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Abs t rac t  

We call the older hierarchical and network 
systems first generation datftha~ systems and 
refer to the current collection of relmional systems 
as the second generation. In this paper we con- 
sider the characteristics that must be ~ri~fied by 
the next generation of data managexs, which we 
call third generation database systems. 

Our requirements are collected into three 
ba~iq tenets along with 13 more detailed proposi- 
lions. 

I .  I N T R O D U C T I O N  

The network and hierarchical database sys- 
tems that were prevalent in the 1970"s are aptly 
cJ~s-~ified as first generation database systems 
because they were the first systems to offer sub- 
stanfial DBMS function in a unified system with a 
data definition and data manipulation language for 
collections of records, z CODASYL systems 
[CODA71] and IMS [DATE86] typify such first 
generation systems. 

In the 1980's first generation systems weae 
largely supplanted by the current collection of rela- 
tional DBMSs which we term second generation 
database systems. These are widely befieved to be 
a substantial step forward for many applications 
over first generation systems because of their use 
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of a non-procedural ~at~ manipulation language 
and their provision of a substantial degree of data 
independence. Second generation systems are 
typified by DB2, INGRES, NON-STOP SQL, 
ORACr.r~ and Rdb/VMS) 

However, second generation systems were 
focused on business data processing applications, 
and many researchers have pointed out that they 
are ina_d_~luate fer a broader class of applications. 
Computer aided design (CAD), computer aided 
software engineering (CASE) and hypertext appli- 
cations are often singled out as examples that 
could effectively utilize a different kind of DBMS 
with spew6aliT~d capabilities. Consider, fer exam- 
pie, a publishing application in which a client 
wishes to arrange the layout of a newspaper and 
then print it. This application requires storing text 
segments, graphics, icons, and the myriad of other 
kinds of data elements found in most hypestext 
environments. Supporting such data elements is 
USnally difficult in second generation systems. 

However, critics o£ the relational model fail 
to realize a crucial fact. Second generation sys- 
terns do not support most business data processing 
applications all that well. For example, consider an 
insurance appfication that processes claims. This 
application requires traditional data elements such 
as the name and coverage of each person insured. 
However, it is desirable to store images of photo- 
graphs of the event to which a claim is related as 
well as a facsimile of the original hand-written 
claim form. Such data elements are also difficult 
to store in second generation DBMSs. Moreover, 
all information related to a specific claim is aggre- 
gated into a folder which contains traditional data 
images and perhaps procedural data as well. A 
folder is often very complex and makes the data 
elements and aggregates of CAD and CASE sys- 
tems seem fairly routine by comparison. 

Thus, almost everybody requires a better 
DBMS, and there have been several efforts to con- 
street prototypes with advanced function. More- 
over, most current DBMS vendors are working on 
major functional enhancements of their second 
generation DBMSs. There is a surprising degree 
of consensus on the desired capabilities of these 
next-generation systems, which we term third 
generation database systems. In this paper, we 
present the three basic tenets that should guide the 
development of third generation systems. In 
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addition, we indicate 13 propositions which dis- 
cuss more detailed reqttimments for such systems. 
Our paper should be contrasted with those of 
[ATKI89, KIMg0, ZDON90] which suggest dif- 
ferent sets of tenets. 

2. T H E  TENETS OF THIRD - 
G E N E R A T I O N  DBMSs 

The first tenet deals with the definition of 
third generation DBMSs. 

TENET 1: Besides traditional data 
management services, third generation 
DBMSs will provide support for richer 
object structures and rule& 

Dam management characterizes the things that 
cuzrent relational systems do well, such as process- 
ing 100 transm:tions per second from 1000 on-line 
terminaLs and efficiently executing six way joins. 
Richer object slructures characterize the capabili- 
ties required to store and manipulate non- 
traditional data elements such as text and spatial 
d~m In addition, an application designe~ should 
be- given the capability of specifying a set of rules 
about dam elements, records and coil~ctions. 4 

Refenrential integrity in a relational conmxt is one 
simple example of such a rule; however, there are 
many more complex ones. 

We now consider two simple examples that 
illnstrate this tenet. Return to the newspaper appfi- 
cation described earlier. It contains many non- 
traditional dam elements such as text, icons, maps, 
and. advertisement copy; hence richer object struc- 
tures are clearly required. Furthermore, consider 
the classified advertisements for the paper. 
Besides the text for the advertisement, there are a 
collection of bnsiness data processing data ele- 
ments, such as the rote, the number of days the 
advertisement will run, the classification, the bil- 
ling address, etc. Any automatic newspaper layout 
program requires access to this data to decide 
whether to place any particular advertisement in 
the current newspaper. Moreover, selling classified 
advertisements in a large newspaper is a standard 
transaction processing application which requires 
traditional data managemcm services. In addition, 
there are many rules that control the layout of a 
newspaper. For example, one cannot put an adver- 
tisement for Macy's on the same page as an adver- 
tisement for Nordstrom. The move toward semi- 

the p~vions footnom for definitions of these teams. 

automatic or automatic layout requires capturing 
and then enforcing such rules. As a result there is 
need for rule management in our example applica- 
tion as welL 

Consider next our insurance example,. As 
noted earlier, the~ is the requirement for storing 
nou-traditional dnm elements such as photographs 
and. clnims. Moreover, making clmges to the 
insurance coverage for ensmmers is a standard 
transaction processing application. In addition, an 
insurance application requires a large collection of 
rulea such as 

Cancel the eoveaage of any customer who 
has had a claim of type Y overvalue X. 
K_~sh,~ any claim that is more than 
N days old. 

We have brietiy considered two appfications 
and demonslrn~ted that a DBMS must have cl~t~; 
object and rules services to successfully solve ~ch 
problem. Although it is certainly possible that 
niche rnaxkets will be available to systems with 
lesser capabilities, the successful DBMSs of the 
90's win have services in all three areas. 

We now turn to our second fundamental 
tenet. 

TENET 2: Third generation DBMSs 
must sulmme second generation 
DBMSs. 

Put diffc~e~dy, second generation systems made a 
major contribution in two areas: 

non-In~cedtwal access 
data independence 

and these advances must not be compromised by 
third genermion systems. 

