found that even for well programmed software, the
length estimator constantly over estimates small programs and under
estimates large programs.

50

While reviewing the published data, it was discovered that every
experiment uses a counting rule, which is unique to the experiment.
There has been some research at IBM, Purdue, University of
Automata-Mexico and General Motors [1,3,5,12,18] into the effect of
changing the counting rule. The counting rules seem to change with the
focus of the investigation: from just measuring the algorithm
(Halstead) to measuring the entire software package (Fitsos). Counting
rules can change the magnitude and dynamic range of the measures. By
counting more tokens, the volume can be increased and ti, e program level
can be decreased. To date, no one has been successful in devising
counting rules that result in low variance. The differences in the
counting rules used by various researchers makes comparing their
empirical results a difficult task.

2 . 2 Problem Statement

2.2.1 Length Estimator -

The survey of the literature and past experiments raise many
questions dealing with the length estimator, the counting rules
sensitivity, and structured software. The readings and the experiments
suggests that program size may be a critical factor when considering the
performance of the length estimator. It would seem that small, medium,
and large programs have different behavior. It would be of interest to
see how the performance of the estimator changes with the counting
rules. The results of the error analysis of the length estimator
implies that there are really three different slopes to the curve. What
is the meaning of the different slopes? Is it a defect in the metric?
Is it an artifact of the counting rules? Is it a fundamental phenomenon
of programming?

2.2.2 Counting Rule Sensitivity -

The question of counting rule sensitivity must be addressed. To
what extent can counting rules be changed and effect the behavior of the
curve? If counting rules are changed in a "reasonable" way will the
distribution change? What is controlling the distribution? Is there a
counting rule that would linearize the estimator? Is there a counting
rule that would improve the variance of the estimator?

2.2.3 Structured Software -

In a recent paper on software science by Fitsos[l], he commented on
the lack of growth in the number of unique operators in PL/I code.
Fitsos attributed this to the presence of structured software. He
pointed out that the same measurements performed on assembly code did
not observe a constant number of operator tokens. The question is, can
a counting rule stress "quality" and "poor" programming? Would a

51

counting rule take poor programming and make it look good by increasing
or decreasing the variance? Do counting rules exist, which will be
sensitive to only quality or poor programming?

2.3 Plan For Answering The Questions

Before attempting to answer these questions, the foundation for the
metrics must be examined. Halstead and others [8-10,18,23] made
critical assumptions about how software is created that bear directly on
the variance of these measures. In particular, Halstead's assumptions
do not hold for extremely large or extremely small programs. Language
characteristics may also introduce new factors. It is very important to
determine what types of software and languages fall into the categories
defined by Halstead's model. This knowledge can be used to define when
Halstead's measures are applicable. Smlth[21] indicates in his survey
that about 20 percent of his software falls into the area where
Halstead's length metric is accurate.

A mathematical framework will be developed to model the measured
length and length estimator equations. Elements of the equations, which
could cause invariance or variance of the measures will be studied. The
effect of token distributions, and size of a program will also be
modeled. Finally, the combined effects of operator and operands will be
included in the mathematical framework. The mathematical framework can
be used to show the effect of counting rule changes on the length
estimator.

A number of attributes connected with the length estimator will be
examined. The percent variation of the length estimator with respect to
the actual length will be viewed within the mathematical framework.
This will help predict the effect of token distributions, and the
counting rules role in the distributions. A measurement fundamental to
the length estimator is the log base. The log base will be examined
within the mathematical framework to see if it is token distribution
dependent. Finally, the role of counting rules in structured
programming will be examined.

The attribute level study will suggest a number of models that must
be confirmed with a comprehensive experiment. The experiment will
confirm or deny empirically whether the models are correct.

3.0 FOUNDATIONS OF SOFTWARE SCIENCE

In 1972 Dr. Maurice Halstead, at Purdue University, observed
several quantitative relationships in computer programs. Halstead had
been involved in decompilation work, taking object code and
disassembling the code back into assembly code. He observed that the
operator and operand token distribution seem to follow an inverse
distribution. Halstead recognized that the same inverse distribution
was desribed by Zipf[22] for natural languages. The regularity of token

52

distributions suggested to Halstead that software could be measured at
each stage of the software cycle, from high level language to assembly
code.

