
T H I R D - G E N E R A T I O N DATABASE
S Y S T E M M A N I F E S T O

The Committee for Advanced DBMS Function 2

Abs t rac t

We call the older hierarchical and network
systems first generation datftha~ systems and
refer to the current collection of relmional systems
as the second generation. In this paper we con-
sider the characteristics that must be ~ri~fied by
the next generation of data managexs, which we
call third generation database systems.

Our requirements are collected into three
ba~iq tenets along with 13 more detailed proposi-
lions.

I . I N T R O D U C T I O N

The network and hierarchical database sys-
tems that were prevalent in the 1970"s are aptly
cJ~s-~ified as first generation database systems
because they were the first systems to offer sub-
stanfial DBMS function in a unified system with a
data definition and data manipulation language for
collections of records, z CODASYL systems
[CODA71] and IMS [DATE86] typify such first
generation systems.

In the 1980's first generation systems weae
largely supplanted by the current collection of rela-
tional DBMSs which we term second generation
database systems. These are widely befieved to be
a substantial step forward for many applications
over first generation systems because of their use

SThe commi~zee is composed of ~ StonWrake~ of
the Un/versity of Califorma, Berkeley, Lawrence A. Rowe of
the University of California, Berke.l~y, Bmc~ Lind.~ W of IBM

James Gray of Tmckma C.omputerJ, Michael CCa~y of
the University of Wisconsin. Michael Brodie of GTE Labora-
reties, philip Bcmstm of Digital Equiptlmnt Corporation, and
David Beech of Orade Corpormon.

To achieve broad expcemre this paper is being published in the
Unimd States m SIGMOD RECORD and in Era'opt in the
Prc~reeai_ngs of the IFIP TC2 Confermc~ on Object Oriented
D a m .

:2'ro discuss rd,~ional and. other systems without ccmfu-
don, we will use ncutra.l terms in this paper. Therefore, we
define a dam element as an atomic data vaine that is stored in
the ~t~l.,_~c. Every data elememt has a data type (or type for
sh~t), and clam d~nents can be assembled into a record which
iz a set of one or more named data dements. Lastly, a colle¢-
floral is a named set of ~cords, each with the same ntnnbcr and
type of dam d~aents.

of a non-procedural ~at~ manipulation language
and their provision of a substantial degree of data
independence. Second generation systems are
typified by DB2, INGRES, NON-STOP SQL,
ORACr.r~ and Rdb/VMS)

However, second generation systems were
focused on business data processing applications,
and many researchers have pointed out that they
are ina_d_~luate fer a broader class of applications.
Computer aided design (CAD), computer aided
software engineering (CASE) and hypertext appli-
cations are often singled out as examples that
could effectively utilize a different kind of DBMS
with spew6aliT~d capabilities. Consider, fer exam-
pie, a publishing application in which a client
wishes to arrange the layout of a newspaper and
then print it. This application requires storing text
segments, graphics, icons, and the myriad of other
kinds of data elements found in most hypestext
environments. Supporting such data elements is
USnally difficult in second generation systems.

However, critics o£ the relational model fail
to realize a crucial fact. Second generation sys-
terns do not support most business data processing
applications all that well. For example, consider an
insurance appfication that processes claims. This
application requires traditional data elements such
as the name and coverage of each person insured.
However, it is desirable to store images of photo-
graphs of the event to which a claim is related as
well as a facsimile of the original hand-written
claim form. Such data elements are also difficult
to store in second generation DBMSs. Moreover,
all information related to a specific claim is aggre-
gated into a folder which contains traditional data
images and perhaps procedural data as well. A
folder is often very complex and makes the data
elements and aggregates of CAD and CASE sys-
tems seem fairly routine by comparison.

Thus, almost everybody requires a better
DBMS, and there have been several efforts to con-
street prototypes with advanced function. More-
over, most current DBMS vendors are working on
major functional enhancements of their second
generation DBMSs. There is a surprising degree
of consensus on the desired capabilities of these
next-generation systems, which we term third
generation database systems. In this paper, we
present the three basic tenets that should guide the
development of third generation systems. In

~DB2, INGRES, NON-STOP SQL, ORACLE and
Rdb/VMS art trademanks rtspextively of IBM_. INGRES Cot-
penmen, Tande~m, ORACLE Corporation, and Dighal Equip-
meat Corporation.

S I G M O D R E C O R D , Vol. 19, No. 3, Sep tember 1990 31

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101077.390001&domain=pdf&date_stamp=1990-09-01

addition, we indicate 13 propositions which dis-
cuss more detailed reqttimments for such systems.
Our paper should be contrasted with those of
[ATKI89, KIMg0, ZDON90] which suggest dif-
ferent sets of tenets.

2. T H E TENETS OF THIRD -
G E N E R A T I O N DBMSs

The first tenet deals with the definition of
third generation DBMSs.

TENET 1: Besides traditional data
management services, third generation
DBMSs will provide support for richer
object structures and rule&

Dam management characterizes the things that
cuzrent relational systems do well, such as process-
ing 100 transm:tions per second from 1000 on-line
terminaLs and efficiently executing six way joins.
Richer object slructures characterize the capabili-
ties required to store and manipulate non-
traditional data elements such as text and spatial
d~m In addition, an application designe~ should
be- given the capability of specifying a set of rules
about dam elements, records and coil~ctions. 4

Refenrential integrity in a relational conmxt is one
simple example of such a rule; however, there are
many more complex ones.

We now consider two simple examples that
illnstrate this tenet. Return to the newspaper appfi-
cation described earlier. It contains many non-
traditional dam elements such as text, icons, maps,
and. advertisement copy; hence richer object struc-
tures are clearly required. Furthermore, consider
the classified advertisements for the paper.
Besides the text for the advertisement, there are a
collection of bnsiness data processing data ele-
ments, such as the rote, the number of days the
advertisement will run, the classification, the bil-
ling address, etc. Any automatic newspaper layout
program requires access to this data to decide
whether to place any particular advertisement in
the current newspaper. Moreover, selling classified
advertisements in a large newspaper is a standard
transaction processing application which requires
traditional data managemcm services. In addition,
there are many rules that control the layout of a
newspaper. For example, one cannot put an adver-
tisement for Macy's on the same page as an adver-
tisement for Nordstrom. The move toward semi-

the p~vions footnom for definitions of these teams.

automatic or automatic layout requires capturing
and then enforcing such rules. As a result there is
need for rule management in our example applica-
tion as welL

Consider next our insurance example,. As
noted earlier, the~ is the requirement for storing
nou-traditional dnm elements such as photographs
and. clnims. Moreover, making clmges to the
insurance coverage for ensmmers is a standard
transaction processing application. In addition, an
insurance application requires a large collection of
rulea such as

Cancel the eoveaage of any customer who
has had a claim of type Y overvalue X.
K_~sh,~ any claim that is more than
N days old.