Some argue that there are applications which 
never wish to run queries because of the simpficity 
of their DBMS accesses. CAD is often suggested 
as an example with this characteristic [CHAN89]. 
Theaefore, some suggest that future systems will 
not require a query language and consequently do 
not need to subsume second generation systems. 
Several of the authors of this paper have talked to 
numerous CAD a~lication designers with an 
interest in ¢l~tabases, and all have specified a query 
language as a necessity. For example, consider a 
mechanical CAD system which stores the parts 
which compose a product such as an automobile. 
Along with the spatial geometry of each part, a 
CAD system must store a collection of attribute 
dam; such as the cost of the part, the color of the 
part, the mean time to failure, the suppfier of the 
part, etc. CAD appfications require a query 
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language to specify ad-hoc queries on the attribute 
data such as: 

How much does the cost of my automobile 
increase ff supplier X raises his 
prices by Y percent? 

Consequently, we are led to a query language as an 
absolute requirement. 

The second advance of second generation 
systems was the notion of data independence. In 
the area of physical a~ta independence, second 
generation systems automatically maintain the 
cnnsisteney of all access paths to dam and a query 
optimizer automatically chooses the best way to 
execute any given user command. In addition, 
second generation systems provide views whereby 
a user can be insulated from changes to the undex- 
lying set of collections stored in the aatabuse. 
These characteristics have dramatically lowered 
the amount of program maintenance that must be 
done by applications and should not be abandoned. 

Tenet 3 discusses the final philosophical 
premise which must guide third, genezation 
DBMSs. 

TENET 3: Third generation DBMSs 
must be open to other sebsystem~ 

Stated in different terms, any DBMS which 
expects broad appficability must have a fourth gen- 
eration language (4GL), various decision support 
t~ls ,  friendly access from many programming 
languages, friendly access to popular subsystems 
such as LOTUS 1-2-3, interfaces to business 
graphics packages, the ability to run the applica- 
tion on a different machine from the database, and 
a distributed DBMS. All tools and the DBMS 
must run effectively on a wide variety of hardware 
platforms and operating systems. 

This fact has two implications. F'wst, any 
successful third generation system must support 
most of the tools described above. Second, a third 
generation DBMS must be open, i.e. it must allow 
access from additional tools running in a variety of 
environments. Moreover, each third generation 
system must be willing to participate with other 
third generation DBMSs in future distributed data- 
base systems. 

These three tenets lead to a variety of more 
detailed propositions on which we now focus. 

3. T H E  T H I R T E E N  PROPOSITIONS 

There are three groups of detailed proposi- 
tions which we feel must be followed by the 

successful third generation database systems of the 
1990s. The first group discusses propositions 
which result from Tenet 1 and refine the require- 
merits of object and rule management. The second 
group contains a collection of propositions which 
follow from the requirement that third generation 
DBMSs subsume second generation ones. F'mally, 
we neat propositions which result from the 
requirement that a third generation system be open. 

3.1. Propositions Concerning Object and  
Rule Management 

DBMSs cannot possibly anticipate all the 
kinds of data elements that an appfication might 
want. Most people think, for example, that lime is 
measured in seconds and days. However, all 
months have 30 days in bond trr~ding applications, 
the day ends at 15:30 for most banks, and "yester- 
day" skips over weekends and holidays for stock 
tam'lint applications. Hence, it is imperative that a 
third generation DBMS manage a diversity of 
objects and we have 4 propositions that deal. with 
object management and consider type constructors, 
inheritance, functions and unique identifiers. 

PROPOSITION 1.1: A third genera- 
tion DBMS must have a rich type sys- 
tem. 

All of the following are desirable: 

1) an abstract dam type system to 
construct new base types 

2) an array type constructor 
3) a sequence type constructor 
4) a record type eonstractor 
5) a set type constructor 
6) functions as a type 
7) a union type constructor 
8) recursive composition of the 

above constructors 

The first mechanism allows one to construct new 
base types in addition to the standard integezs, 
floats and character strings avsilnhle in most sys- 
terns. These include bit strings, points, lines, com- 
plex numbers, etc. The second mechanism allows 
one to have arrays of data elements, such as found 
in many seientitic applications. Arrays normally 
have the property that a new element cannot be 
inserted into the middle of the away and cause all 
the subsequent members to have their position 
incremented. In some applications such as the 
lines of text in a document, one requires this inser- 
tion property, and the third type constructor sup- 
ports such sequences. The fourth mechanism 
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allows one to group data elements into records. 
Using this type constructor one could form, for 
example, a record of data items for a person who is 
one of  the "old guard" of a particular university. 
The fifth mechanism is required to form unordered 
collections of data elements or records. For exam- 
ple, the set type consmaetor is required to form the 
set of  all the old guard. We discuss the sixth 
mechanism, functions (methods) in Proposition 
1.3; hence, it is desirable to have a DBMS which 
naturally stores such constructs. The next mechan- 
ism allows one to construct a data element which 
can take a value from one of  several types. Exam- 
pies of  the utility of  this construct am presented in 
[COPE84]. The last mechanisrn Mlows type con- 
strutters to be recursively composed to support 
complex objects which have internal structure 
such as documents, spatial geometries, etc., More- 
over, there is no requirement that the last type con- 
struetor appfied be the one which forms sets, as is 
Irue for second generation systems. 

Besides implementing these type construe- 
mrs, a DBMS must also extend the underlying 
query language with appropriate constructs. Con- 
sider, for example, the S~I.r~SPERSON collection, 
in which each salesperson has a name and a quota 
which is an array of  12 integePs. In this ease; one 
would, like to be able to request the names of 
salespersons with April quotas over $5000 as fol- 
lows:. 

select name 
fzom s~r.r tSPERSON 
where quota[4] > 5000 

Consequently, the query language must be 
extended with syntax for addressing into arrays. 
Prototype syntax for a variety of type coustrucmrs 
is contained in [CARE88]. 