3.1 Length Estimator

The software science theory developed by Halstead stated that as a
program which consists of n unique tokens and N total tokens grows in
size -- additional unique tokens are added -- the total tokens will grow
n*log2(n). Halstead used an analytical procedure and a probability
model of software generation to develop the length estimator. He later
used a combinatoric model as a means of deriving the length estimator.
His derivation while taking into account the existence of operators and
operands assumes no interaction between them. Halstead favorably
compared both his theoretical model for software generation, and his
length estimator to empirical data. All of the software science
estimators were derived from the relationship shown by the length
estimator.

3.1.1 Derivation Of The Length Estimator -

The Halstead-Bayer[10] derivation used identical procedures to
formulate an estimator for the operator and operand terms. Informally,
Halstead°s length estimator equation was formulated as follows: the
number of unique operators (nl) and the total number of operators (NI)
could not be less than 2 because the shortest program consists of an
assignment operator followed by the program terminator operator, in
which case the ratio, Nl/nl-1. Halstead observed that if one or more of
the functional operators were added, the ratio would be greater than
one. Halstead's basic assumption was that the rate of increase of N1/n I
with n I varies inversely with nl, then the integration will produce a
logarithmic term. If the smallest possible programs that can be written
are allowed, the condition that N1/nl~l at n1~2 requires that the base
equal 2, and hence the length estimator for the expected number of
operators N 1 is given by the equation:

N I = n I log2(nl)

Halstead°s reasoning with respect to the estimator for the total number
of operands is basically similar to the above: the number of unique
operands (n2) and the total number of operands (N2) will behave in a
similar fashion to the operators, yielding a total number of operand
estimator N2:

N 2 = n 2 l o g 2 (n 2)

Since the length N of a program is just the sum of the total number of
operators and operands, the total length estimator (N) is given by the
equation:

53

N-estimate = nllOgbl(nl) + n21ogb2(n2)

The base of the logarithmic terms may be calculated empirically by using
the total tokens and the number of unique tokens, for example:

base-operator-term=e((nl/Nl)*in(nl))

n I - number of unique operators, and
N I - total number of operators

Halstead concluded that since the rate of increase of N/n with n varies
inversely with n, then the integration will produce a logarithmic term.
The base would be a constant of two due to the initial conditions of the
ratio N/n.

3.1.2 Halstead's Combinatoric Model -

Halstead's combinatoric model[8,9] for the length estimator assumes
that in addition to the N tokens, the upper limit of the combination of
n I and n 2 unique tokens include all possible subsets of the ordered set
of tokens comprising a particular program. This was equated to the
number of ways of selecting n I tokens from a group of n I unique tokens,
and selecting n 2 tokens from n 2 unique tokens. The comblnatoric model
is an expression of a software generation process. Halstead did not
take into account aspects of software that would change the number of
combinations. Operator-operand interaction and operand span would tend
to change the relationship implied by the model.

Halstead's probability model for the software generation process
was used to justify the logarithm form of the estimator. Since the
probability model is a classical occupancy problem, it derives to the
poisson distribution, and thus supports the logarithm form. The model
was analyzed, and found not to support the form of the logarithm base as
a constant of two. The log base curves have been plotted in three
dimensions (see Graph i). Since the operator curve was symmetric with
the operand curve, only one graph is presented.

The assumption is made by the author that the logarithm base is not
constant, and is a function of the number of unique operators and
operands. A survey of software was performed using the Purdue counting
program. The program produced a logarlthmbase as follows:

nl>n 2 b I approx. 3-5
nl=n 2 b I approx. 2+
n2>n I b I approx. 1.0+

b 2 a p p r o x . 1 -3 ;
b 2 a p p r o x . 3 - 4 ; and
b 2 a p p r o x . 4 - 9 9 .

The importance of the log base relationship is that if the token
curves follow a constant inverse distribution, then the log base should
be constant. The behavior of the software generation model and the
empirical data suggests the converse is true. For different size

54

programs, the token curves follows a distribution different from
inverse. The change in the token distribution over size would account
for the length estimator behavior.

The previous work focused on possible sources of error due to flaws
in the foundations of software science. Since all software science
metrics are performed by measuring software following some counting
rules, there is still the question of effects of changes in the counting
rules. There are many different types of counting rules. Each define
operators, operands, create new tokens, or eliminate tokens from
counting. What is needed is a mathematical framework that can be used
to judge the effects of changes in counting rules. The model should
also take into consideration changes in token distributions.

