
STYLE

An Automated Program Style Analyzer for Pasca l

Al Lake and Curtis Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 9733 1

2 9

INTRODUCTION

Programming style plays an important role i n
program understanding and maintenance . Studies
[Par83] have shown that as much as one-half of a
maintenance programmer's time is spent in activitie s
related to understanding the program . Program
understanding is also important for testing an d
debugging. Programming style embellishes the reada -
bility of a program and hence improves its under-
standability.

Little time is spent on programming style in pro-
gramming textbooks and in introductory program-
ming courses because they concentrate on teachin g
the syntax of a particular programming language an d
the use of that programming language in solvin g
problems . There is little space in textbooks and littl e
time in classes for other than a superficial treatmen t
of programming style . Programming assignments
are graded on how well the program solves the
problem; that is, the cleverness or efficiency of the al -
gorithm . A small part, if any, of the program grade is
based on style and readability .

Difficulty, consistency, subjectivity, and time are
the major reasons programming style is not give n
greater emphasis . To assist in this task, two types o f
automated style grading programs have been devel-
oped . The first type gives a style score between 0 an d
100. The style score is based on a set of style factor s
and is a weighted sum of these factors . The factors ,
the computation of the value for each factor, and th e
weights of each factor are set by the developer base d
on the developer's intuition and experience . The sec -
ond type of style grading program computes value s
for a battery of measures and leaves their interpreta -
tion to the user . The measures in the battery are se t
by the developer and no guidelines about the relative
contribution of the factors are given .

STYLE, the Pascal style analyzer described in thi s
paper, does not assign a style score to a program or
provide a battery of numbers . STYLE outputs mean-
ingful and nontechnical messages about the pro-
gramming style for each module . STYLE is modeled
after a writing teacher who writes constructive corn -

SIGCSE

	

Vol . 22 No . 3 Sept . 1990
BULLETIN

ments on a student composition . Hence, the goals of
STYLE are to assist a student In developing an aware -
ness of style and to improve his or her programmin g

style . STYLE analyzes a Pascal program and outputs
messages about any programming style deficiencie s
found in the program . Comments from students wh o

have used STYLE have been very positive .
In the section entitled Programming Style Analyz -

ers we describe programming style analyzers and th e
style principles on which STYLE was based. The
section entitled USER INl'ERFACE provides a de-
scription of the implementation of STYLE and ex-
amples of the user interface . Our conclusions an d
references are located in the last section .

PROGRAMMING STYLE ANALYZERS

Programming style is an elusive yet intuitive quality
of a program . It is difficult to define programming
style and defining 'good' style that will produce read -
able programs is even more difficult . Even though
there is no clear definition of programming style, th e
intent of programming style is to "produce code that
is clear and easily understood without sacrificing per -
formance" [Oma87] . Therefore, from a programmer's
point-of-view, we define programming style as the ef -
fective structuring and arrangement of programs to
increase readability and maintainability without
degrading performance .

A common approach to programming style is to
formulate a set of principles or rules and use them a s
a yardstick to measure the style of the program . How-
ever, the principles or rules are subjective and i n
many instances difficult to quantify . A number o f
books and articles present rules for good program-
ming style [Ker78, Led751, as well as rules for particu -
lar languages such as Pascal [Ree82, Mee831, FOR-
TRAN [Red86], and C [Ber85] .

Several automated programming style analyzers /
graders have been developed that attempt to measur e
style by calculating a single style score between 0 and
100. This score is a weighted sum of the counts of
various program characteristics .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101085.101095&domain=pdf&date_stamp=1990-08-01


3 0

Rees' Pascal source code grader [Ree82] was base d
on ten factors ; average line length, comments, inden -
tation, blank lines, embedded spaces, modularity ,
variety of reserved words, identifier length, variety o f
identifier names, and the use of labels and GOTOs .
Each of the ten factors was quantified and assigne d
a weight. A trigger-point scoring scheme was used t o
quantify each factor . In this scheme an interval is es -
tablished for each factor . If the factor is within the
interval then a linear interpolation scheme is used to
calculate its value . The value is zero if the factor is

outside the interval . The style factors were selecte d
on the basis of the programmer's intuition and ex-
perience . The weights and trigger-points were se-
lected by adjusting them until the analyzer awarded
"A" grades to good programs . Rosenthal [Ros83] and

Meekings' [Mee83] published Pascal style checkers

based on the same style factors as Rees ; however,

they calculated the factors differently and omitted th e

"variety of identifiers" factor .
Berry and Meekings [Ber85] modified Meekings'

style analyzer for C . They added a count of th e
included files and the "percentage of constant defini-

tions" and slightly modified the manner in which th e

other factors were calculated .
Redish and Smyth [Red86] used 33 factors in thei r

