ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol. 4, No. 1, January 1979 Page 12

5 First Draft MSE79: FIRST DRAFT OF A
Gy 12/78 MASTERS CURRICULUM IN SOFTWARE ENGINEERING

Richard E. Fairley
Computer Science Department
Colorado State University
Fort Collins, CO 80523
(303) 491-7026

Abstract

This paper is a status report on the curricular efforts of the IEEE
Computer Society's subcommittee on software engineering education. The
first draft of a proposed Masters program in software engineering is presented,
as is the undergraduate preparation required for admission to the program.
Potential implementation problems are discussed, and future plans are mentioned.

Introduction

Ten years have passed since the first conference on software engineering
was held in Garmisch, Germany (1). At that time, the term "software engineering
was coined as a provocative title for a conference (two conferences) to
consider the technological aspects of software development. During the
intervening decade, software engineering has evolved into a major subdiscipline
of computer science. Although much remains to be done, a body of knowledge
and a set of guidelines have emerged which are concerned with improving the
quality of software, and the techniques used to produce and maintain it.

H

Major milestones in the brief history of software engineering include the
NATO Conferences mentioned above, the International Conferences on Software
Engineering (2,3,4), introduction of the IEEE Transactions on Software Engineering(5),
and the formation and rapid growth of the Computer Society's Technical Committee
on Software Engineering and ACM's Special Interest Group on Software Engineering.

The demand for individuals trained in the skills of software engineering
has become acute as computing systems have become more numerous, more complex,
and more deeply embedded into modern society. Software engineering has been
a growing concern to educators, and to perceptive individuals in industry,
research labs, and government. Each of the three International Conferences on
Software Engineering has had a session to consider educational issues, and several
papers dealing with software engineering education have been published in other
conferences and in the Transactions on Software Engineering. In 1975, IBM
Canada sponsored a four day meeting to discuss software engineering education (6).
In February, 1976, a one-day workshop titled "Software Engineering Education:
Needs and Objectives" was held at the University of California, Irvine (7).
Both meetings brought together educators and practitioners of software engineering
to discuss issues in software engineering education. More recently, the status
of software engineering education has been summarized in a paper by Wasserman
and Freeman (8).

In recognition of the increasing concern for software engineering education,
the Computer Society is sponsoring the development of a model curriculum in
software engineering., This paper is the first draft of the proposed curriculum.
It is not a formal recommendation or a final report; it is a working paper which
is being published for comment and criticism.

#Chairman
LEEE Computer Society
Subcommittee on Software Engineering Education


http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010773.1010775&domain=pdf&date_stamp=1979-01-01

ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol. U4, No. 1, January 1979 Page 13

First Draft
12/78

Background

The primary issue in software engineering education is the level at which
software engineering skills should be taught. On the one hand, many individuals
who will become practicing software engineers will be Bachelors graduates, and
advocates of undergraduate software engineering education cite the success of
electrical engineering educators in training electronic designers at the
Bachelors level. On the other hand, software engineering is not {or perhaps
has not yet evolved into) a discipline in which concepts and job assignments
can be neatly compartmentalized. Instead, a software engineer is a generalist
who 1s 1involved with applying computer science concepts and software engineering
techniques to the analysis, design, implementation, validation, and maintenance
of software systems. In order to accomplish these tasks, a software engineer
must be technically competent, and in addition, highly skilled in the management
and communications aspects of software engineering.

The majority of the subcommittee (although not unanimously) agree that the
acquisition of software engineering skills requires maturity and motivation
that can only be gained through experience with software. This maturity might
be gained by undergraduate education, industrial experience, or by a combination
of education and experience. The ideal entrant into a graduate program in
software engineering would have an undergraduate degree in computer science,
and two years experience with large software systems. Thus, the subcommittee
(with one or two dissentions) recommends that software engineering be taught
as a professional degree program at the Masters Tevel.

An undergraduate "core" which provides minimum preparation for a Masters
program in software engineeringis presented in Table I. Content of the core
courses is specified by referencing the corresponding courses in the IEEE Model
Curriculum and the new ACM Curriculum 78 (9,710). It is also assumed that
undergraduate students will complete a mathematics sequence encompassing
differential and integral calculus, linear algebra, and probability and statistics.
In addition, undergraduate courses in accounting, technical writing, public
speaking, and organizational behavior are highly desirable. Some of the material
described in Table I may have been gained by the student through industrial
experience, and it is expected that a Masters program in software engineering
would be accessible to students with a mixed background of formal education and
practical experience.

The undergraduate core has been designed for implementation in diverse
educational environments; it is a starting point for those institutions desiring
a program in software engineering. A student completing the undergraduate core
will have been exposed to the fundamental concepts of computer science and
computer engineering, which span the spectrum from digital Togic to architecture
to programming and software systems to compute science theory. The student will
thus be prepared to pursue an in-depth program of study in software engineering;
however, the undergraduate core does not, in itself, provide adequate training
for a professional Tevel software engineer. For finstance, there are no
courses in advanced programming methodology, or management issues in software
engineering, or other topics that appear in the Masters program.



ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol. 4, No. 1, January 1979 Page 14

First Draft
12/78

The Masters Curriculum

The overall structure of the proposed Masters curriculum in software
engineering is illustrated in Figure 1. A brief description of each course
follows:

MSE-1: Introduction to Software Engineering

This course provides an overview of the field. The economics of
software, technical aspects of programming methodology, the software
lifecycle, software tools and techniques, managerial aspects of software
engineering, and communication skills in software engineering are surveyed.

MSE-2: Requirements, Specifications, and Standards
This course provides an in-depth examination of requirements analysis,
specification techniques, automated tools, and various formal mechanisms.
Standards are also discussed.

MSE-3: Technical Communication

This course examines the role of communication skills in software
engineering. Both oral and written skills are emphasized. The format and
content of proposals, reports, user's manuals, and project documentation
are discussed, as are the form and content of oral presentations of
various types.

MSE-4: Organizational Behavior

This is a traditional course in organizational behavior, emphasizing
the characteristics of technical organizations and creative individuals.
Emphasis is placed on the need for management, on being managed, and on
being a manager.

MSE-5: Software Design and Programming Methodology

This course emphasizes the techniques and practices used to transform
a software specification into an operational system. It covers the various
notations and methods available for organizing the design process, making
and recording design decisions, evaluating designs, and transforming a
design into executable code.

MSE-6: Security and Privacy

This course covers the technical aspects of data security: encryption
techniques, data base security, and implementation of protection schemes in
operating systems and programming Tanguages. In addition, the legal and
ethical aspects of security and privacy are emphasized.

MSE-7: Software Project Management

This course provides an in-depth examination of the management issues
in software engineering: task organization, resource allocation, project
milestones, product visibility, quality assurance, configuration control,
cost estimation, forecasting, scheduling and budgetting, etc. In addition,
the legal aspects of software engineering (contracts, liabilities, deliverable
items, and acceptance criteria) are discussed, as are the cthics of
software engineering.

MSE-8: Software Laboratory
This course is a two semester lab sequence in which students work in

teams to specify, design, implement, test, document, and modify a large
software system, using tools and techniques discussed in other courses.



ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol. 4, No. 1, dJanuary 1979 Page 15

First Draft
12/78

MSE-9: Validation, Verification, and Performance Measurement

This course discusses validation and verification techniques such as
proofs of correctness, structured walkthroughs, static analysis, dynamic
testing, symbolic execution, and continuous verification. Reliability models
for software are also discussed. In addition performance measurement
techniques, analytical models, simulation models, and statistical methods
are discussed.

MSE-T10: Human Factors in Computing System Design

This course examines automation of user processes, design of user
interfaces, data presentation techniques, and the human factors aspects
of operations and maintenance procedures. In addition, human factors
in the software development process are discussed. :

MSE-11: Data Base Systems

This course considers data base systems from several different views:
The use of a data base system to automate various aspects of the software
development process, human engineering of data base systems, and the design
and implementation of data base systems using the techniques of software
engineering.

MSE-12: Distributed Computing Systems

This course deals with the design and analysis of architecture and
software for the full spectrum of distributed systems, ranging from loosely
coupled networks to tightly coupled multiprocessors. 1In addition, techniques
for networking mini and micro computers are considered.

Each of these courses is designed as a three semester credit hour course.
In addition to the year long lab sequence, it is assumed that each course will
use homework and Taboratory assignments to reinforce the material.

[mplementation Problems

Many problems will arise in the implementation of a software engineering
program, not the least of which are the political problems (11). These include
the name itself, "software engineering", determining which department in the
university will have jurisdiction over the program, and determining whether the
program will be an undergraduate program, a gradute program, or a combination.

There are at lTeast three departments in most universities that have a
legitimate interest in teaching software engineering courses: the computer
science department, the electrical engineering department, and the management
information systems department. It is unfortunate that the name "software
engineering" implies implementation of the program by an engineering department.
The curviculum has been designed without bias toward any particular department
in the university, and we foresee that this body of material will be taught
under many different names, in many different departments.

Other problems that will arise in the implementation of software engineering
programs include the Tack of qualified faculty, lack of adequate textual materials,
development of suitable laboratory problems, and providing realism in an
educational environment. These, and other issues are discussed in the references
cited (8,11).



ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol. 4, No. 1, January 1979 Page 16

First Draft 12/78

Summary

This paper has presented the first draft of a proposed Masters program in

software engineering. It is a report on work in progress and should be read with
that in mind. Perhaps it is premature to develop extensive curricula in a young
and rapidly evolving field; yet, the need is obvious. OQur goals in preparing the
recommendation are to provide a sharper definition of the field, to indicate the
educational materials that must be developed to support the proposed program of
study, and to provide guidance for the implementation of software engineering
programs.