3.2 Mathematical Framework Of Length Measurement And Length Estimator

A mathematical model of the equations is developed; in order to
discuss the effect of changes in the definitions of operators and
operands on the length estimator. The model will be approached from the
point of view of what kind of change could be made either in the length
calculation or the length estimator that would cause one or both of the
equations to vary. The relationship between the two equations is of
i~terest since an explanation for the percent variation is desired. The
length estimator is given by the equation:

p = nl*log2(nl) + n2*log2(n 2)

Halstead Length Estimator Equation

where n ! is the number of unique operators and n 2 is the number of
unique operands. The length of the program may be described by the
following equation:

n I n 2
L= Oi+ Vi

i=l i=l

Length of a Program Calculation

where 0 i is the frequency of the operator tokens and V i is the frequency
of the operands tokens. The tokens n I and n 2 have the same definition
as in the length estimator equation. The notation was changed from
prior software science papers in order to easily distinguish between the
length estimator and the measured length.

Both equations have operator and operand terms. Each term must be
examined separately. It is recognized that once the individual terms
are modeled, both terms may be combined in a limited way. There are
many factors that could cause one equation to change while the other
remains constant. Without entering into the question of counting rules,
there are two elements of the equation that can vary; the number of
unique tokens and the frequency of the individual token.

55

3.2.1 Operator Term Of The Equations -

The first term that will be examined will be the operator term. If
two elements of the equations are varying, a problem can occur when they
vary in the same sign. The problem becomes one of determining which

variable is changing more. It is necessary to assume that the tokens
are following a defined distribution. There are two major types of
distributions considered in this model: Uniform, and Inverse. Study of
software shows these two distributions are typical. This inclusion of
token distributions allows size of a program, and whether a token is
rare or frequent to be factored into the analysis.

The results of the math analysis is given in the table below.

Number -

of 0

Unique +
Tokens

Uniform Distribution
Frequency of Tokens

- 0 +

L>P L>P L>P

P>L L=P L>P

P>L P>L P>L

m

0

+
+

Inverse Distribution
Frequency of Tokens

- 0 +

rare L>P L>P L>P I
freq P>L I

P>L L=P L>P i
rare P>L P>L P>L 1
freq L>P~

At the points where the number of unique tokens and the frequency of
unique tokens are changing in the same direction, the distribution of
tokens will dictate how the two equations will relate. Size of the
program did not effect the calculated relationship.

3.3 Attribute Level

There are three attributes connected with the length estimate that
will be examined. The percent variation of the length estimator with
respect to the calculated length not only gives a complete picture of
the accuracy of the length estimator, but seems to differentiate between
small, medium, and large programs. The log base is calculated from the
unique number and total number of tokens. Experimental data indicates
the operator log base shows the same size bias as the length estimator.
The third attribute under study is the role counting rules play in
scanning for structured software.

3.3.1 Percent Variation -

The percent variation of the length estimator has demonstrated a
definite size bias. For small programs the estimator will over
estimate, for medium size programs the estimator will be accurate, and
for large programs the estimator will over estimate. The same behavior
has been observed even when the definition of what constitutes a module
is different. The IBM definition of module size is the entire assembly
of subroutines and functions making up a product. The Purdue definition

56

of a module is the unique subroutine or function.

There is the question of what is going on in the programs at the
different size ranges. If a small program adds a previously used token,
then the distribution of the tokens will dictate whether the length
estimator will over estimate or under estimate the actual length. If
the tokens distribution is uniform, then the length estimator will over
estimate the actual length. For a uniform distribution, the ratio of
total tokens to unique tokens is assumed to be a constant of one
regardless of program size. This may occur only for small programs. If
the token distribution is inverse, the question of whether a token is
rare or frequent will determine the behavior of the estimator. If the
token added is rare, the length estimator increase will be larger than
the calculated length increase. If the token added is frequent, the
calculated length could increase faster than the length estimate. When
a program is large, the typical token added would be frequent. Since
the metric is under estimating for large programs, it is also likely
that the token curve follows an inverse distribution.

3.3.2 Length Estimator Log Base -

The log base was assumed to be a constant of two in Halstead's
length estimator derivation. The constant value came about by
considering the initial conditions for a small program. The minimum
number of unique tokens must be two, and the total number of tokens must
be two. The length estimator derivation implied that the rate of change
of the ratio of total tokens to unique tokens will follow a inverse
curve. The only way that the log base could be constant is if the ratio
of total tokens to unique tokens follows a logarithmic curve. If the
token distribution is uniform, a different behavior is observed. As new
tokens are added to the set, the ratio of total tokens to unique tokens
remains constant. The uniform distribution implies that the log base
would rise as new tokens are added. The operator log base has been
observed to change with the size of the program. This would imply that
the operator token distributions also change as the program ranges in
size. The operator log base for small programs has been observed to be
greater than two. As the programs become larger, the log base has
dropped below two. The operand log base, for small programs, has been
observed to be greater than two. As the program size increases, the log
base converges to approximately two. This would imply that the operand
token distribution approaches inverse as the program size increases.