FORTRAN77 style analyzer . Their 33 factors ar e

grouped into categories : commenting (4), indentatio n

(1), block sizes (2), statement labels and formats (7) ,

counts of names and statements (6), array declara-
tions (2), control flow and nesting measures (7), blank

lines (1), operator count (1), operand count (1), an d

parametrization (1) . Their AUTOMARK program use s

Rees' trigger-point scheme for each factor . The style

score Is the weighted sum of Lhe factors .
All of these style graders compute a single styl e

score based on a weighted sum of subjectively se-
lected factors (e .g. program characteristics), facto r

weights and trigger-points for each factor . With one

minor exception they provide no non-technical feed -
back, justification, or guidance to the user about th e

style factors, weights, or trigger-points selected . The

one exception is the AUTOMARK and ASSESS pro -

grams [Red86] for FORTRAN. AUTOMARK outpu t
includes a brief semi-technical description of eac h

factor . The ASSESS program provides a Low-Aver-
age-High evaluation for 10 factors and some specifi c

comments on indentation, commenting, and labe l

usage. It is interesting to note that although AUTO -

MARK uses 33 factors, their FORTRAN syntax checker

actually computes 376 measurements . The authors
state that they expect this set to evolve to about 100 .
They also hope to "validate" various sets df factors i n

the future .
Our programming style analyzer, STYLE, does not

assign a grade or give a battery of numerical metric s

to the user. Instead, it analyzes each module an d

outputs descriptive non-technical messages abou t
any style deficiencies or one of several positive con -

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0
BULLETIN

gratulatory messages if there are no deficiencies . The
messages are provided to the user in a non-threaten -

ing manner, much like an English teacher writing

comments on a student's paper . Hence, running our

style analyzer is like having an expert evaluate th e

program code and provide comments about the style .
Our approach to quantifying program style was t o

first formulate widely accepted and general principle s

of style that include all of the commonly accepted pro -

gramming style guidelines found in the literature . We
adopted principles based on six "desirable qualities "
of style in Redish and Smyth [Red86] . The six quali -
ties are defined as :

1. Economy - the careful or thrifty measures take n
to provide the code in as concise a manner a s
is possible and practical .

2. Modularity - to regulate the standard struc-
tural component as a unit of measurement o f
program source code .

3. Simplicity - the state or quality of being simple ,
the absence of complexity, intricacy, or artifici -
ality .

4. Structure - the organization of elements, parts ,
or constituents in a complex entity .

5. Documentation - supporting references ex -
plaining the process of the program, the degre e
of self-descriptiveness of an application .

6. Layout - the arrangement, plan or formatting of
the program .

The next step was to reduce the guidelines to th e
most basic level which are called "styl e
principles" .These principles form the framework for
our programming style rules . Rather than grouping
all the program characteristics we could compute o r
think of under the style principles, we listed all of the
applicable programming style rules from two books
on programming style [Ker78, Led75] under each
principle . These rules provide more detailed informa-
tion about the principles and the basis for the mean -
ingful comments output to the user .

The last step in our approach was to quantify eac h
of the style rules. Because of the nature of these rules
our measurements were rated as either accurately
quantified, estimated, or unable to quantify . For
example, one part of an accurate quantification of th e
rule "Avoid superfluous actions or variables in the
program" [Ker78] is to determine whether every vari -
able declared is used in the program . The rule "Use
meaningful variables names" [Ker78] can be esti-
mated by average length of variable names . The rule
" Use a simple or straightforward algorithm" [Ker78 ]
cannot be quantified . Only those rules rated as
accurate or estimated were considered for implemen -
tation .

Through our approach we tried to be as objective
as possible. We did not want our selection of style
factors to be overly influenced by what program char -
acteristic measurements were easily obtainable from
the program. In addition, our style analyzer is based
on programming language independent concepts .



File Analysis

	

Hel p

Open

	

% 0

Close

	

% C

Save as . . .

Page Setup . . .

Print

	

% P

% S

%L

Econom y
Modularity
Simplicity
Structure
Documentation
Layou t
Miscellaneou s
Genera l

Figure 1 Style Deskto p

3 1

USER. INTERFACE

The user interface for STYLE is the desktop an d
uses the AppleT"' MacintoshTM menu bar . See Figure
1, which shows all of the menus of the application .