The utility of  these type constructors is well 
understood by DBMS clients who have d~m to 
store with a richer structure. Moreover, such type 
constructors will also make it easier to implement 
the persistent programming languages discussed in 
Imposition 3.2. Furthermore, as f ine unfolds it is 
certainly possible that additional type constructors 
may become desirable. For example, transaction 
processing systems manage queues of messages 
[BERN90]. Hence, it may be desirable to have a 
type constructor which forms queues. 

Second generation systems have few of 
these type constructors, and the advocates of 
Object-oriented Data Bases (OODB) claim that 
entirely new DBMSs must come into existence to 
support these features. In this regard, we wish to 
rake strong exception. There am prototypes that 
demouswate how to add many of the above type 

constructors to relational systems. For example, 
[STON83] shows how to add sequences of records 
to a relational system, [ZANI83] and [DADA86] 
indicate how to construct certain complex objects, 
and [OSBO86, STON86] show how to include an 
ADT system. We claim that all these type con- 
stmetors can be added to relational systems as 
~mral enhancements and that the technology is 
relatively well understood.5 Moreover, commercial 
relational systems with some of these features have 
already started to appear. 

Our second object management proposition 
concerns inheritance. 

PROPOSITION 1.2: Inheritance is a 
good idea. 

Much has been said about this construct, and we 
feel we can be very brief. Allowing types to be 
organized into an inheritance hierarchy is a good 
idea. Moreover, we feel that multiple inheritance 
is essential, so the inheritance hierarchy must be a 
directed graph. If only single inheritance is sup- 
ported, then we feel that there are too many situa- 
tions that cannot be adequately modeled. For 
example, consider a collection of instances of  
P I T O N .  There are two specializations of the 
PERSON type, namely STUDENT and 
EMPLOYEE. Lastly, there is a STUDENT 
EMPLOYEE, which should inherit from both 
STUDENT and EMPLOYEE. In each collection, 
data items appropriate to the collection would be 
specified when the collection was defined and oth- 
ers would be inherited from the parent collections. 
A diagram of this situation, which demands multi- 
ple inheritance, is indicated in Figure I. While 
[ATKI89] advocates inheritance, it lists multiple 
inheritance as an opdonal feature. 

Moreover, it is also desirable to have collec- 
tions which specify no additional fields. For exam- 
ple, TbTffNAGER might be a collection having the 
same ~ r a  elements as PERSON, but having a res- 
triction on ages. Again, there have been prototype 
demonstrations on how to add these features to 
relational systems, and we expect commercial rela- 
tional systems to move m this direction. 

Our third proposition concerns the inclusion 
of functions in a third generation DBMS. 

PROPOSITION 1.3: Functions, 

~One might argue that a relational system with all these 
can no longer be ectaxidered "relational", but that is 

not the point. The ~ is that such extma~ons a~ pmsible and 
qante namna. 
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I MPLO EEI 

A Typ/cal Muldple Inheritance I-I.ierarchy 
Figure 1 

including database procedures and 
methods, and encapsulation are a good 
idea. 

Second generation systems support functions and 
e.ncapsnlarlon in restricted ways. For example, the 
operations available for tables in SQL are imple- 
mented by the functions create, alter, and drop. 
Hence,, the table abstraction is only available by 
executing one of the above functions. 

Obviously, the benefits of encapsulation 
should be made available to application designers 
so they can associate functions with usa collec- 
tions. For example, the functions 
HmE~..MPLOYEr:~3, ~t~.aVtPLOY~3 and 
RAISE-SAL(EMPLOYEE) should be associated 
with the familinr EMPLOYEE collectioll. If users 
ate not allowed direct access to the EMPLOYEE 
coUection but are given these functions instead, 
then all knowledge of the internal structure of the 
EMPLOYEE collection is eneap~lla)ed within 
these functions. 

Encapsnlntion has administrative advantages 
by encouraging mod-lm-ity and by registering 
functions along with the data they encapsulate. If 
the EMPLOYEE collection changes in such a way 
that its previons contents cannot be defined as a 
view, then all the code which must be changed is 
localized in one place, and will therefore be easier 
to change. 

Encapsulation often has performance advan- 
tages in a protected or distributed system. For 
example, the function HIRE(EMPLOYEE) may 
nmk~ a number of accesses to the cl~tnl3ase while 
executing. If it is specified as a function to be exe- 
cuted internally by the data manage, then only one 
round uqp message between the appfication and the 
DBMS is executed. On the other hand, ff the func- 
tion runs in the usc~" program then one round 
message will be executed for each access. Moving 
functions inside the DBMS has been ~own to 
improve performance on the popular Dcbk..Credit 
benchmark [ANON85]. 

LasOy, such functions can be inherited and 
possibly overridden down the inheritance hierar- 
chy. Therefore,. the function HE(EMPLOYEE) 
can aatommieally be applied to the STUDENT 
EMPLOYEE collection. With overriding, the 
implemcntadon of the function HIRE can be 
rewritten for the for the STUDENT EMPLOYEE 
collection. In summary, encapsulated functions 
have pcrfonnance and structuring benetits and are 
highly desirable. However, the:re am three com- 
ments which we must maim concerning functions. 

First, we feel that users should write func- 
tions in a higher level language (tn'.L) and obtain 
DBMS access through a high-level non-Irmcedural 
access language. This language may be available 
through an embedding via a prelxocessor or 
through direct extension of the tTI.L itself. Put dif- 
fe=ently, functions should run queries and not per- 
form their own navigation -sing calls to some 
lower level DBMS interface. Proposition 2.1 will 
discuss the undesirability of construoSng user pro- 
grams with low-level data access interfaces, and 
the same discussion applies equally to the con- 
six.ion of functions. 

There are occasional requirements for a 
function to directly access internal interfaces of a 
DBMS. This will require violating our admonition 
above about only accessing the database ammgh 
the query language, and an example of such a 
function is presented in [STONg0]. Consequently, 
direct access to system internals should probably 
be an allowable but highly discouraged (!) way to 
write functions. 