3.3.3 Relationship To Structured Software -

The two attributes that have been discussed deal only with the
actual length metric. The differences between the predicted measurement
and the actual measurement may be connected to changes in the token
distribution. The implications of the token distributions to structured
software is the third attribute that will be studied. In Fitsos's
paper[l] the lack of growth of new operator tokens was attributed to the

57

presence of structured PL/I code. As a contrast, IBM assembly language
was analyzed, and did not exhibit the same behavior. In addition, the
length of the program was viewed as a function of the number of unique
operands.

In order to evaluate whether the IBM counting rules stress
structured software, it is first necessary to define what
characteristics and tokens would be expected from structured and
unstructured software. It is not the point of the paper to define
structured software; however, there are some general characteristics
that may be discussed. Structured software has the characteristic of
being designed with a top down, hierarchical design approach, with block
oriented code, and well defined communications to other routlnes.The
structured code will have a definite communications path in the
hierarchical design scheme, and would not use an excessive number of
unique CALLs. In keeping with the bloc~ structured format, branching
and GOTOs would be keep to a minimum.

In order to evaluate the conclusion that structured software has a
constant set of operator tokens, it is necessary to examine the IBM
counting rules. The counting rules are similar to the Purdue counting
rules, with some major exceptions. CALLs to procedures are counted as
the unique operator CALL. The module is defined as the entire
collection of subroutines and functions. GOTO-labels are considered
unique operators by both counting rules. A detailed example of the
Purdue counting rule is found in the appendix.

It is clear from looking at the IBM counting rule, that if a branch
to label was present, then the number of unique tokens would rise. If
excessive CALLs is an example of unstructured code, and the IBM rule
does not show the presence of the additional CALLS, then the conclusion
that the PL/I software is structured may not be correct. It is also
possible that a counting rule may be devised that shows the same type of
constant token behavior. By counting GOTO-labels as a unique operator
GOTO and the unique operand LABEL, the operators may appear constant.

3.4 Summary Of Attributes

A number of conclusions may be drawn from the above analysis. The
length estimator makes the assumption of constant form of a token
distribution. The percent variation and log base attributes that have
been observed would seem to suggest that the distributions are not
constant. In addition, the conclusion that the unique operator tokens
are constant for structured software are counting rule dependent. A
experiment in counting rules has been performed to verify these
conclusions. The experiment in counting rules will also demonstrate the
effect of counting rule changes on token distributions.

58

4.0 EXPERIMENT

The purpose of the experiment will be to collect data that will
either confirm or deny the theory that the operator and operand token
distributions are the cause of the percent variation and log base error.
The experiment will also demonstrate the relative effect on changing the
counting rules by comparing the software science measurements of a data
base with two very different counting rules. Two software analyzers are
available which measure FORTRAN-IV source code: Purdue metric program
and SAP/H program. The Purdue metric program is based on the paper by
Karl Ottenstein[20] and has been expanded by Scott Woodfield, and was
modified by the author to run on a VAX 11/780. The SAP/H program
(Source Analysis Program/Halstead) was developed for Goddard Space
Flight Center by CSC, and was converted to run on the VAX 11/780 by
General Electric.

The two counting rules implemented in the Purdue metric program and
the SAP/H program differ in several key areas: GOTOs, I/O, Data
statements,and IF statements. A comparison of the two counting rules is
given in the appendix. Both of the counting rule programs have been
modified by the author to perform regression analysis[2] on each of the
operator and operand distributions. The slope, Intercept, correlation
coefficient, and F value of the regression is calculated. The SAP/H
program also outputs a data base, which may be used to build a
statistical picture of a module.

4.1 Data Selection

For the purposes of the experiment it is desired to select a data
base that will guarantee that the results are statistically valid. The
conclusions of the experiment should be stated with a high degree of
confidence that the results are not subject to a reverse interpretation
due to lack of significance of the data. Important questions while
setting up the evaluating the data, will be: what results constitute an
outlier; and what results are in an area where the data is not
statistically significant.