We have brietiy considered two appfications
and demonslrn~ted that a DBMS must have cl~t~;
object and rules services to successfully solve ~ch
problem. Although it is certainly possible that
niche rnaxkets will be available to systems with
lesser capabilities, the successful DBMSs of the
90's win have services in all three areas.

We now turn to our second fundamental
tenet.

TENET 2: Third generation DBMSs
must sulmme second generation
DBMSs.

Put diffc~e~dy, second generation systems made a
major contribution in two areas:

non-In~cedtwal access
data independence

and these advances must not be compromised by
third genermion systems.

Some argue that there are applications which
never wish to run queries because of the simpficity
of their DBMS accesses. CAD is often suggested
as an example with this characteristic [CHAN89].
Theaefore, some suggest that future systems will
not require a query language and consequently do
not need to subsume second generation systems.
Several of the authors of this paper have talked to
numerous CAD a~lication designers with an
interest in ¢l~tabases, and all have specified a query
language as a necessity. For example, consider a
mechanical CAD system which stores the parts
which compose a product such as an automobile.
Along with the spatial geometry of each part, a
CAD system must store a collection of attribute
dam; such as the cost of the part, the color of the
part, the mean time to failure, the suppfier of the
part, etc. CAD appfications require a query

32 S IGMOD RECORD, Vol. 19, No. 3, September 1990

language to specify ad-hoc queries on the attribute
data such as:

How much does the cost of my automobile
increase ff supplier X raises his
prices by Y percent?

Consequently, we are led to a query language as an
absolute requirement.

The second advance of second generation
systems was the notion of data independence. In
the area of physical a~ta independence, second
generation systems automatically maintain the
cnnsisteney of all access paths to dam and a query
optimizer automatically chooses the best way to
execute any given user command. In addition,
second generation systems provide views whereby
a user can be insulated from changes to the undex-
lying set of collections stored in the aatabuse.
These characteristics have dramatically lowered
the amount of program maintenance that must be
done by applications and should not be abandoned.

Tenet 3 discusses the final philosophical
premise which must guide third, genezation
DBMSs.

TENET 3: Third generation DBMSs
must be open to other sebsystem~

Stated in different terms, any DBMS which
expects broad appficability must have a fourth gen-
eration language (4GL), various decision support
t~ls , friendly access from many programming
languages, friendly access to popular subsystems
such as LOTUS 1-2-3, interfaces to business
graphics packages, the ability to run the applica-
tion on a different machine from the database, and
a distributed DBMS. All tools and the DBMS
must run effectively on a wide variety of hardware
platforms and operating systems.

This fact has two implications. F'wst, any
successful third generation system must support
most of the tools described above. Second, a third
generation DBMS must be open, i.e. it must allow
access from additional tools running in a variety of
environments. Moreover, each third generation
system must be willing to participate with other
third generation DBMSs in future distributed data-
base systems.

These three tenets lead to a variety of more
detailed propositions on which we now focus.

3. T H E T H I R T E E N PROPOSITIONS

There are three groups of detailed proposi-
tions which we feel must be followed by the

successful third generation database systems of the
1990s. The first group discusses propositions
which result from Tenet 1 and refine the require-
merits of object and rule management. The second
group contains a collection of propositions which
follow from the requirement that third generation
DBMSs subsume second generation ones. F'mally,
we neat propositions which result from the
requirement that a third generation system be open.

3.1. Propositions Concerning Object and
Rule Management

DBMSs cannot possibly anticipate all the
kinds of data elements that an appfication might
want. Most people think, for example, that lime is
measured in seconds and days. However, all
months have 30 days in bond trr~ding applications,
the day ends at 15:30 for most banks, and "yester-
day" skips over weekends and holidays for stock
tam'lint applications. Hence, it is imperative that a
third generation DBMS manage a diversity of
objects and we have 4 propositions that deal. with
object management and consider type constructors,
inheritance, functions and unique identifiers.

PROPOSITION 1.1: A third genera-
tion DBMS must have a rich type sys-
tem.

All of the following are desirable:

1) an abstract dam type system to
construct new base types

2) an array type constructor
3) a sequence type constructor
4) a record type eonstractor
5) a set type constructor
6) functions as a type
7) a union type constructor
8) recursive composition of the

above constructors

The first mechanism allows one to construct new
base types in addition to the standard integezs,
floats and character strings avsilnhle in most sys-
terns. These include bit strings, points, lines, com-
plex numbers, etc. The second mechanism allows
one to have arrays of data elements, such as found
in many seientitic applications. Arrays normally
have the property that a new element cannot be
inserted into the middle of the away and cause all
the subsequent members to have their position
incremented. In some applications such as the
lines of text in a document, one requires this inser-
tion property, and the third type constructor sup-
ports such sequences. The fourth mechanism

S I G M O D RECO RD, Vol. 19, No. 3, September 1990 33

allows one to group data elements into records.
Using this type constructor one could form, for
example, a record of data items for a person who is
one of the "old guard" of a particular university.
The fifth mechanism is required to form unordered
collections of data elements or records. For exam-
ple, the set type consmaetor is required to form the
set of all the old guard. We discuss the sixth
mechanism, functions (methods) in Proposition
1.3; hence, it is desirable to have a DBMS which
naturally stores such constructs. The next mechan-
ism allows one to construct a data element which
can take a value from one of several types. Exam-
pies of the utility of this construct am presented in
[COPE84]. The last mechanisrn Mlows type con-
strutters to be recursively composed to support
complex objects which have internal structure
such as documents, spatial geometries, etc., More-
over, there is no requirement that the last type con-
struetor appfied be the one which forms sets, as is
Irue for second generation systems.

Besides implementing these type construe-
mrs, a DBMS must also extend the underlying
query language with appropriate constructs. Con-
sider, for example, the S~I.r~SPERSON collection,
in which each salesperson has a name and a quota
which is an array of 12 integePs. In this ease; one
would, like to be able to request the names of
salespersons with April quotas over $5000 as fol-
lows:.

select name
fzom s~r.r tSPERSON
where quota[4] > 5000

Consequently, the query language must be
extended with syntax for addressing into arrays.
Prototype syntax for a variety of type coustrucmrs
is contained in [CARE88].

The utility of these type constructors is well
understood by DBMS clients who have d~m to
store with a richer structure. Moreover, such type
constructors will also make it easier to implement
the persistent programming languages discussed in
Imposition 3.2. Furthermore, as f ine unfolds it is
certainly possible that additional type constructors
may become desirable. For example, transaction
processing systems manage queues of messages
[BERN90]. Hence, it may be desirable to have a
type constructor which forms queues.