Our second comment concerns the notion of 
opaque types. Some OODB enthusiasts claim that 
the only way that a user shonld be able to access a 
collection is to execute some function available for 
the collection. For example, the only way to 
access the EMPLOYEE collection would be to 
execute a function such as HIRE(EMPLOYEE). 
Such a restriction ignores the needs of the query 
language whose execution engine requires access 
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to each data element directly. Consider, for exam- 
pie: 

select * 
fxom EMPLOYEE 
where ,~lary > I0000 

To solve this query, the execution engine must 
have direct access to the salary data elements and 
any auxiliary access paths (indexes) available for 
them. Therefore, we believe that a mechanism is 
required to makes types transparent, so that data 
elements inside them can be accessed through the 
query language. It is possible that this can be 
accomplished through an automaticaUy defined 
"accesser" ftmetion for each data element or 
through some other means. An authorization sys- 
tem is obviously required to control access to the 
a~mbasc through the query language. 

Our" last comment concerns the commercial 
marketplace. All major vendors of second genera- 
tion DBMSs already support functions coded in a 

%- (usually the 4GL supported by the vendor) 
that can maka DBMS c.nilg in SQL. Moreover, 
such functions can be used to encapsulate accesses 
m the data they manage. Hence, functions stored 
in the ci~mhase with DBMS calls in the query 
lang~Ee are already commonplace commercially. 
The work remainitag for the commercial relational 
vendors to support this proposition is to allow 
inheritance of functions. Again there have been 
severat prototypes which show that this is a rela- 
tively straightforward extension to a relational 
DBMS. Yet again, we see a clear path by which 
current relational systems can move towards saris- 
fying this proposition. 

Our last object management proposition 
deals with the automatic assignment of unique 
identifiers. 

PROPOSITION 1.4: Unique 
Identifiers (UIDs) for records should 
be as,signed by the DBMS only if a 
user-defined primary key is not avail- 
able. 

Second generation systems support the notion of a 
primary key, which is a user-assigned unique 
identifier. If a primary key exists for a collection 
that is known never to change, for example social 
security number, student registration number, or 
employee number, then no additional system- 
assigned UID is required. An immutable primary 
key has an extra advantage over a system-assigned 
unique identifier because it has a natural, human 
readable meaning. Consequently, in data inter- 
change or debugging this may be an advantage. 

ff no primary key is available for a collec- 
tion, then it is imperative that a system-assigned 
UID be provided. Because SQL supports update 
through a cursor, second generation systems must 
be able to update the last record retrieved, and this 
is only possible if it can be uniquely identified, ff 
no primary key serves this purpose, the system 
must include an extra UID. Therefore, several 
second generation systems already obey this pro- 
position. 

Moreover, as will be noted in Proposition 
2.3, some collections, e.g. views, do not neces- 
sarily have system assigned UIDs, so building a 
system that requires them is likely to be proven 
undezimble. We close our discussion on Tenet 1 
with a final proposition that deals with the notion 
of roles. 

PROPOSITION 1.5: Rules (triggers, 
constraints) will become a major 
feature in future systems. They should 
not be associated with a specific func- 
tion or collection. 

OODB researchers have generally ignored the 
importance of rules, in spite of the pioneering use 
of active azt~ values and daemons in some pro- 
gramming langnages utilizing object concepts. 
Wheat questioned about rules, most OODB 
entlm~i~ts either are silent or suggest that rules be 
implemented by including code to support them in 
one or more functions that operate on a collectiom 
For example, if one has a rule that every employee 
must earn a smaller ~ainry than his manager, then 
code appropriate to this constraint would be 
inserted into both the HIRE(EMPLOYEE) and the 
RAISE-SAL(EMPLOYEE) functions. 

There are two fundamental problems with 
assot.i~ting rules with functions. F'trst, whenever a 
new fanetion is added, such as PENSION- 
CttANGE(EMPLOYEE), then one must ensure 
that the function in turn calls RAISE- 
SAL(EMPLOYEE), or one must include code for 
the rule in the new function. There is no way to 
guarantee that a programmer does either; conse- 
quently, there is no way to guarantee rule enforce- 
merit. Moreover, code for the rule must be placed 
in at least two functions, HIRE(EMPLOYEE) and 
RAISE-SAL(EMPLOYEE). This requires dupli= 
cation of effort and will make changing the rule at 
some future time more difficult. 

Next, consider the following rule: 

Whenever Joe gets a calory adjustment, 
propagam the change to Sam. 

Under the OODB scheme, one must add 

36 S IGMOD RECORD,  Vol. 19, No. 3, September  1990 



appropriate code to both the HIRE and the 
RAISE-SAL functions. Now suppose a second 
rule is added: 

Whenever Sam gets a ~lary adjustment, 
propagate the change to Fred. 

This rule will require inserting additional code into 
the same functions. Moreover, since the two rules 
interact with each other, the writer of the code for 
the second rule must understand all the rules that 
appear in the function he is modifying so he can 
correctly deal with the interactions. The same 
problem arises when a rule is subsequently deleted. 

Lastly, it would be valuable if users could 
ask queries about the rules cuxrently being 
enforced. If they are buried in functions, there is 
no easy way m do this. 

In our opinion there is only one reasonable 
solution; rules must be enforced by the DBM$ but 
not bound to any function ~r coUection. This has 
two consequences. First, the OODB paradigm of 
"everything is expressed as a method" simply does 
not apply to rules. Second., one cannot directly 
access any internal interfaces in the DBMS below 
the rule activation code, which would allow a user 
to bypass the run m e  system that wakes up rules 
at.the correct time. 

In closing, there are already products from 
second generation commercial vendors which are 
faithful to the above proposition. Hence, the com- 
mercial relational, marketplace is ahead of OODB 
thinidng concerning this particnl~r proposition. 

3,2,  Proposi t ions Concerning Increasing 
DBMS Funct ion 

We claimed earlier that third generation sys- 
tems could not take a step backwards, i.e. they 
must subsume all the capabilities of second gen- 
eration systems. The capabilities of concern are 
query languages, the specification of sets of data 
elements and data independence. We have four 
propositions in this section that deal with these 
matters. 

PROPOSITION 2.1: Essentially all 
programatic access to a database 
should be through a non-procedural, 
high-level access language. 