The desired approach is to use published or production software.
The data base will reflect software in a production and analysis
environment, and will be from many sources. In addition to the General
Electric software, the source to the International Mathematical and
Statistical Libraries (IMSL) was available on the VAX 11/780. The IMSL
source represents a product software package that is maintained by the
leasing company. The source code largely has statistical and numerical
analysis routines. The assumption is made that the IMSL library
represents a single example of a large system that is under very tight
configuration controls. The IMSL library is not claimed to be an
example of totally structured software. However, the assumption is made
that the IMSL library is of better quality then the random collection of
simulators, assemblers, and analysis routines assembled as the General
Electric data base.

59

4.2 Outputs From The Experiment

The two data bases have been evaluated by the Purdue and SAP/H
counting programs. The results of the counting programs are presented
in a number of graphs found in the appendix.

Length Estimate vs Length (Measured),
Percent Error of the Length Estimator vs Length (Measured),
Log Base of Operator Term vs Length (Measured),
Log Base of Operand Term vs Length (Measured),
Intercept of Operator Token Distribution,
Slope of Operator Token Distribution,
Intercept of Operand Token Distribution,
Slope of Operand Token Distribution,
Program Vocabulary Ranked by Program Length, and
Histogram of Operators and Operands

5.0 CONCLUSIONS

The data from the experiment is sufficient to draw some conclusions
about the behavior of the length estimator and the role of counting
rules in software science. The first group of questions that were
asked, pertain to the size dependence of the length estimator and the
log bases. The token distributions are suggested as the answer to the
size dependence questions. The counting rules effect the type of
distribution by either creating or eliminating rare and frequent tokens.

5.1 Percent Variation Of Length Estimator

In small programs, the length estimator over estimates the measured
length. The mathematical framework suggests if the token distribution
is closer to uniform, the length estimator will over estimate. This was
supported by the experiment.

In medium sized programs, the length estimator is accurate. The
length estimator derivation suggests if the token distributions are
equal, then the length estimator will be an accurate metric. If the
process generating the operand tokens is approached as a probability
model, then from the literature, it would appear that a Markov model is
appropriate. The mathematical framework, therefore, suggests the token
distribution be an inverse function. This is supported empirically.

In a large program, the estimator under estimates the length. The
choice of new operators becomes restricted to GOTO~s, subroutine CALL~s,
and I/O statements. If the program size is still growing, the typical
token encountered would be a frequent one. The mathematical framework
suggests when the frequency of a token is increased, and the number of
unique tokens is held constant, then the measured length will be greater
than the estimated length. Since the length estimator is accurate for

60

inverse distributions, the distribution may be approaching inverse
squared. This is supported by the experiment.

The role that counting rules have in the token distribution, is the
choice of creating frequent, less frequent, and rare tokens. The Purdue
counting rule allows the existence of the rare tokens: GOTO-Label, I/0,
and CALL-Label. This allows the set of operators to grow, thus keeping
the slope of the distribution closer to inverse in the large case. The
SAP/H counting rule only allows the rare token CALL-Label. The set of
operators is restricted in its growth to frequent types and few rare
types. The extreme number of frequent types force the token
distribution slope much less than -i. It would appear that the SAP/H
counting rule has a operator distribution slightly closer to the inverse
squared, than the Purdue counting rule. Both counting rule operand
distributions approach the inverse.

It may be concluded that the counting rule may alter the token
distribution of large programs to the point where the operator token
distributions are inverse. However, for cases where the program is
small, the length estimator will probably always over estimate the
length. The net result is: No change in counting rules will correct
the anomalies observed in the length estimator.

The operand distribution curves show a great deal of variance
compared to the operator distributions. When there is at least one
distribution with a high variance, the estimator will have a high
variance. The variance is possibly due to the open ended selection of
unique operands. For very large programs, the operand distribution
begins to look like a classic Zipf distribution. As in any statistical
process, until the number of samples becomes large, the variance will be
high. This implies the variance will never be reduced due to counting
rule changes.

5.2 Log Base

The log base data was consistent with the prior analysis. When the
token distribution is between uniform and inverse the log base is
greater than two. When the token distribution has a steeper curve than
inverse (approaching inverse squared) the log base will be below two.
The log base length dependancy is the best indication that the token
distribution is not a constant inverse as assumed by Halstead.