Second generation systems have few of
these type constructors, and the advocates of
Object-oriented Data Bases (OODB) claim that
entirely new DBMSs must come into existence to
support these features. In this regard, we wish to
rake strong exception. There am prototypes that
demouswate how to add many of the above type

constructors to relational systems. For example,
[STON83] shows how to add sequences of records
to a relational system, [ZANI83] and [DADA86]
indicate how to construct certain complex objects,
and [OSBO86, STON86] show how to include an
ADT system. We claim that all these type con-
stmetors can be added to relational systems as
~mral enhancements and that the technology is
relatively well understood.5 Moreover, commercial
relational systems with some of these features have
already started to appear.

Our second object management proposition
concerns inheritance.

PROPOSITION 1.2: Inheritance is a
good idea.

Much has been said about this construct, and we
feel we can be very brief. Allowing types to be
organized into an inheritance hierarchy is a good
idea. Moreover, we feel that multiple inheritance
is essential, so the inheritance hierarchy must be a
directed graph. If only single inheritance is sup-
ported, then we feel that there are too many situa-
tions that cannot be adequately modeled. For
example, consider a collection of instances of
P I T O N . There are two specializations of the
PERSON type, namely STUDENT and
EMPLOYEE. Lastly, there is a STUDENT
EMPLOYEE, which should inherit from both
STUDENT and EMPLOYEE. In each collection,
data items appropriate to the collection would be
specified when the collection was defined and oth-
ers would be inherited from the parent collections.
A diagram of this situation, which demands multi-
ple inheritance, is indicated in Figure I. While
[ATKI89] advocates inheritance, it lists multiple
inheritance as an opdonal feature.

Moreover, it is also desirable to have collec-
tions which specify no additional fields. For exam-
ple, TbTffNAGER might be a collection having the
same ~ r a elements as PERSON, but having a res-
triction on ages. Again, there have been prototype
demonstrations on how to add these features to
relational systems, and we expect commercial rela-
tional systems to move m this direction.

Our third proposition concerns the inclusion
of functions in a third generation DBMS.

PROPOSITION 1.3: Functions,

~One might argue that a relational system with all these
can no longer be ectaxidered "relational", but that is

not the point. The ~ is that such extma~ons a~ pmsible and
qante namna.

34 S I G M O D R E C O R D , Vol . 19, No. 3, S e p t e m b e r 1990

I MPLO EEI

A Typ/cal Muldple Inheritance I-I.ierarchy
Figure 1

including database procedures and
methods, and encapsulation are a good
idea.

Second generation systems support functions and
e.ncapsnlarlon in restricted ways. For example, the
operations available for tables in SQL are imple-
mented by the functions create, alter, and drop.
Hence,, the table abstraction is only available by
executing one of the above functions.

Obviously, the benefits of encapsulation
should be made available to application designers
so they can associate functions with usa collec-
tions. For example, the functions
HmE~..MPLOYEr:~3, ~t~.aVtPLOY~3 and
RAISE-SAL(EMPLOYEE) should be associated
with the familinr EMPLOYEE collectioll. If users
ate not allowed direct access to the EMPLOYEE
coUection but are given these functions instead,
then all knowledge of the internal structure of the
EMPLOYEE collection is eneap~lla)ed within
these functions.

Encapsnlntion has administrative advantages
by encouraging mod-lm-ity and by registering
functions along with the data they encapsulate. If
the EMPLOYEE collection changes in such a way
that its previons contents cannot be defined as a
view, then all the code which must be changed is
localized in one place, and will therefore be easier
to change.

Encapsulation often has performance advan-
tages in a protected or distributed system. For
example, the function HIRE(EMPLOYEE) may
nmk~ a number of accesses to the cl~tnl3ase while
executing. If it is specified as a function to be exe-
cuted internally by the data manage, then only one
round uqp message between the appfication and the
DBMS is executed. On the other hand, ff the func-
tion runs in the usc~" program then one round
message will be executed for each access. Moving
functions inside the DBMS has been ~own to
improve performance on the popular Dcbk..Credit
benchmark [ANON85].

LasOy, such functions can be inherited and
possibly overridden down the inheritance hierar-
chy. Therefore,. the function HE(EMPLOYEE)
can aatommieally be applied to the STUDENT
EMPLOYEE collection. With overriding, the
implemcntadon of the function HIRE can be
rewritten for the for the STUDENT EMPLOYEE
collection. In summary, encapsulated functions
have pcrfonnance and structuring benetits and are
highly desirable. However, the:re am three com-
ments which we must maim concerning functions.

First, we feel that users should write func-
tions in a higher level language (tn'.L) and obtain
DBMS access through a high-level non-Irmcedural
access language. This language may be available
through an embedding via a prelxocessor or
through direct extension of the tTI.L itself. Put dif-
fe=ently, functions should run queries and not per-
form their own navigation -sing calls to some
lower level DBMS interface. Proposition 2.1 will
discuss the undesirability of construoSng user pro-
grams with low-level data access interfaces, and
the same discussion applies equally to the con-
six.ion of functions.

There are occasional requirements for a
function to directly access internal interfaces of a
DBMS. This will require violating our admonition
above about only accessing the database ammgh
the query language, and an example of such a
function is presented in [STONg0]. Consequently,
direct access to system internals should probably
be an allowable but highly discouraged (!) way to
write functions.

Our second comment concerns the notion of
opaque types. Some OODB enthusiasts claim that
the only way that a user shonld be able to access a
collection is to execute some function available for
the collection. For example, the only way to
access the EMPLOYEE collection would be to
execute a function such as HIRE(EMPLOYEE).
Such a restriction ignores the needs of the query
language whose execution engine requires access

S I G M O D R E C O R D , Vol. 19, No. 3, Sep tember 1990 35

to each data element directly. Consider, for exam-
pie:

select *
fxom EMPLOYEE
where ,~lary > I0000

To solve this query, the execution engine must
have direct access to the salary data elements and
any auxiliary access paths (indexes) available for
them. Therefore, we believe that a mechanism is
required to makes types transparent, so that data
elements inside them can be accessed through the
query language. It is possible that this can be
accomplished through an automaticaUy defined
"accesser" ftmetion for each data element or
through some other means. An authorization sys-
tem is obviously required to control access to the
a~mbasc through the query language.

Our" last comment concerns the commercial
marketplace. All major vendors of second genera-
tion DBMSs already support functions coded in a

%- (usually the 4GL supported by the vendor)
that can maka DBMS c.nilg in SQL. Moreover,
such functions can be used to encapsulate accesses
m the data they manage. Hence, functions stored
in the ci~mhase with DBMS calls in the query
lang~Ee are already commonplace commercially.
The work remainitag for the commercial relational
vendors to support this proposition is to allow
inheritance of functions. Again there have been
severat prototypes which show that this is a rela-
tively straightforward extension to a relational
DBMS. Yet again, we see a clear path by which
current relational systems can move towards saris-
fying this proposition.

Our last object management proposition
deals with the automatic assignment of unique
identifiers.