Currently, a rough draft of the detailed course outlines is being distributed

to a review committee of 50 to 60 well known individuals in software engineering.
Their recommendations will be incorporated into a final draft, which will be
published in spring, 1979. The total curriculum will exist in only a few
institutions, if at all. Some schools will implement subsets of the proposed
curriculum, and it will be modified and extended in various ways according to the
needs of Tocal students and local industries, local credit hour and budgetary
restrictions, Tocal faculty talents, and other constraints. If this curriculum
can serve a wide variety of institutions as a reference point, and a starting
point for curriculum design in software engineering, then we will have achieved
our purpose. We welcome your comments and criticisms of this proposal, as well

as your opinions of the issues discussed in the paper.

Acknowledgements

The following individuals designed the proposed curriculum and developed the

detailed course outlines: Bruce Barnes - NSF, George Davida - UW Milwaukee, Randy

Jensen - Hughes Aircraft, Hisashi Kobayashi -~ IBM, Keith McCammon - DEC, Mike Mulder -

Dept. of Energy, Dave Rine - Western I11inois Univ., Leon Stucki - Boeing Computer
Services, Tony Wasserman - UCSF, and Andy Tanenbaum - Free Univ. Amsterdam.

References

1.

10.

11.

P. Naur, B. Randell, and J. Buxton, Software Engineering: Concepts and
Techniques. Petrocelli/Charter, New York, 1976.

Conference Proceedings, 1st National Conference on Software Engineering,

IEEE Catalog No. 75CH0992-8C, 1975.

Conference Proceedings, 2nd International Conference on Software Engineering,
IEEE Catalog No. 76CH1125-4C, 1976.

Conference Proceedings, 3rd International Conference on Software Engineering,
TEEE Catalog No. 78CH1317-7C, 1978.

Bimonthly Journal, IEEE Transactions on Software Engineering, Published by
the IEEE Computer Society,

D. Oakes, et al, Eds.,Software Engineering Education: Proceedings IBM
Scientific Symposium, IBM Canada (available from INFOR Journal, Ottawa, Ontario)
P. Freeman and A. Wasserman, Eds., Software Engineering Education: Needs and
Objectives, Springer-Verlag, New York, 1976.

A. Wasserman and P. Freeman, “Software Engineering Education: Status and
Prospects", Proc of the IEEE, Vol.66, No.8, August, 1978.

Committee Report, A Curriculum in Computer Science and Engineering, IEEE
Catalog No. EHO119-8, January, 1977.

Committee Report, Curriculum Recommendations for the Undergraduate Program

in Computer Science, A Report of the ACM CurricuTum Committee on Computer
Science, to appear in the Comm. of the ACM.

R. Fairley, "Educational Issues in Software Engineering", Proc. of the

1978 ACM National Conference, Washington, D.C., December, 1978.




ACM SIGSOFT, SOFTWARE ENGINEERING NOTES, Vol, 4, No. 1, January 1979 Page 17
First Draft
12/78 Table I. The Undergraduate Prerequisite Program
COMPUTER SOCIETY ACM 78
CORE COURSE REFERENCE COURSE(S) REFERENCE COURSE(S)
Digital Logic DL-1; DL-2 cs 4
Digital Lab L-1
Computer Organization €0-1; CO-2; €0-3 CS 3; CS 4
Microprocessaors DL-3
Microprocessor Lab L-3
Introduction to Computer Programming SE-1 €S 1; CS 2
Data Structures and Design of Algorithms SE-2; SE-3 cs 7
Operating Systems and Computer Architect. SE-6; SE-7 CS 6
Data Base Systems SE-4 CS 11
Survey of Language Concepts SE-5 €S 8
Language Implementation SE-8 CS 15
Discrete Structures TC~1 MA 4
Design and Analysis of Algorithms TC-2 s 13
Software Development Tools and Techniques
MSE-1 MSE-2 MSE-3 MSE-4
FIRST Introduction to Requirements, Technical Organizational
SEMESTER Software Specifications, Communication . Behavior
Engineering and Standards
MSE-5 MSE-6 MSE-7
Software Design Security Software
SECOND and Programming and Project
SEMESTER Methodology Privacy Management
MSE-8 MSE-9 MSE-10
Software Validation, Human Factors
THIRD Laboratory Verification, in Computing
SEMESTER Lab 1 and Performance System Design
Measurement
MSE-8 MSE-11 MSE-12
‘ i i d
FOURTH Software Data Base Distribute
SEMESTER Laboratory Systems Systems
Lab 2

Figure 1.~ A Proposed Masters Program in Software Engineering