5.3 Structured Software

The question about screening software for structured and
unstructured code was answered with a qualified yes. The counting rules
could be setup to penalize the existence of tokens corresponding to
unstructured code, if the definition of structured code is correct. A
counting rule that counts each GOTO-Label, CALL-Label, and I/O as a new
operators will see a growing set of tokens for unstructured code. It is

61

possible to setup a counting rule that will produce a constant set of
operators for structured and unstructured code.

5.4 Role Of Probability Models In Software Science

The d i s t r i b u t i o n s o f o p e r a t o r and ope rand t o k e n s make an
i n t e r e s t i n g p o i n t a b o u t t h e s o f t w a r e g e n e r a t i o n p r o c e s s and p r o b a b i l i t y
m o d e l s . The s o f t w a r e g e n e r a t i o n p r o c e s s i s v e r y c o m p l i c a t e d , and a
model t h a t a t t e m p t s t o p r e d i c t e v e r y p e r f o r m a n c e o f t h e p r o c e s s w i l l
likely be inaccurate, due to the many variables, and unobserved facets
of the problem. However, as in many language problems the process does
seem to approach a consistent behavior as the program grows very large.
This type of behavior can be modeled by a Markov process. If the
counting rules are slanted, so that they favor a probability process
rather than a psychological process, then for large programs, consistent
performance of the metric might be observed. Counting rules based on
cause and effect of a process must face the burden of proving the cause
is correct. When a process that may be caused by a set of conditions is
indistinguishable from a random process, then causality is difficult to
prove. If a probability process is assumed, then a calculation of
expected variance becomes possible. In addition, a framework which
allows expansion for new metrics becomes possible. Unless a clear
picture of the underlying process for software science is found, the
only foundation that can be supported empirically is based on
probability.