PROPOSITION 1.4: Unique
Identifiers (UIDs) for records should
be as,signed by the DBMS only if a
user-defined primary key is not avail-
able.

Second generation systems support the notion of a
primary key, which is a user-assigned unique
identifier. If a primary key exists for a collection
that is known never to change, for example social
security number, student registration number, or
employee number, then no additional system-
assigned UID is required. An immutable primary
key has an extra advantage over a system-assigned
unique identifier because it has a natural, human
readable meaning. Consequently, in data inter-
change or debugging this may be an advantage.

ff no primary key is available for a collec-
tion, then it is imperative that a system-assigned
UID be provided. Because SQL supports update
through a cursor, second generation systems must
be able to update the last record retrieved, and this
is only possible if it can be uniquely identified, ff
no primary key serves this purpose, the system
must include an extra UID. Therefore, several
second generation systems already obey this pro-
position.

Moreover, as will be noted in Proposition
2.3, some collections, e.g. views, do not neces-
sarily have system assigned UIDs, so building a
system that requires them is likely to be proven
undezimble. We close our discussion on Tenet 1
with a final proposition that deals with the notion
of roles.

PROPOSITION 1.5: Rules (triggers,
constraints) will become a major
feature in future systems. They should
not be associated with a specific func-
tion or collection.

OODB researchers have generally ignored the
importance of rules, in spite of the pioneering use
of active azt~ values and daemons in some pro-
gramming langnages utilizing object concepts.
Wheat questioned about rules, most OODB
entlm~i~ts either are silent or suggest that rules be
implemented by including code to support them in
one or more functions that operate on a collectiom
For example, if one has a rule that every employee
must earn a smaller ~ainry than his manager, then
code appropriate to this constraint would be
inserted into both the HIRE(EMPLOYEE) and the
RAISE-SAL(EMPLOYEE) functions.

There are two fundamental problems with
assot.i~ting rules with functions. F'trst, whenever a
new fanetion is added, such as PENSION-
CttANGE(EMPLOYEE), then one must ensure
that the function in turn calls RAISE-
SAL(EMPLOYEE), or one must include code for
the rule in the new function. There is no way to
guarantee that a programmer does either; conse-
quently, there is no way to guarantee rule enforce-
merit. Moreover, code for the rule must be placed
in at least two functions, HIRE(EMPLOYEE) and
RAISE-SAL(EMPLOYEE). This requires dupli=
cation of effort and will make changing the rule at
some future time more difficult.

Next, consider the following rule:

Whenever Joe gets a calory adjustment,
propagam the change to Sam.

Under the OODB scheme, one must add

36 S IGMOD RECORD, Vol. 19, No. 3, September 1990

appropriate code to both the HIRE and the
RAISE-SAL functions. Now suppose a second
rule is added:

Whenever Sam gets a ~lary adjustment,
propagate the change to Fred.

This rule will require inserting additional code into
the same functions. Moreover, since the two rules
interact with each other, the writer of the code for
the second rule must understand all the rules that
appear in the function he is modifying so he can
correctly deal with the interactions. The same
problem arises when a rule is subsequently deleted.

Lastly, it would be valuable if users could
ask queries about the rules cuxrently being
enforced. If they are buried in functions, there is
no easy way m do this.

In our opinion there is only one reasonable
solution; rules must be enforced by the DBM$ but
not bound to any function ~r coUection. This has
two consequences. First, the OODB paradigm of
"everything is expressed as a method" simply does
not apply to rules. Second., one cannot directly
access any internal interfaces in the DBMS below
the rule activation code, which would allow a user
to bypass the run m e system that wakes up rules
at.the correct time.

In closing, there are already products from
second generation commercial vendors which are
faithful to the above proposition. Hence, the com-
mercial relational, marketplace is ahead of OODB
thinidng concerning this particnl~r proposition.

3,2, Proposi t ions Concerning Increasing
DBMS Funct ion

We claimed earlier that third generation sys-
tems could not take a step backwards, i.e. they
must subsume all the capabilities of second gen-
eration systems. The capabilities of concern are
query languages, the specification of sets of data
elements and data independence. We have four
propositions in this section that deal with these
matters.

PROPOSITION 2.1: Essentially all
programatic access to a database
should be through a non-procedural,
high-level access language.

Much of the OODB literature has underestimated
the critical importance of high-level d~m access
languages with expressive power equivalent to a
relational query language. For example, [ATKI89]
proposes that the DBMS offer an ad hoe query

facility in any convenient form. We make a much
stronger slatement: the expressive power of a
query language must be present in every program-
matie interface and it should be used for eessenri~lly
all access to DBMS dam Long term, this service
can be provided by adding query language con-
structs to the multiple persistent programming
languages that we discuss further in Proposition
3.2, Short term, this service can be provided by
embedding a query language in conventional pro-
gramming Languages.

Second generation systems have demon-
strated that dramatically lower program mainte-
nance costs result from using this approach relative
to first generation systems. In our opinion, third
generation database systems must not compromise
this advance. By contrast, many OODB research-
ors state that the appfications for which they are
designing their systems wish to navigate to desired
dam rising a low-level procedural interface.
Speeitieally, they want an interface to a DBMS in
which they can access a specific record. One or
more data elements in this record would be of type
"reference to a record in some other collection"
typically represented by some sort of pointer to
this other record, e.g an object identifier. Then, the
application would dereference one of these
pointers to establish a new current record. This
process would be repeated until the application had
navigated to the desired records.

This navigational point of view is well arti-
odmed in the Turing Award presentation by
Charles Baclunan [BACH73]. We feel that the
subsequent 17 years of history has demonstrated
that this kind of interface is undesirable and should
not be used. Here we summarize only two of the
more important problems with navigation. First,
when the programmer navigates to desired data in
this fashion, he is replacing the function of the
query optimizer by hand-coded lower level calls.
It has been clearly demonstrated by Mstory that a
well-written, weft-tuned, optimizer can almost
always do better than a programmer can do by
hand. Hence, the programmer will produce a pro-
gram which has inferior performance. Moreover,
the programmer must be considerably smarter to
code against a more complex lower level interface.

However, the real killer concerns schema
evolution. If the number of indexes changes or the
dam is rea~ganized to be differently clustered,
there is no way for the navigation interface to
automatically take advantage of such changes.
Hence, if the physical access paths to d ma change,
then a programmer must modify his program. On
the other hand, a query optimizer simply produces

S IGMOD RECORD, Vol. 19, No. 3, September 1990 37

a new plan which is optimized for the new
environment. Moreover, if there is a change in the
collections that are physically stored, then the sup..
port for views prevalent in second generation sys-
tems can be used to insulate the applicat/on from
the change. To avoid these problems of schema
evolution and required op "ttmization of database
access in each program, a user should specify the
set of dat8 elements in which he is interested as a
query in a non-procedural language.