Much of the OODB literature has underestimated 
the critical importance of high-level d~m access 
languages with expressive power equivalent to a 
relational query language. For example, [ATKI89] 
proposes that the DBMS offer an ad hoe query 

facility in any convenient form. We make a much 
stronger slatement: the expressive power of a 
query language must be present in every program- 
matie interface and it should be used for eessenri~lly 
all access to DBMS dam Long term, this service 
can be provided by adding query language con- 
structs to the multiple persistent programming 
languages that we discuss further in Proposition 
3.2, Short term, this service can be provided by 
embedding a query language in conventional pro- 
gramming Languages. 

Second generation systems have demon- 
strated that dramatically lower program mainte- 
nance costs result from using this approach relative 
to first generation systems. In our opinion, third 
generation database systems must not compromise 
this advance. By contrast, many OODB research- 
ors state that the appfications for which they are 
designing their systems wish to navigate to desired 
dam rising a low-level procedural interface. 
Speeitieally, they want an interface to a DBMS in 
which they can access a specific record. One or 
more data elements in this record would be of type 
"reference to a record in some other collection" 
typically represented by some sort of pointer to 
this other record, e.g an object identifier. Then, the 
application would dereference one of these 
pointers to establish a new current record. This 
process would be repeated until the application had 
navigated to the desired records. 

This navigational point of view is well arti- 
odmed in the Turing Award presentation by 
Charles Baclunan [BACH73]. We feel that the 
subsequent 17 years of history has demonstrated 
that this kind of interface is undesirable and should 
not be used. Here we summarize only two of the 
more important problems with navigation. First, 
when the programmer navigates to desired data in 
this fashion, he is replacing the function of the 
query optimizer by hand-coded lower level calls. 
It has been clearly demonstrated by Mstory that a 
well-written, weft-tuned, optimizer can almost 
always do better than a programmer can do by 
hand. Hence, the programmer will produce a pro- 
gram which has inferior performance. Moreover, 
the programmer must be considerably smarter to 
code against a more complex lower level interface. 

However, the real killer concerns schema 
evolution. If the number of indexes changes or the 
dam is rea~ganized to be differently clustered, 
there is no way for the navigation interface to 
automatically take advantage of such changes. 
Hence, if the physical access paths to d ma change, 
then a programmer must modify his program. On 
the other hand, a query optimizer simply produces 
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a new plan which is optimized for the new 
environment. Moreover, if there is a change in the 
collections that are physically stored, then the sup.. 
port for views prevalent in second generation sys- 
tems can be used to insulate the applicat/on from 
the change. To avoid these problems of schema 
evolution and required op "ttmization of database 
access in each program, a user should specify the 
set of  dat8 elements in which he is interested as a 
query in a non-procedural language. 

However, consider a user who is browsing 
database, i.e. navigating from one record to 

another. Such a user wishes to see all the records 
on any path through the database that he explores. 
Moreover, which path he examines next may 
depend on the composition of the cun~nt record. 
Such a user is clearly accessing a single record at a 
timz algorithraically. Our position on such users is 
straight-forward, namely they should run a 
sequence of queries that return a single record, 
St3ch as: 

select * 
from collection 
where collection.key = value 

Although there is little room for optimization of 
such queries, one is still, insulated, h'om required 
program maintenance in the event that the schema 
changes. One does not obtain this service if a 
lowclr level interface is used, such as: 

dereference (pointer) 

Moreover, we claim that our approach yields 
comparable performance to that available from a 
lower level interface. This perhaps counter- 
intultivo assertion deserves some explanation. The 
vast majority of current OODB enthnsiasts suggest 
that a pointer be soft, i.e. that its value not change 
even ff  the dam element that it points to is moved. 
This characteristic, location independence, is 
desirable because it allows data elements to be 
moved without compromising the structure of the 
anmhase. Such data element movement is often 
inevitable during database reorgartiTndon or during 
crash recovery. Therefcxe, OODB enthusiasts 
recommend that location independent unique 
identifiers be used for pointers. As a result, dere- 
ferencing a pointer requires an access to a hashed 
or indexed structure of unique identifiers. 

In the SQL representation, the pair: 

(relation-name, key) 

is exactly a location independent unique identifier 
which entails the same kind of hashed or indexed 
lookup. Any overhead associated with the SQL 
syntax will presumably be removed at compile 

lime. 

Therefore we claim that there is tittle, if any, 
perfo, mance benefit to using the lower level inter- 
face when a single data element is retained. On the 
other hand, if multiple data elements are returned 
then replacing a high level query with multiple 
lower level calls may degrade performance, 
because of the cost of those multiple calls fl'orn the 
appfication to the DBMS. 

The last claim that is often asserted by 
OODB enthusiasts is that programmers, e.g. CAD 
programmers, want to perform their own naviga- 
tion, and therefore, a system should encourage 
navigation with a low-level interface. We recog- 
nize that certain programmers probably prefer 
navigation. Theze were programmers who resisted 
the move from assembly language to higher level 
programming languages and others who resisted 
moving to relational systems because they would 
have a less complex matt to do and therefore a less 
interesting job. Moreover, they thought they could 
do a better job than compilers and optimizers. We 
feel that the arguments against naviLrafion are com- 
pelling and that some programmers simply require 
education. 

Therefore, we are led to conclude that essen- 
tially all DBMS access should be specified by 
queries in a non-procedural high-level access nota- 
tiom In Proposition 3.2 we will discuss issues of 
integrating such queries with current FILLs. Of 
course~ there are occasional situations with com- 
pelling reasons to access lower levels of the 
DBMS as noted in Proposition 1..3; however, this 
practice should be strongly discouraged. 

We now turn to a second topic for which we 
believe that a step backwards must also be 
avoided. Third generation systems will support a 
variety of type constructors for collections as noted 
in Proposition 1.1, and our next proposition deals 
with the specification of such collections, espe- 
cially collections which are sets. 

PROPOSITION 2.2: There should be 
at least two ways to specify collections, 
one using enumeration of members 
and one using the query language to 
specify membership. 