82

6.0 LENGTH ESTIMATOR PERFORMANCE

GE Software - Purdue Counting Rules - 870 Data Points Read

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR

BO ffi 57.92957 +- 5.608710

BI ffi 0.8141532 +- 1.0185177E-02

BO ffi 57.92957 +- 7.200943

BI = 0.8141532 +- 1.3076604E-02

BO = 57.92957 +- 8.583219

BI - 0.8141532 +- 1.5586756E-02

FVALUE ffi 10510.12 FOR 868.0000

XBAR = 308.4218 YBAR = 309.0322

RXY = 0.9610977 S = 106.8603

80 % CONF LIM

80 % CONF LIM

90 % CONF LIM

90 % CONF LIM

95 % CONF LIM

95 % CONF LIM

DEGREES OF FREEDOM

IMSL Data file - Purdue Counting Rules - 569 Data Points Read

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR

BO ffi 79.36093 +-- 20.56283

BI = 0.6396490 +- 2.8854221E-02

BO = 79.36093 4-- 26.40457

BI = 0.6396490 +- 3.7051491E-02

B0 ffi 79.36093 4-- 31.47876

BI = 0.6396490 +- 4.4171702E-02

FVALUE = 808.9830 FOR 567.0000

XBAR = 493.3111 YBAR ffi 394.9069

RXY = 0.7667642 S = 275.8971

80 % CONF LIM

80 % CONF LIM

90 % CONF LIM

90 % CONF LIM

95 % CONP LIM

95 % CONF LIM

DEGREES OF FREEDOM

63

GE Software - SAP/H Counting Rules - 864 Data Points Read

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR

B0 = 38.94392 +- 5.100722 80 % CONF LIM

BI = 0.7810361 +- 1.1587721E-02 80 % CONF LIM

B0 = 38.94392 4-- 6.548766 90 % CONF LIM

BI ffi 0.7810361 +- 1.4877360E-02 90 % CONF LIM

B0 ffi 38.94392 +- 7.805895 95 % CONF LIM

BI ffi 0.7810361 +- 1.7733281E-02 95 % CONF LIM

FVALUE ffi 7472.798 FOR 862.0000 DEGREES OF FREEDOM

XBARffi 250.2662 YBAR ffi 234.4109

RXY ffi 0.9468743 S ffi 96.16884

IMSL Data file - SAP/H Counting Rules - 556 Data Points Read

REGRESSION ANALYSIS FOR LENGTH VS LENGTH ESTIMATOR

B0 = 101.6805 +-- 6.994767

BI = 0.5058271 +- 9.1956351E-03

BO = 101.6805 +- 8.982014

BI ~ 0.5058271 +- 1.1808158E-02

B0 ~ 101.6805 +- 10.70823

BI ffi 0.5058271 +- 1.4077513E-02

FVALUE ffi 4981.300 FOR 554.0000

XBAR ffi 506.0863 YBAR ffi 357.6727

RXY = 0 . 9 4 8 6 3 7 0 S ffi 9 5 . 9 6 6 9 0

80 % CONF LIM

80 % CONF LIM

90 % CONF LIM

90 % CONF LIM

95 % CONF LIM

95 % CONF LIM

DEGREES OF FREEDOM

64

7.0 COUNTING RULE COMPARISONS

COUNTING RULE COMPARISONS

FORTRAN-IV element
ACCEPT
BACKSPACE
CALL

DATA

DO

END
ENDFILE
GOTO LABEL

GOTO(),VAR
IF()STATEMENT

IF()LABEL,LABEL,LABEL

PRINT
READ
RETURN
REWIND
STOP
TYPE
WRITE
VarzExpression

Comma (,)

()

+ - , I **
Logical Operators
END OF STATEMENT
Function Calls

"LITERAL STRINGS"
Subscripts
Variables

I/0 Variables

PURDUE COUNTING RULE
Counted
Counted
Counted paired with
routine name
Counted

Counted

Not Counted
Counted
Counted As GOTO Lable

Counted
Counted, () seperate

Counted, each lable is
a seperate GOTO lable
Counted
Counted
Counted
Counted
Counted
Counted
Counted
Evaluated and counted

Counted

Counted~ when in
counted statement
Counted, when in
counted statement
Counted
Counted
Counted
Counted as operators
and operands

Counted as operands
Counted
Counted as operands

Counted

SAP/H RULE
Not Counted
Not Counted
Counted same as
Purdue rule
Not Counted
Counted, Paired
with =,~
Not Counted

Not Counted
Counted as GOTO
Label is operand
Counted
Counted~ grouped
with ()
Counted as IF()
Labels not counted
Not Counted
Not Counted
Not Counted
Not Counted
Not Counted
Not Counted
Not Counted
Evaluated and
counted
Counted, except
from DO
Counted, when in
counted statement
Counted, from
arithmetic express.
Counted
Counted
Counted
Counted as operators
when used in arith
statements, else
as operands
Not Counted
Not Counted
Counted as operands
if in counted
statements.
Not Counted

65

8.0 BIBLIOGRAPHY

BIBLIOGRAPHY

[l]Christensen, K.,Fitsos, G. P., and Smith, C. P.,"A Perspective on
Software Science", IBM Systems Journal, Vol 20, No.4, 1981.

[2]Draper, N., and Smith, H., Applied Regression Analysis, Wiley
Interscience, 1966.

[3]Elshoff, J. L., Studies of Software Physics using PL/I Computer
Programs, General Motors Research Publication GMR-2444. June 1977.

[4]Elshoff, J. L., Measuring Commercial PL/I Programs using Halstead's
Criteria, General Motors Research Publication GMR-2012, Nov 1975.

[5]Fitsos, G. P., Software Science Counting Rules and
Methodology, IBM Technical Report TR 03.075, September 1979.

Tuning

[6]Fitsos, G. P., Vocabulary Effects in Software Science, IBM Technical
Report TR 03.082, Jan 1980.

[7]Fitzsimmons, A., Love, T., A Review and Evaluation of Software
Science, Computing Surveys, Vol.lO, No.i, March 1978, pp. 3-18.

[8]Halstead, M. H., Elements of Software Science, American Elsevier,
1977.

[9]Halstead, M. H., Advances in Software Science,
Computers, Vol. 18, 1980, Academic Press.

Advances in

[i0] Halstead, M.H., and Rudolf Bayer. Algorithm Dynamics, Proceedings
of ACM Annual Conference, Atlanta, Aug. 1973. pp.126-135.

[ll]Halstead, M. H., Gordon, R. D., Elshoff, J. L., On Software
Physics and GM's PL/I Programs, General Motors Research Publication
GMR-2175, June 1976.

[12]Halstead, M. H., Zweben, S. H., The Frequency Distribution of
Operators in PL/I Programs, IEEE Trans on S/W Eng., VoI.SE-3, No.2,
March 1979, p91-95.

[13]Hamer, P.G., Frewin, G. D., M. H. Halstead's Software Science - A

Critical Examination, ITT Technical Report No. STL 1341, July 1981.

[14]Gordon, R. D.,Measuring Improvements In Program Clarity, IEEE
Trans. On S/W Eng., Vol.SE-5, No.-2, March 1979.pp. 79-90.