However, consider a user who is browsing
database, i.e. navigating from one record to

another. Such a user wishes to see all the records
on any path through the database that he explores.
Moreover, which path he examines next may
depend on the composition of the cun~nt record.
Such a user is clearly accessing a single record at a
timz algorithraically. Our position on such users is
straight-forward, namely they should run a
sequence of queries that return a single record,
St3ch as:

select *
from collection
where collection.key = value

Although there is little room for optimization of
such queries, one is still, insulated, h'om required
program maintenance in the event that the schema
changes. One does not obtain this service if a
lowclr level interface is used, such as:

dereference (pointer)

Moreover, we claim that our approach yields
comparable performance to that available from a
lower level interface. This perhaps counter-
intultivo assertion deserves some explanation. The
vast majority of current OODB enthnsiasts suggest
that a pointer be soft, i.e. that its value not change
even ff the dam element that it points to is moved.
This characteristic, location independence, is
desirable because it allows data elements to be
moved without compromising the structure of the
anmhase. Such data element movement is often
inevitable during database reorgartiTndon or during
crash recovery. Therefcxe, OODB enthusiasts
recommend that location independent unique
identifiers be used for pointers. As a result, dere-
ferencing a pointer requires an access to a hashed
or indexed structure of unique identifiers.

In the SQL representation, the pair:

(relation-name, key)

is exactly a location independent unique identifier
which entails the same kind of hashed or indexed
lookup. Any overhead associated with the SQL
syntax will presumably be removed at compile

lime.

Therefore we claim that there is tittle, if any,
perfo, mance benefit to using the lower level inter-
face when a single data element is retained. On the
other hand, if multiple data elements are returned
then replacing a high level query with multiple
lower level calls may degrade performance,
because of the cost of those multiple calls fl'orn the
appfication to the DBMS.

The last claim that is often asserted by
OODB enthusiasts is that programmers, e.g. CAD
programmers, want to perform their own naviga-
tion, and therefore, a system should encourage
navigation with a low-level interface. We recog-
nize that certain programmers probably prefer
navigation. Theze were programmers who resisted
the move from assembly language to higher level
programming languages and others who resisted
moving to relational systems because they would
have a less complex matt to do and therefore a less
interesting job. Moreover, they thought they could
do a better job than compilers and optimizers. We
feel that the arguments against naviLrafion are com-
pelling and that some programmers simply require
education.

Therefore, we are led to conclude that essen-
tially all DBMS access should be specified by
queries in a non-procedural high-level access nota-
tiom In Proposition 3.2 we will discuss issues of
integrating such queries with current FILLs. Of
course~ there are occasional situations with com-
pelling reasons to access lower levels of the
DBMS as noted in Proposition 1..3; however, this
practice should be strongly discouraged.

We now turn to a second topic for which we
believe that a step backwards must also be
avoided. Third generation systems will support a
variety of type constructors for collections as noted
in Proposition 1.1, and our next proposition deals
with the specification of such collections, espe-
cially collections which are sets.

PROPOSITION 2.2: There should be
at least two ways to specify collections,
one using enumeration of members
and one using the query language to
specify membership.

The OODB literature suggests specifying sets by
enumerating the members of a set, typically by
means of a linked list or array of identifiers for
members £DEWI90]. We believe that this
specification is generally an inferior choice. To
explore our reasoning, consider the following
example.

38 S I G M O D R E C O R D , Vol . 19, No. 3, S e p t e m b e r 1990

ALUMNI (name, age, address)
GROUPS (g-name, composition)

Here we have a collection of alumni for a paxtieu-
lar university along with a collection of groups of
alumni. Each group has a name, e.g. old guard,
young turks, elders, etc. and the composition field
indicates the ~lumni who are members of each of
these groups. It is clearly possible to specify com-
position as an array of pointers to qualifying
alumni. However, this specification will be quite
inefficient because the sets in this example are
likely to be quite large and have substantial over-
lap. More seriously, when a new person is added
to the ALUMNI collection, it is the r~ponsibility
of the application programmer to add the new lx~r-
son to all the aOln'olriate groups. In other words,
the various sets of alumni are specified extension--
ally by enumerating their members, and member-
ship in any set is mammHy determined by the
application programmer.

On the other hand., it is also possible to
represent GROUPS as follows:

GROUPS(g-name, min-age, max-age,
composition)

Here, composition is specified inmnsionally by the
following SQL expression:

select*
from ALUMNI
wheat age > GROUPS.rain-age and
age < GROUPS.max-age

In this specification, there is one query for each
group, paraneterized by the age requirement for
the group. Not only is this a more compact
specitieation for the various sets, but also it has the
advantage that set membership is automatic.
Hence, whenever a new altunnns is added to the
database, he is automatically placed in the
appropriate sets. Such sets are gusranmed to be
semmtdeally consismnt.

Besides assured consistency, there is one
further advantage of automatic sets, namely they
have a possible performance advantage over
manual sets. Suppose the user asicx a query such
as:

select g-name
ffi'om GROUPS
where composition.name = "Bill"

This query requests the groups in which Bill is a
member and uses the "nested dot" notation popu-
larized by GEM [ZANI83] to address into the
members of a set. If an array of pointers
spedfication is used for composition, the query
optimizer may sequentially scan all records in

GROUPS and then dereference eneh pointer look-
ing for Bill. Alternately, it might look up the
identifier for Bill, and then scan all composition
fields looking for the identifier. On the other hand,
if the intensional representation is used, then the
above query can be transformed by the query
OlYimi~,,r into:

select g-name
from GROUPS, ALUMNI
where ALUMNI.name = ~Bill ~
and ALUMNI.age > GROUPS.rain-age
and ALUMNI.age < GROUPS.max-age

If there is an index on GROUPSanin-age or
GROUPS.max-age and on ALUMNI.name, this
query may substantially outperform either of the
previous query plans.

In summary, there are at least two ways to
specify collections such as sets, arrays, sequences,
eta. They can be specified eithea" extensionally
through collections of pointers, or intensionally
through expressions. Inteasional specification
maintains automatic set membership [CODA71],
which is desirable in most applications. Exten-
sional specifications are desirable only when there
is no structural connection between the set
members or when automatic membership is not
desired.

Also with an inteasional specification,
s~rn~n~c transformations can he perfcnmed by the
optimizer, which is then free to use whatever
aeee-ss path is best for a given query, rather than
being limited in any way by poimtx structures.
Hence, physical representation decisions can be
delegated to the DBA where they belong. He can
decide what access paths to maintain, such as
linked lists or pointer arrays [CARE90].

Our point of view is that both representa-
lions are required, and that intensional representa-
tion should be favored. On the other hand, OODB
enthusiasts typically recommend only extensional
techniques. It should be pointed out that there was
considerable attention dedicated in the mid 1970's
to the advantages of automatic sets relative to
manual sets [CODD74]. In order to avoid a step
backwards, third generation systems must favor
automatic sets.