The OODB literature suggests specifying sets by 
enumerating the members of a set, typically by 
means of a linked list or array of identifiers for 
members £DEWI90]. We believe that this 
specification is generally an inferior choice. To 
explore our reasoning, consider the following 
example. 
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ALUMNI (name, age, address) 
GROUPS (g-name, composition) 

Here we have a collection of alumni for a paxtieu- 
lar university along with a collection of groups of 
alumni. Each group has a name, e.g. old guard, 
young turks, elders, etc. and the composition field 
indicates the ~lumni who are members of each of 
these groups. It is clearly possible to specify com- 
position as an array of pointers to qualifying 
alumni. However, this specification will be quite 
inefficient because the sets in this example are 
likely to be quite large and have substantial over- 
lap. More seriously, when a new person is added 
to the ALUMNI collection, it is the r~ponsibility 
of the application programmer to add the new lx~r- 
son to all the aOln'olriate groups. In other words, 
the various sets of alumni are specified extension-- 
ally by enumerating their members, and member- 
ship in any set is mammHy determined by the 
application programmer. 

On the other hand., it is also possible to 
represent GROUPS as follows: 

GROUPS(g-name, min-age, max-age, 
composition) 

Here, composition is specified inmnsionally by the 
following SQL expression: 

select* 
from ALUMNI 
wheat age > GROUPS.rain-age and 
age < GROUPS.max-age 

In this specification, there is one query for each 
group, paraneterized by the age requirement for 
the group. Not only is this a more compact 
specitieation for the various sets, but also it has the 
advantage that set membership is automatic. 
Hence, whenever a new altunnns is added to the 
database, he is automatically placed in the 
appropriate sets. Such sets are gusranmed to be 
semmtdeally consismnt. 

Besides assured consistency, there is one 
further advantage of automatic sets, namely they 
have a possible performance advantage over 
manual sets. Suppose the user asicx a query such 
as: 

select g-name 
ffi'om GROUPS 
where composition.name = "Bill" 

This query requests the groups in which Bill is a 
member and uses the "nested dot" notation popu- 
larized by GEM [ZANI83] to address into the 
members of a set. If an array of pointers 
spedfication is used for composition, the query 
optimizer may sequentially scan all records in 

GROUPS and then dereference eneh pointer look- 
ing for Bill. Alternately, it might look up the 
identifier for Bill, and then scan all composition 
fields looking for the identifier. On the other hand, 
if the intensional representation is used, then the 
above query can be transformed by the query 
OlYimi~,,r into: 

select g-name 
from GROUPS, ALUMNI 
where ALUMNI.name = ~Bill ~ 
and ALUMNI.age > GROUPS.rain-age 
and ALUMNI.age < GROUPS.max-age 

If there is an index on GROUPSanin-age or 
GROUPS.max-age and on ALUMNI.name, this 
query may substantially outperform either of the 
previous query plans. 

In summary, there are at least two ways to 
specify collections such as sets, arrays, sequences, 
eta. They can be specified eithea" extensionally 
through collections of pointers, or intensionally 
through expressions. Inteasional specification 
maintains automatic set membership [CODA71], 
which is desirable in most applications. Exten- 
sional specifications are desirable only when there 
is no structural connection between the set 
members or when automatic membership is not 
desired. 

Also with an inteasional specification, 
s~rn~n~c transformations can he perfcnmed by the 
optimizer, which is then free to use whatever 
aeee-ss path is best for a given query, rather than 
being limited in any way by poimtx structures. 
Hence, physical representation decisions can be 
delegated to the DBA where they belong. He can 
decide what access paths to maintain, such as 
linked lists or pointer arrays [CARE90]. 

Our point of view is that both representa- 
lions are required, and that intensional representa- 
tion should be favored. On the other hand, OODB 
enthusiasts typically recommend only extensional 
techniques. It should be pointed out that there was 
considerable attention dedicated in the mid 1970's 
to the advantages of automatic sets relative to 
manual sets [CODD74]. In order to avoid a step 
backwards, third generation systems must favor 
automatic sets. 

Our third proposition in this section con- 
terns views and their crucial role in clamhase 
applications. 

PROPOSITION 2.3: Updatable views 
are essential. 

We see very few static clamhases; rather, most are 
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dynamic and ever changing. In such a scenario, 
whenever the set of collections changes, then pro- 
gram maintenance may be required. Clearly, the 
encapsnlation of database access into functions 
and the encapsulation of functions with a single 
collection is a helpful step. This will allow the 
functions which must be changed to be easily 
identified. However, this solution, by itself, is 
i~apquate. If a change is made to the schema it 
may take weeks or even months to rewrite the 
affected functions. During this intervening time the 
database cannot simply be "down". Moreover, if 
changes occur rapidly, the resomres consumed 
may be unjustifiable. 

A clearly better aPIxOach is to support vir- 
mat collections (views). Second generation sys- 
tems were an advance over first generation systems 
in part because they provided some support in this 
area.. Unfortunately, it is often not possible to 
update relational views. Consequently, if a user 
performs a schema modification and then defines 
his previous collections as views, application pro- 
grams which previously ran may or may not con- 
tinu¢ to do so. Third generation systems will have 
to do a better job on updamble views. 

The traditional way to support view updates 
i~ tO perform command transformations along the 
lines of [STON75]. TO di~mbiguate view 
U l ~ t ~ ,  additional semantic information must be 
provided by the definer of the view. One approach 
is tO require that each collection be opaque which 
might become a view at a later time. In this case 
there + is a group of functions through which all 
accesses to the collection are funneled [ROWE79], 
and. the view definer must perform program 
mnintenance on each of these functions. This will 
entail substantial program maintenanccc as well as 
disallow updates through the query language. 
Alternately, it has been shown [STONg0B] that a 
suitable rules system can be used to provide the 
neeessary semantics. This approach has the advan- 
tage that only one (or a small number) of rules 
need be specified m provide view update seman- 
tics. This will be simpler than changing the code 
in a collection of functions. 

Notice that the members of a virn]~d collec- 
tion do not necessarily have a unique identifier 
because they do not physically eXiSL Hence, it 
will be difficult to require that each record in a col= 
lection have a unique identifier, as dictated in 
many cmrent OODB prototypes. 

Our last point is that data independence can- 
not be given up, which recquires that all physical 
detail~ must be hidden from application program- 
mers. 

