
ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol 4, No 2, April 1979 Page 1 7

**
* *
* REPORT ON FLORIDA TESTING WORKSHOP *
* Richard Hamlet *
* *
*************************************** *

Police investigators are said to be able to collect ten wildl y
different reports of what happened in an accident from any te n
bystanders . The Workshop on Software Testing and Test Documentatio n
(Ft . Lauderdale, December 18-20) was not an accident, and I was not a
bystander, but this report was requested after the Workshop ended--to o
late to listen more closely . Furthermore, my own bent is theoretical ,
so my testimony is suspect in any case . If you're still interested ,
Officer, put this on the blotter :

The Workshop was planned to provide maximum exposure to severa l
testing viewpoints .

	

(This meant minimum exposure to the Florida sun . I
confess to sneaking to the beach at the expense of a couple papers, bu t
it is a testimonial to the quality of the presentations that I was sorr y
afterward .) The Workshop was organized as a "single stream" with paper s
grouped under broad headings (Theoretical Aspects, Empirical Studies o f
Effectiveness, Test Documentation, Test Tools, Test Data Generation ,
Experience in Testing Large Systems, and New Approaches) . I was not th e
only one who ducked out occasionally, but there was remarkably little o f
the session-cutting so common at parallel-stream conferences . (I mean
cutting all sessions in parallel because the technical content is dilut e
to the point of zero concentration .) The single stream plan worked, an d
it deserves to be used more often . Credit for the design and
implementation belongs to Ed Miller, who managed to retain hi s
enthusiasm throughout, and worked tirelessly getting people together .

The usual dichotomy in program testing is between theory an d
practice . It is no longer so true that this divides people int o
academic and industry/government camps, because university researcher s
are beginning to be interested in problems of actual systems, an d
industry is acquiring more testing-research people .

	

(Government is a s
usual left with paying the bill, without much control over the results .)
The theory-practice split was evident at the Workshop, but exposure t o
the other side seemed more constructive than antagonistic . I think th e
theoreticians benefitted more, because they are looking for problems ,
while practicioners seek solutions . Here are some things I learned :

1) Not all theory comes from the usual sources . For example, a
method of test-data generation was presented that solves som e
theoretical problems, and arises from a novel hardware-software analogy .
The author was not only in industry, but primarily a manager .

2) Most of what is known about testing isn't being used, and thi s
is slow to change . However deplorable the state of the art may be ,
those with access to testing tools find them far better than nothing .
Yet nothing is what is available to most practicing programmers . Fo r
example, many compilers still lack source documentation aids lik e
identifier cross referencing, and syntactic checking of consistency i n
subroutine linkage . Most runtime support systems lack debuggin g
features like trace, monitor, and breakpoint . Anyone who has used such

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010763.1010766&domain=pdf&date_stamp=1979-04-01

ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, VOL 4, No 2, April .1979 Page 1 8

features quickly agrees that they are valuable, but how valuable ?
Should a contractor or user be willing to pay substantial sums for them ?
Perhaps, but no one wants to be first out on the limb . And a study tha t
might establish the value would be expensive and of doubtful validity . . .
If these arguments apply to the ten-year-old compiler technology, wha t
chance do less-established testing tools have of wide acceptance ?

3) There is a hierarchy of problems in testing, ordered by ho w
close we are to solutions . First, we have a fair understanding of uni t
testing of modules with clear specifications . (The essence of wha t
seems to work is to rub the programmer's nose in the code until he o r
she discovers all the bugs therein . There are a number of computer -
aided nose-rubbing systems that seem to work .) Second, at the level o f
integration testing we have little idea what to do, partly becaus e
specifications at this level are often poor, but also because th e
problem becomes too large for the expertise of one person, and nose -
rubbing fails . Finally, there is the "large system" which comprise s
many integrated subsystems, and may be imbedded in a yet-large r
mechanical and human system . Here the level of our understanding i s
reduced to building something, turning it on, and crossing our fingers .
At this level, test documentation becomes very important, and if testin g
is in sad shape, documentation is worse .

4) Standing outside the hierarchy of 3) is the theory of testing ,
which isn't yet able to explain even the unit level . And there is n o
reason to believe that the problem hierarchy is causally connected i n
that if we solve problems at one level it will lead to success at th e
next . Without a sound theory we cannot say . The idea of "path testing "
illustrates the situation admirably . There is no theoretica l
justification for this notion--a program can have every path tested an d
still contain errors . Yet path testing seems in practice to be a goo d
nose-rubbing tool, successful at the unit level . At integration leve l
the number of paths multiplies, and each loses significance . At th e
large-system level "paths" become "threads" through the functiona l
modules to meet various requirements ; the actual coverage of progra m
paths is sparse . And to display the confusion in theoretical ranks, a
theory session at the Workshop almost unanamously agreed that "pat h
testing is worthwhile . "

A special issue of the Transactions on Software Engineering i s
planned to include papers from the Workshop . It may be an injustice to
say that few major new results were presented--I did miss the final 1 5
minutes . But even if there were more problems on the floor tha n
solutions, I haven't enjoyed a conference for its technical content s o
much since back in the good old days of Theory of Computing, when al l
the papers were on context-free syntax, and it looked like we knew wha t
we were doing .

Department of Computer Science

	

Richard Hamle t
University of Maryland, College Park 20742