Our third proposition in this section con-
terns views and their crucial role in clamhase
applications.

PROPOSITION 2.3: Updatable views
are essential.

We see very few static clamhases; rather, most are

S IGMOD RECORD, Vol. 19, No. 3, September 1990 39

dynamic and ever changing. In such a scenario,
whenever the set of collections changes, then pro-
gram maintenance may be required. Clearly, the
encapsnlation of database access into functions
and the encapsulation of functions with a single
collection is a helpful step. This will allow the
functions which must be changed to be easily
identified. However, this solution, by itself, is
i~apquate. If a change is made to the schema it
may take weeks or even months to rewrite the
affected functions. During this intervening time the
database cannot simply be "down". Moreover, if
changes occur rapidly, the resomres consumed
may be unjustifiable.

A clearly better aPIxOach is to support vir-
mat collections (views). Second generation sys-
tems were an advance over first generation systems
in part because they provided some support in this
area.. Unfortunately, it is often not possible to
update relational views. Consequently, if a user
performs a schema modification and then defines
his previous collections as views, application pro-
grams which previously ran may or may not con-
tinu¢ to do so. Third generation systems will have
to do a better job on updamble views.

The traditional way to support view updates
i~ tO perform command transformations along the
lines of [STON75]. TO di~mbiguate view
U l ~ t ~ , additional semantic information must be
provided by the definer of the view. One approach
is tO require that each collection be opaque which
might become a view at a later time. In this case
there + is a group of functions through which all
accesses to the collection are funneled [ROWE79],
and. the view definer must perform program
mnintenance on each of these functions. This will
entail substantial program maintenanccc as well as
disallow updates through the query language.
Alternately, it has been shown [STONg0B] that a
suitable rules system can be used to provide the
neeessary semantics. This approach has the advan-
tage that only one (or a small number) of rules
need be specified m provide view update seman-
tics. This will be simpler than changing the code
in a collection of functions.

Notice that the members of a virn]~d collec-
tion do not necessarily have a unique identifier
because they do not physically eXiSL Hence, it
will be difficult to require that each record in a col=
lection have a unique identifier, as dictated in
many cmrent OODB prototypes.

Our last point is that data independence can-
not be given up, which recquires that all physical
detail~ must be hidden from application program-
mers.

PROPOSITION 2.4: Performance
indicators have almost nothing to do
with data models and must not appear
in them.

In general, the main determiners of perfor-
mam~ using either the SQL or lower level
specification are:

the amount of performance tuning done
on the DBMS

the usage of compilation techniques by the DBMS
the location of the buffer pool (in the client
crDBMS address Space)

the kind of indexing available
the performance of the client-DBMS interface
and the clustering that is performed.

Such issues have nothing to do with the data model
or with the usage of a higher level language like
SQL veasus a lower level navi~tional interface.
For example, the tactic of clustering related objects
together has been higlfligSted as an important
OODB feature. However, this tactic has been used
by data base systems for many years, and is a cen-
tral notion in most IMS access methods. Hence, it
is a physical representation issue that has nothing
to do with the data model of a DBMS. Simihrty,
whether or not a system builds indexes on unique
identiliers and buffe~s database records on a orient

or even in user space of an application
program are not data model issues.

We have also talked to numerous program-
mers who are doing non traditional problems such
as CAD, and are convinced that they require a
DBMS that will support their appfication which is
optimized for their environment. Providing sub-
second response time to an engineer adding a line
to an engineering drawing may require one or
more of the following:

an access method for Spatial data such as
R-trees, hb-trees or grid files

a buffer pool on the engineer's workstation
as opposed to a central server

a buffer pool in Ms application program
data buffered in screen format rather than
DBMS format

These are all performance issues for a
workstation/server environment and have nothing
to do with the data model or with the presence or
absence of a navigational interface.

For a given workload and aatahase, one
should attempt to provide the best performance
possible. Whether these tactics are a good idea
depends on the specific application. Moreover,
they are readily available to any database system.

40 S IGMOD RECORD, Vol. 19, No. 3, September 1990

3.3. Proposit ions that Result from the
Necessi ty o f a n Open System

So far we have been discussing the charac-
teristics of third generation DBMSs. We now turn
to the Application Programmihg Interface (APD
through which a user program will communicate
with the DBMS. Our first proposition states the
obvious.

PROPOSITION 3.1: Third genera-
tion DBMSs must be accessible from
multiple I-ILLs.

Some system designers claim that a DBMS should
be tightly connected to a particular programming
langrmge. For example, they suggest that a func-
tion should yield the same result if it is executed in
user space on transient data or inside the DBMS on
persistent data. The only way this can happen is
fortho execution model of the DBMS to be identi-
cal. to that of the speeitic programming language.
We believe that this approach is wrong.

F'wst, there is no agreement on a single HLL.
Applications will be coded in a variety of I-rr.Ls,
and. we see no programming language Esperanto
on the horizon. Consequently, appficarions will be
written in a variety of programming languages, and
a multi-lingual DBMS results.

However, an open DBMS must be muiti-
lingual for another reason. It must allow access
from a variety of externally written application
subsystems, e.g. Lotus 1-2-3. Such subsystems
will be coded in a variety of programming
langtmges, again requiring multi-lingual DBMS
support.

As a result., a third generation DBMS will be
accessed by programs written in a variety of
languages. This leads to the inevitable conclusion
that the type system of the HLL will not neces-
sarily match the type system of the DBMS. There-
fore,, we are led to our next proposifiorL

PROPOSITION 3..2: Persistent X for a
variety of Xs is a good idea. They will
all be supported on top of a single
DBMS by compiler extensions and a
(more or less) complex run time sys-
tem.

Second generation systems were interfaced to pro-
gramming languages using a preprocessor partly
because early DBMS developers did not have the
cooperation of compiler developers. Moreover,
there are certain advantages to keeping some
indepenclence between the DBMS language and

the programming language, for example the pro-
gramming language and DBMS can be indepen-
dently enhanced and tested. However, the result-
ing interfaces were not very friendly and were
characterized as early as 1977 as "like glueing an
apple on a pancake". Also, vendors have tended to
concentrate on elegant interfaces between their
4GLs and database services. Obviously it is possi-
ble to provide the same level of elegance for gen-
eral propose programming languages.

First, it is crucial to have a closer match
between the type systems, which will be facilitated
by Proposition 1.1. This is the main problem with
current SQL embeddings, not the aesthetics of the
SQL syntax. Second, it would then be nice to
allow any variable in a asex's program to be
optionally persistent. In this case, the value of
any persistent variable is remembered even after
the program terminates. There has been consider-
able recent interest in such interfaces [LISK82,
BUNE86].

