ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol 4, No 2, April 1979 Page 17

. AAERKEEAARKAKRA AR AN A A A A A ARARA R E A Aok hdk
Shecloy * *
*# REPORT ON FLORIDA TESTING WORKSHOP *
* Richard Hamlet *
* *

khkhkrhhhhkhhkhkhhhhkhhhhhbhhhdkbhdddhrddrhdkkk

Police investigators are said to be able to collect ten wildly
different reports of what happened in an accident from any ten
bystanders. The Workshop on Software Testing and Test Documentation
(Ft. Lauderdale, December 18-20) was not an accident, and I was not a
bystander, but this report was requested after the Workshop ended-==too
late to listen more closely. Furthermore, my own bent is theoretical,
so my testimony is suspect in any case., If you're still interested,
Officer, put this on the blotter:

The Workshop was planned to provide maximum exposure to several
testing viewpoints. (This meant minimum exposure to the Florida sun. I
confess to sneaking to the beach at the expense of a couple papers, but
it is a testimonial to the quality of the presentations that I was sorry
afterward.) The Workshop was organized as a "single stream" with papers
grouped under broad headings (Theoretical Aspects, Empirical Studies of
Ef fectiveness, Test Documentation, Test Tools, Test Data Generation,
Experience in Testing Large Systems, and New Approaches). I was not the
only one who ducked out occasionally, but there was remarkably little of
the session-cutting so common at parallel-stieam conferences. (I mean
cutting all sessions in parallel because the technical content is dilute
to the point of zero concentration.) The single stream plan worked, and
it deserves to be used more often. Credit for the design and
implementation belongs to Ed Miller, who managed to retain his
enthusiasm throughout, and worked tirelessly getting people together.

The usual dichotomy in program testing is between theory and
practice. It is no longer so true that this divides people into
academic and industry/government camps, because university researchers
are beginning to be interested in problems of actual systems, and
industry is acquiring more testing-research people. (Government is as
usual left with paying the bill, without much control over the results.)
The theory-practice split was evident at the Workshop, but exposure to
the other side seemed more constructive than antagonistic. I think the
theoreticians benefitted more, because they are looking for problems,
while practicioners seek solutions., Here are some things I learned:

1) Not all theory comes from the usual sources. For example, a
method of test-data generation was presented that solves some
theoretical problems, and arises from a novel hardware-software analogy.
The author was not only in industry, but primarily a manager.

2) Most of what is known about testing isn't being used, and this
is slow to change. However deplorable the state of the art may be,
those with access to testing tools find them far better than nothing.
Yet nothing is what is available to most practicing programmers. For
example, many compilers still lack source documentation aids like
identifier cross referencing, and syntactic checking of consistency in
subroutine linkage. Most runtime support systems lack debugging
features like trace, monitor, and breakpoint. Anyone who has used such


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010763.1010766&domain=pdf&date_stamp=1979-04-01

ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, VOL 4, No 2, April 1979 Page 18

features quickly agrees that they are valuable, but how valuable?

Should a contractor or user be willing to pay substantial sums for them?
Perhaps, but no one wants to be first out on the limb. And a study that
might establish the value would be expensive and of doubtful validity...
If these arguments apply to the ten-year-o0ld compiler technology, what
chance do less—-established testing tools have of wide acceptance?

3) There is a hierarchy of problems in testing, ordered by how
close we are to solutions. First, we have a fair understanding of unit
testing of modules with clear specifications. (The essence of what
seems to work is to rub the programmer's nose in the code until he or
she discovers all the bugs therein. There are a number of computer-
aided nose-rubbing systems that seem to work.) Second, at the level of
integration testing we have little idea what to do, partly because
specifications at this level are often poor, but also because the
problem becomes too large for the expertise of one person, and nose-
rubbing fails, Finally, there is the "large system" which comprises
many integrated subsystems, and may be imbedded in a yet-larger
mechanical and human system. Here the level of our understanding is
reduced to building something, turning it on, and crossing our fingers.
At this level, test documentation becomes very important, and if testing
is in sad shape, documentation is worse,

4) Standing outside the hierarchy of 3) is the theory of testing,
which isn't yet able to explain even the unit level. And there is no
reason to believe that the problem hierarchy is causally connected in
that if we solve problems at one level it will lead to success at the
next. Without a sound theory we cannot say. The idea of "path testing"
illustrates the situation admirably. There is no theoretical
justification for this notion--a program can have every path tested and
still contain errors. Yet path testing seems in practice to be a good
nose-rubbing tool, successful at the unit level, At integration level
the number of paths multiplies, and each loses significance. At the
large-system level "paths" become "threads" through the functional
modules to meet various requirements; the actual coverage of program
paths is sparse. And to display the confusion in theoretical ranks, a
theory session at the Workshop almost unanamously agreed that "path
testing is worthwhile.,"

A special issue of the Transactions on Software Engineering is
planned to include papers from the Workshop. It may be an injustice to
say that few major new results were presented--I did miss the final 15
minutes, But even if there were more problems on the floor than
solutions, I haven't enjoyed a conference for its technical content so
much since back in the good o0ld days of Theory of Computing, when all
the papers were on context-free syntax, and it looked like we Kknew what
we were doing,

Department of Computer Science Richard Hamlet
University of Maryland, College Park 20742