PROPOSITION 2.4: Performance 
indicators have almost nothing to do 
with data models and must not appear 
in them. 

In general, the main determiners of perfor- 
mam~ using either the SQL or lower level 
specification are: 

the amount of performance tuning done 
on the DBMS 

the usage of compilation techniques by the DBMS 
the location of the buffer pool (in the client 
crDBMS address Space) 

the kind of indexing available 
the performance of the client-DBMS interface 
and the clustering that is performed. 

Such issues have nothing to do with the data model 
or with the usage of a higher level language like 
SQL veasus a lower level navi~tional interface. 
For example, the tactic of clustering related objects 
together has been higlfligSted as an important 
OODB feature. However, this tactic has been used 
by data base systems for many years, and is a cen- 
tral notion in most IMS access methods. Hence, it 
is a physical representation issue that has nothing 
to do with the data model of a DBMS. Simihrty, 
whether or not a system builds indexes on unique 
identiliers and buffe~s database records on a orient 

or even in user space of an application 
program are not data model issues. 

We have also talked to numerous program- 
mers who are doing non traditional problems such 
as CAD, and are convinced that they require a 
DBMS that will support their appfication which is 
optimized for their environment. Providing sub- 
second response time to an engineer adding a line 
to an engineering drawing may require one or 
more of the following: 

an access method for Spatial data such as 
R-trees, hb-trees or grid files 

a buffer pool on the engineer's workstation 
as opposed to a central server 

a buffer pool in Ms application program 
data buffered in screen format rather than 
DBMS format 

These are all performance issues for a 
workstation/server environment and have nothing 
to do with the data model or with the presence or 
absence of a navigational interface. 

For a given workload and aatahase, one 
should attempt to provide the best performance 
possible. Whether these tactics are a good idea 
depends on the specific application. Moreover, 
they are readily available to any database system. 
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3.3. Proposit ions that Result from the 
Necessi ty  o f  a n  Open System 

So far we have been discussing the charac- 
teristics of third generation DBMSs. We now turn 
to the Application Programmihg Interface (APD 
through which a user program will communicate 
with the DBMS. Our first proposition states the 
obvious. 

PROPOSITION 3.1: Third genera- 
tion DBMSs must be accessible from 
multiple I-ILLs. 

Some system designers claim that a DBMS should 
be tightly connected to a particular programming 
langrmge. For example, they suggest that a func- 
tion should yield the same result if it is executed in 
user space on transient data or inside the DBMS on 
persistent data. The only way this can happen is 
fortho execution model of the DBMS to be identi- 
cal. to that of the speeitic programming language. 
We believe that this approach is wrong. 

F'wst, there is no agreement on a single HLL. 
Applications will be coded in a variety of I-rr.Ls, 
and. we see no programming language Esperanto 
on the horizon. Consequently, appficarions will be 
written in a variety of programming languages, and 
a multi-lingual DBMS results. 

However, an open DBMS must be muiti- 
lingual for another reason. It must allow access 
from a variety of externally written application 
subsystems, e.g. Lotus 1-2-3. Such subsystems 
will be coded in a variety of programming 
langtmges, again requiring multi-lingual DBMS 
support. 

As a result., a third generation DBMS will be 
accessed by programs written in a variety of 
languages. This leads to the inevitable conclusion 
that the type system of the HLL will not neces- 
sarily match the type system of the DBMS. There- 
fore,, we are led to our next proposifiorL 

PROPOSITION 3..2: Persistent X for a 
variety of Xs is a good idea. They will 
all be supported on top of a single 
DBMS by compiler extensions and a 
(more or less) complex run time sys- 
tem. 

Second generation systems were interfaced to pro- 
gramming languages using a preprocessor partly 
because early DBMS developers did not have the 
cooperation of compiler developers. Moreover, 
there are certain advantages to keeping some 
indepenclence between the DBMS language and 

the programming language, for example the pro- 
gramming language and DBMS can be indepen- 
dently enhanced and tested. However, the result- 
ing interfaces were not very friendly and were 
characterized as early as 1977 as "like glueing an 
apple on a pancake". Also, vendors have tended to 
concentrate on elegant interfaces between their 
4GLs and database services. Obviously it is possi- 
ble to provide the same level of elegance for gen- 
eral propose programming languages. 

First, it is crucial to have a closer match 
between the type systems, which will be facilitated 
by Proposition 1.1. This is the main problem with 
current SQL embeddings, not the aesthetics of the 
SQL syntax. Second, it would then be nice to 
allow any variable in a asex's program to be 
optionally persistent. In this case, the value of 
any persistent variable is remembered even after 
the program terminates. There has been consider- 
able recent interest in such interfaces [LISK82, 
BUNE86]. 

In order to perform well, persistent X must 
maintain a cache of dnta elements and records in 
the program's address space, and then carefully 
tonnage the contents of this cache using some 
replacement algorithm. Consider a user who 
declares a persistent clam element and then incre- 
ments it 100 times.. With a user space cache, these 
updates will require small numbers of 
microseconds. Otherwise, 100 calls across a pro- 
tected boundary to the DMS will be required, and 
each one will require milliseconds. Hence, a user 
space cache will result in a performance improve- 
merit of 100 - 1000 for programs with high locality 
of refeaence to persistent dma_ The nl/l time system 
for persistent X must thczefore inspect the cache to 
see if any persistent element is present and fetch it 
into the cache ff not. Moreover, the run time sys- 
tem must also simulate any types present in X that 
are not present in the DBMS. 

As we noted cartier, functions should be 
coded by including calls to the DBMS expressed in 
the query language. Hence, persistent X also 
requires some way to express queries. Such 
queries can be expressed in a notation appropriate 
to the I-rLL in question, as illustrated for C++ by 
ODE [AGRA89]. The run-time system for the 
I-ILL must accept and process such queries and 
deriver the results back to the program. 

Such a run time system will be more (or 
less) difficult to build depending on the I-ILI. in 
question, how much simulation of types is 
required, and how far the query language available 
in the t-lIJ, deviates from the one available in the 
DBMS. A suitable run-time system can interface 
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many I-rLt.s to a DBMS. One of us has success- 
fully built persistent CLOS on top of POSTGRES 
using this approach [ROWEgO]. 