In order to perform well, persistent X must
maintain a cache of dnta elements and records in
the program's address space, and then carefully
tonnage the contents of this cache using some
replacement algorithm. Consider a user who
declares a persistent clam element and then incre-
ments it 100 times.. With a user space cache, these
updates will require small numbers of
microseconds. Otherwise, 100 calls across a pro-
tected boundary to the DMS will be required, and
each one will require milliseconds. Hence, a user
space cache will result in a performance improve-
merit of 100 - 1000 for programs with high locality
of refeaence to persistent dma_ The nl/l time system
for persistent X must thczefore inspect the cache to
see if any persistent element is present and fetch it
into the cache ff not. Moreover, the run time sys-
tem must also simulate any types present in X that
are not present in the DBMS.

As we noted cartier, functions should be
coded by including calls to the DBMS expressed in
the query language. Hence, persistent X also
requires some way to express queries. Such
queries can be expressed in a notation appropriate
to the I-rLL in question, as illustrated for C++ by
ODE [AGRA89]. The run-time system for the
I-ILL must accept and process such queries and
deriver the results back to the program.

Such a run time system will be more (or
less) difficult to build depending on the I-ILI. in
question, how much simulation of types is
required, and how far the query language available
in the t-lIJ, deviates from the one available in the
DBMS. A suitable run-time system can interface

S I G M O D R E C O R D , Vol . 19, No. 3, Sep t ember 1990 41

many I-rLt.s to a DBMS. One of us has success-
fully built persistent CLOS on top of POSTGRES
using this approach [ROWEgO].

In summary, there will be a variety of per-
sistent X's designed. Each requires compiler
modifications unique to the language and a run
dine System partiodar tO the I-ll.I.. All of these
run time systems will connect to a common
DBMS. The obvious question is "How should
queries be expressed?" to this common DBMS.
This leads to the next proposition,

PROPOSITION 3.3: For better or
worse, SQL is intergalactic dataspeak.

SQL is the universal way of expressing queries
today. The early commercial OODB's did not
recognize this fact, and had to retrofit an SQL
query-system into their product. Unfortunately,
some products did not manage to survive until they
completed the job. Although SQL has a variety of
welt known minor problems [DATE84], it is
necessary for commercial viability. Any OODB
which desires to make an impact in the market-
place is likely to find that customers vote with their
dollars for SQL. Moreover, SQL is a reasonable
cand~dmm for the new functions suggested in this
paper, and prototype syntax for several of the
capabilities has been explored in [BEEC88,
ANSI89]. Of course, additional query languages
may be appropriate for specific applications or
Flr.la

Our last proposition concerns the architec-
t:urc which should be followed when the applica-
tion program is on one machine interfaced to a
DBM$ on a second server machine. Since DBMS
commands will be coded in some extended version
of SQL, it is certainly possible to transmit SQL
queries and receive the resulting records and/or
completion messages. Moreover, a consortium of
tool and DBMS venders, the SQL Access Group,
is actively working to define and prototype an SQL
remora data access facility. Such a facility will
allow convenient interoperability between SQL
tools and SQL DBMSs. Alternately, it is possible
to communicate between client and server at some
lower level interface.

Our last proposition discusses this matter.

PROPOSITON 3.4: Queries and their
resulting answers should be the lowest
level of communication between a
cfient and a server.

In an environment where a user has a dedicated

workstation and is interacting with data at a remote
server, there is a question concerning the protocol
between the workstation and the server. OODB
enthusiasts are debating whether requests should
be for single records, single pages or some other
mechanism. Our view is very simple: expressions
in the query language should be the lowest level
unit of communication. Of course, if a collection
of queries can be packaged into a function, then
the user can use a remote procedure call to cause
function execution on the server. This feature is
desirable because it will result in less than one
message per query.

If a lower level specitieation is used, such as
page or record transfers, then the protocol is fnnda-
mentally more difficult to specify because of the
increased amount of state, and machine dependen-
cies may creep in. Moreover, any interface at a
lower level than that of SQL will be much less
efficient as noted in [HAGM86, TAND88]. There-
fcze, remote procedure calls and SQL queries pro-
vide an appropriam level of interface technology.

4. SUMMARY

There are many points upon which we agree
with OODB enthn~i~t~ts and with [ATKI89]. They
includz the benefits of a rich type system, func-
tions, inheritance and encapsnflarion. However,
them are many areas where we are in strong
disagreement. Hrst, we see [ATKI89] as too nar-
rowly focused on object management issues. By
contrast, we address the much larger issue of pro..
riding solutions that support data, rule and object
management with a complete toolkit, including
integration of the DBMS and its query language
into a mult-lingual environment. As such, we see
the non-SQL, single language systems proposed by
many OODB enthusiasts as appealing to a fairly
narrow market.

Second, we feel that DBMS access should
onlu occur through a query language, and nearly
20 years of history convinces us that this is correct.
Physical naviganon by a user program and within
functions should be avoided. Third, the use of
automatic collections whenever possible should be
encouraged, as they offer many advantages over
explicitly maintained collections. Fourth, per-
sistence may well be added to a variety of pro..
granuning languages. Because there is no pro-
gramming language Esperanto, this should be
accomplished by changing the compiler and writ-
ing a language-specific run-time system to inter-
face to a single DBMS. Therefore, persistent pro-
gramming languages have little to do with the data

42 S IGMOD RECORD, Vol. 19, No. 3, September 1990

modeL FiRh, unique identifiers should be either
user.defined or system-defined, in contrast to one
of the tenets in [ATKI89].

However, perhaps the most important
disagreement we have with much of the OODB
community is that we see a natural evolution from
current relational DBMSs to ones with the capabil-
ities discussed in this paper. Systems from aggres-
sive relational vendors are faithful to Tenets 1, 2
and 3 and have good support for propositions 1.3,
1.4, 1.5, 2.1, 2.3, 2.4, 3.1, 3.3 and 3.4. To become
true third generation systems they must add inheri-
tance, additional type constructors, and implement
persistent programming languages. There have
been prototype systems which point the way to
incltt~ion of these capabilities.

On the other hand, current systems that
claim to be object-oriented generally are not faith-
ful to any of our tenets and support propositions
1.1 (partly), 1.2, 1.3 and 3.~ To become true third
generation systems, they must add a query
langrmge and query optimizer, a rules system, SQL
client/server support, support for views, and per-
sistmt programming languages. In addition, they
must undo any hard coded requirement for UIDs
and. discourage naviganon. Moreover, they must
build 4th generation languages, support distributed
databases, and tame their systems to perf~m
efficient data management.

Of course, there are significant research and
development challenges to be overcome in satisfy-
ing these propositions. The design of a persistent
programming language for a variety of existing
HLLs presents a unique challenge. The inclusion

suda languages of pleasing query language con-
streets is a further challenge. Moreover, both logi-
cat and physical database design are considered
challenging for current relational systems, and they
will get much more difficult far systems with
f i che type systems and rules. Database design
metlmdologies and tools will be required to assist
users in this area. Optimization of the execution of
rales poses a significant challenge. In addition,
tools to allow users to visualize and debug rule-
orienmd applications are crucial to the success of

technology. We encourage the research com-
munity to take on these issues.