[15]Johnston, D. B. and Lister, A. M.,(1979), "An Experiment in
Computer Science", Proceedings of the Symposium on Language Design and
Progamming Methodology, Sydney, 10-11 Sept. 1979; in Lecture Notes in
Computer Science, Vol. 79, Springer-Verlag, 1980.

66

[16]Kavipurapu, K. M., Frailey, D. J., Quantification of Architectures
Using Software Science, Computer Architecture News, Oct 1979, No. i0,
p2-6.

[17]Kernighan, B. W., and Plauger, P. J., The Elements of Programing
Style, McGraw Hill, N.Y., 1974, p. 108.

[18]Magidin, M., Viso, E., On the Experiments in Algorithm Dynamics,
Technical Report, Dept of Math, Universidad Autonoma
Metropolitana-Iztapalapa, Mexico, Vol. i, No. 14., Oct 1976.

[19]Mohanty, S. N., Models and Measurements for Quality Assessment of
Software, Computing Surveys, Vol.ll, No.3, Sept 1979, pp. 251-275.

[20]Ottenstein, K. J., A Program to Count Operators and Operands for
ANSI-Fortran Modules. Technical Report 196, Computer Science
Department, Purdue University, June 1976.

[21]Smlth, C. P.,A Software Science Analysis of IBM Programming
Products, IBM Technical Report TR 03.081, Jan. 1980.

[22]Zlpf, G. K. Human Behavlour and the Principle of Least Effort.
Reading, M_A: Addlson-Wesley, 1949.

[23]Zweben, S. H., A Study of The Physical Structure of Algorithms,
IEEE Trans on S/W Eng, VoI.SE-3, NO.3, May 1979, pp. 250-258.

67

GRAPH 1 OPERATOR LOG BASE - FROH HALSTEAD/BAYER HODEL B

N

G
fl
l
T
U
D
[

LOG

BASE

1132

68

G E DATA BASE - PURDUE COUNTING RULES
~ e e o ? . S L

LENGTH eeee -" ~ ~ ; '~ OPERATOR

. ~ BASE , •
- ; ' . ,V , - -" " ; - ",~ : . - .

e ~ i ~ i i | J I J j J J I i m ' l w ' l i i i | i i w
i

o tooo L, ooo 3000 q tooo zooo m e

LENGTH LENGTH

PERCENT ' .~ ' " .~1 I" l" " : ° . . " " , . , ~ t ~ ~ :' -.'. I °~'~° r'-.:- 'L L,;I..I ESTTHATOR e ,;1~ - t ' , " ,," "
It N i l l

ERROR BASE

"~" ' ' " ' ' ' ' ' I ! ' ' ' ' I ' ' ' " 1 ' ' ' ' I
• t l e l Nee 21LND • lete leet lINle

LENGTH LENGTH

6 9

OPERATOR

INTERCEPT

(LOG SCALE)

l e '

$

o

G E DATA BASE - PURDUE COUNTING RULES

l u ~ ~$':..~..-.

I I I I I I I I T" I I I

1o

OPERAND
S

INTERCEPT

(LOG SCALE)

O

tO00 BOO0 300O

LENGTH

4

I ' I I I

I I N N I

• . . ;
. X . ~ -

.No •

I i 1 i

LENGTH

• : : , .
D v •

I i l ' i '

eOOO ~OeO

OPERATOR

SLOPE - 6

- 4

,.,..~ . : ~ " .~.,~'.~;:"~. ":"

i I I t

8 0 0 0

I I I I

LENGTH

'i i i i

OPERAND

SLOPE - i l

- 4 '

O

I I I I I 'l I I

I O N 00410 31000

LENGTH

7 0

G E DATA BASE - PURDUE COUNT]NG RULES

ET~I - ET~a U9 LENGTH

3OO

' i I

CO 20O ~ • ' ii 18
'1 ,,

I .

~ -

• • J at dSle
'1

Jl • J t ' ~

le te apa~8 n

toe • ;J • " " " fm imal m r e

• • • ; L ~ , ~ ' ~ ' ,

• 'a, .;,~_ I p ,.,,j."'~.m.
w • ~ tal 'lkD

, le, SmNa n
0 I I

• tOO 400 600 IJ0O t o m

0itlNEKD I ~ 1Ll~11g

71

So

G E DATA BASE - PURDUE COUNTING RULES

NUHBER
25

OF

HODUL ES

40

IS 60 76

UNIQUE OPERATORS

100 111; ISO S?S

NUHBER

OF ae

HODULES

S4 i m

UNIQUE OPERANDS

-72