In summary, there will be a variety of per- 
sistent X's designed. Each requires compiler 
modifications unique to the language and a run 
dine System partiodar tO the I-ll.I.. All of these 
run time systems will connect to a common 
DBMS. The obvious question is "How should 
queries be expressed?" to this common DBMS. 
This leads to the next proposition, 

PROPOSITION 3.3: For better or 
worse,  SQL is intergalactic dataspeak. 

SQL is the universal way of expressing queries 
today. The early commercial OODB's did not 
recognize this fact, and had to retrofit an SQL 
query-system into their product. Unfortunately, 
some products did not manage to survive until they 
completed the job. Although SQL has a variety of 
welt known minor problems [DATE84], it is 
necessary for commercial viability. Any OODB 
which desires to make an impact in the market- 
place is likely to find that customers vote with their 
dollars for SQL. Moreover, SQL is a reasonable 
cand~dmm for the new functions suggested in this 
paper, and prototype syntax for several of the 
capabilities has been explored in [BEEC88, 
ANSI89]. Of course, additional query languages 
may be appropriate for specific applications or 
Flr.la 

Our last proposition concerns the architec- 
t:urc which should be followed when the applica- 
tion program is on one machine interfaced to a 
DBM$ on a second server machine. Since DBMS 
commands will be coded in some extended version 
of SQL, it is certainly possible to transmit SQL 
queries and receive the resulting records and/or 
completion messages. Moreover, a consortium of 
tool and DBMS venders, the SQL Access Group, 
is actively working to define and prototype an SQL 
remora data access facility. Such a facility will 
allow convenient interoperability between SQL 
tools and SQL DBMSs. Alternately, it is possible 
to communicate between client and server at some 
lower level interface. 

Our last proposition discusses this matter. 

PROPOSITON 3.4: Queries and their 
resulting answers should be the lowest 
level of communication between a 
cfient and a server. 

In an environment where a user has a dedicated 

workstation and is interacting with data at a remote 
server, there is a question concerning the protocol 
between the workstation and the server. OODB 
enthusiasts are debating whether requests should 
be for single records, single pages or some other 
mechanism. Our view is very simple: expressions 
in the query language should be the lowest level 
unit of communication. Of course, if a collection 
of queries can be packaged into a function, then 
the user can use a remote procedure call to cause 
function execution on the server. This feature is 
desirable because it will result in less than one 
message per query. 

If a lower level specitieation is used, such as 
page or record transfers, then the protocol is fnnda- 
mentally more difficult to specify because of the 
increased amount of state, and machine dependen- 
cies may creep in. Moreover, any interface at a 
lower level than that of SQL will be much less 
efficient as noted in [HAGM86, TAND88]. There- 
fcze, remote procedure calls and SQL queries pro- 
vide an appropriam level of interface technology. 

4.  SUMMARY 

There are many points upon which we agree 
with OODB enthn~i~t~ts and with [ATKI89]. They 
includz the benefits of a rich type system, func- 
tions, inheritance and encapsnflarion. However, 
them are many areas where we are in strong 
disagreement. Hrst, we see [ATKI89] as too nar- 
rowly focused on object management issues. By 
contrast, we address the much larger issue of pro.. 
riding solutions that support data, rule and object 
management with a complete toolkit, including 
integration of the DBMS and its query language 
into a mult-lingual environment. As such, we see 
the non-SQL, single language systems proposed by 
many OODB enthusiasts as appealing to a fairly 
narrow market. 

Second, we feel that DBMS access should 
onlu occur through a query language, and nearly 
20 years of history convinces us that this is correct. 
Physical naviganon by a user program and within 
functions should be avoided. Third, the use of 
automatic collections whenever possible should be 
encouraged, as they offer many advantages over 
explicitly maintained collections. Fourth, per- 
sistence may well be added to a variety of pro.. 
granuning languages. Because there is no pro- 
gramming language Esperanto, this should be 
accomplished by changing the compiler and writ- 
ing a language-specific run-time system to inter- 
face to a single DBMS. Therefore, persistent pro- 
gramming languages have little to do with the data 
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modeL FiRh, unique identifiers should be either 
user.defined or system-defined, in contrast to one 
of the tenets in [ATKI89]. 

However, perhaps the most important 
disagreement we have with much of the OODB 
community is that we see a natural evolution from 
current relational DBMSs to ones with the capabil- 
ities discussed in this paper. Systems from aggres- 
sive relational vendors are faithful to Tenets 1, 2 
and 3 and have good support for propositions 1.3, 
1.4, 1.5, 2.1, 2.3, 2.4, 3.1, 3.3 and 3.4. To become 
true third generation systems they must add inheri- 
tance, additional type constructors, and implement 
persistent programming languages. There have 
been prototype systems which point the way to 
incltt~ion of these capabilities. 

On the other hand, current systems that 
claim to be object-oriented generally are not faith- 
ful to any of our tenets and support propositions 
1.1 (partly), 1.2, 1.3 and 3.~ To become true third 
generation systems, they must add a query 
langrmge and query optimizer, a rules system, SQL 
client/server support, support for views, and per- 
sistmt programming languages. In addition, they 
must undo any hard coded requirement for UIDs 
and. discourage naviganon. Moreover, they must 
build 4th generation languages, support distributed 
databases, and tame their systems to perf~m 
efficient data management. 

Of course, there are significant research and 
development challenges to be overcome in satisfy- 
ing these propositions. The design of a persistent 
programming language for a variety of existing 
HLLs presents a unique challenge. The inclusion 

suda languages of pleasing query language con- 
streets is a further challenge. Moreover, both logi- 
cat and physical database design are considered 
challenging for current relational systems, and they 
will get much more difficult far systems with 
f i che  type systems and rules. Database design 
metlmdologies and tools will be required to assist 
users in this area. Optimization of the execution of 
rales poses a significant challenge. In addition, 
tools to allow users to visualize and debug rule- 
orienmd applications are crucial to the success of 

technology. We encourage the research com- 
munity to take on these issues. 
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