REFERENCES

[AGRA89] Agrawal, R. and Gehani, G., "ODE:
The Language and the Data
Model," Proc. 1989 ACM-
SIGMOD Conference on Mange-
ment of Data, Portland, Ore. June

[ANON85]

[ANSI89]

[ATKI89]

[BACH73]

[BEEC88]

[BERNg0]

[BUNE8611

[CARE88]

[CARE90]

[CHAN891

1989.

Anon et. al., "A Measure of Tran-
suction Processing Power," Data-
marion, 1985.

ANSI-ISO Committee, "Working
Draft, Database Lang-~ges SQL2
and SQL3," July 1989.

Atkinson, M. et. aL, "The Object-
Oriented Database System Mani-
festa," ALTAIR Technical Report
No. 30-89, GIP ALTAIR,
LeChesnay, France, Sept. 1989,
also in Deductive and Object-
oriented Databases, Elseveae Sci-
enc~ Publishers, Amsterdam, Neth-
erlands~ 1990.

Bsclunan, C., "The Programmer as
Navigate," CACM, November
1973.

Beech, D., "A Foundation for Evo-
lution from Relational to Object
I~tnhases," Proe. Conference on
Extending Database Technology,
Venice, Italy, April 1988.

Bcrnstcin, P. eer_ al~ "Impleancnting
Recoverable Requests Using
Qaenes', Proc. ACM SIGMOD
CoNference on Management of
I~m~ Atlantic City, NJ. , May 1990.

Buneman, P. and Atldrmon, M.,
"Inheritance and Persistence in Pro-
gtamming Languages," Proe. 1986
ACM-SIGMOD Conference on
Management of Data., Washington,
D.C., May 1986.

Carey, M., et. al., "A Data Model
and Query Language for
EXODUS," Proe. 1988 ACM-
SIGMOD Confeaence on Manage-
ment of Data, Chicago, IlL, June
1988.

Carey, M., et al, "An Incremental
loin Amachrnent for Starburst," (in
preparation).

Chang, E. and Katz, R., "Exploiting
Inheritance and Structure Semantics
fct Efecdve Clustering and Buffer-
ing in an Object-oriented DBMS,"
Proe. 1989 ACM-SIGMOD Confer-
ence on Management of Data, Port-
land, Ore., June 1989.

S I G M O D R E C O R D , Vol. 19, No. 3, Sep tember 1990 43

[CODA71]

[CODD74]

[COPE841

[DADASal

[DATE84]

[DATE86]

~Ewlg0]

[RAGM86]

[KIM_90]

[LISK82]

[OSBO86]

CODASYL Data Base Task Group
Report, April 1971.

Codd, E. and Date, C., "Interactive
Support for Non-Programmers: The
Relational and Network
Approaches," Pro¢. 1974 ACM-
SIGMOD Debate, Ann Arbor,
Mich., May 1974.

Copoland, G. and Maier, D., "Mak-
ing SmalItaE~ a D~mha..~ System,"
Proc. 1984 ACM-SIGMOD Confcx-
ence on Management of Data, Bos-
ton, Mass., June 1984.

Dadsm, p. et al., "A DBMS Proto-
typo m Support Exmnded NF a Rela-
tions: An Integrated View of Flat
Table, s and Hieramhies," Proe. 1986
ACM-SIGMOD Cortfexence on
Management of Data, Washington,
DC, 1986.

Dam, C., "A Critique of the SQL
Database Language," ACM SIG-
MOD Record 14(3), November
1984.

Date, C., "An introduction to Data-
base. Systems," Addison-Wesley,
Reading, Mass., 1986.

I~witt; D. eL aL, "A Study of Three
AImmative Workstation-Server
Architectures for Object Oriented
Database Systems," ALTAIR
Technical Report 42-90, Le
Chesnay, France, January 1990.

Hagmann, R. and Ferrari, D., "P~r-
formance Analysis of Several
Back-End Database Architecturea,"
ACM-TODS, March 1986.

Kim, W., "Research Directions in
Object-oriented Databases," MCC
Technical report ACT-OODS-013-
90, MCC, Austin, Tx., January
1990.

Liskov, B. and Scheifler, R., "Guar-
dians and Actions: Linguistic Sup-
port for Robust Distributed Pro--
grams," Proe. 9th Symposium on
the Principles of Programming
Languages, January 1982.

Osborne, S. and Heaven, T., "The
Design of a Relational System with
Abstract Data Types as Domains,'"
ACM TODS, Sept. 1986.

FROWE79]

[ROWEgO]

[STON751

[STON831

[STONSa]

[STONg0]

[STON90B]

[rAND88]

[ZANI831

[ZDON90]

Rowe, L. and Shoens, K., "Data
Abstraction, Views and Updates in
RIGEL," Prec. 1979 ACM-
SIGMOD Conf~renc~ on Manage-
ment of Data, Boston, Mass., May
197/9.

Rowe, Lawrence, "The Design of
PICASSO," (in preparation).

Stonebrakcr, M., "Implementation
of inmgrity Constraints and Views
by Quexy Modification," Proe. 1975
ACM-SIGMOD Conference on
Management of Data, San Jose,
May 1975.

Stonebraker, M., "Document Pro-
ceding in a Relational Database
System," ACM TOOIS, Alml 1983.

Smnebraker, M., "Incitmion of New
Types in Relational Data Base Sys-
tmns," Pine. Second International
Conference on Data Base Engineer-
ing, Los Angeles, Ca., Feb. 1986.

Stonebraker, M., et. al., "The Imple-
mentation of POSTGRES," m r ~
Tramaetions on Knowledge and
~taEngineemg, March 1990.

Stxmebraker, M. eet. ak, "On Rules,
Prtx~dnres, Caching and Views in
Data Base Systems," Pine. 1990
ACM-SIGMOD Conference on
Manasement of Data Atlantic City,
NJ., May 1990,

Tandem Performance Group, "A
Benchmark of NonStop SQL on the
Debit Credit Transaction," Proc.
1988 ACM-SIGMOD Conference
on Management of Dam Chicago,

Jtme 1988.

7anioIo, C., "The Database
Language GEM," Proc. 1983
ACM-SIGMOD Conference on
Marmgement of Data~ San Jose, Ca.,
May 1983.

Zdonik, S. and Maic~, D., "Funda-
mentals of Object-orienteai Dam-
bases," in Readings in Object-
oriented Database Systems,
Morgan-Kanfman, San mateo, Ca.,
1990.

44 SIGMOD RECORD, Vol. 19, No. 3, September 1990