The About Analysis provides the author's name
and version number of STYLE, and is shown in Figur e
2

Welcome to the Style finalyzer

H Programming Style Too l

Version 1 . 0

by HI Lak e

O K

Figure 2 . About Analysis . . .

pile provides all of the file handling operations :
Open - displays all MacPascalTM and LightSpeed

PascalTM files for selection .
Close - closes the current work file .
Save as . . . - saves the style analysis output to a text

report file of TeachText format .
Page setup - performs page setup .
Print - prints the style analysis report on the

selected printer .
Quit - quits operation of STYLE .
With the Analysis menu the user can set the skill

level (beginner, intermediate, or expert) for the analy-
sis or execute the analysis .

Style - Performs a style analysis of the selected
program file .

Level - Sets the user expertise level as either
beginning, intermediate, or advanced . The

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0BULLETIN

Select level of programming expertis e

O Beginnin g

© Intermediat e

Q advance d

OK Ot.

	

Cance l

Figure 3 . Level of Programmin g
Expertise Dialo g

level will determine the acceptable range o f

values for measuring . The assumption is that
beginning programmers do not have program-
ming skills which are as well developed a s
advanced programmers and cannot manage
the greater levels of nesting, complexity an d
other problems associated with advanced pro-
gramming. As a result, choosing the Beginnin g
level will generate more messages than choos-
ing the Advanced level .

Help provides a brief description of the six differ-
ent style qualities . All Help information is displayed
in a modal dialog. The Economy Help dialog screen ,
shown in figure 4, is an example of the type of dialog s

Economy Hel p

The careful or thrifty measure s
taken to provide the code In a s
concise a manner as possible an d
practical . Huold superfluou s
actions or variables In th e
program .

O K

Figure 4 . Economy Help Dialog



used to provide the user with information about th e
desirable qualities of style . These dialogs are mean t
to provide some additional information to the use r
about the analysis process and the methods used in
providing the output .

In all cases, the options available to the user at any
time are limited to those which can logically be exe-
cuted. For example, when the user begins executio n
of the program only the Open, Quit, and Help func-
tions are available . When a file is opened the Open
option is disabled and the Close option is enabled ,
since only one file can be open at a time . The Save
As . . . and Print options are not enabled until th e
analysis is completed since no analysis data can b e
saved or printed prior to the input source program
being analyzed . The option, Page Setup, is always
available to modify the description of the printe d
page .

To open a file for analysis, select from the Open
option the File menu . The open dialog, shown in
figure 5, will be displayed, filtering out all but the
MacPascalT°' and LightSpeed PascalTM files . No spe-
cial file names are necessary .

If the user selects Save As . . . or tries to exit the
program without saving the style analysis report, a
"save dialog" will be displayed, as in the followin g
figure, giving the user the option to name the file .

When the file is Opened the program is read int o
a memory buffer . This allows the disk file to be closed
and the program to operate more efficiently .

The program will automatically suffix the file
name with " .Report" to help keep track of the relation-

	

an example of the report window . The information
ship between the program file name and the style

	

displayed in the report window begins with the pro -
analysis report file . Figure 7, Report Window, shows

	

gram name followed by style messages for each of the

= n

	

TEST_Style5 .pas

File Name :

	

TEST_Style5 .pa s
Program Name: TEST_Style5 .pa s

Procedure Name: TES 1_SHO W

This module contains too few lines of code. Consider combinin g
this module with another module .

Commenting not consistent . Both in-line and block comments shoul d
be used in this module .

There are too few blank lines per comments in the module . Use
blank lines to make comments more visible .

There is no header comment in this module, Each module shoul d
contain a header comment that describes what it does .

This module does not contain a block comment . Each module should

4J

Figure 7 . Report Window

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0
BULLETIN

Figure 5 . Open Input File Dialog

le] Style Program

i i #INHLVSIS .. ..Sti,lle .€aa s
ci.ot. K . ...S t€1€e .€lta s

i` # :IJI :KY. .. .Slyla .aa
1 .

	

I'I1.I. ...Sl jla .p 4

Ll (ii.01111l	 Sttlla,€i as

Save as . . .

TEST Style ' pes Report

(	 SaveIt.]

Cance l

ii Styl e

(	 Eject	

Drive

Figure 6 . Save Dialog for Saving an Analysis
Report Fil e

3 2



q 	 TEST_Stgle .pa s

program TESTaStyle5 ;
type

y33 = str255 j
procedure TESINOW (X1 : y33) ;

cons t
space = ' ' ;

var
x2 : str255 ;
x5, x4 : integer ;
x3 : Mclean ;

begin
x3 := true ;
x4

	

length(X 1) ;
x5

	

1 ;
while ((x5 < x4) and (x3)) d o

begin
if (X1 (x5l = space) or (ord(Xt [x5]) .4 9) then

x5 x5 + 1
else

x3 := false ;
end ;

x2 := copy(X1, x5, x4) ;

begin

Figure 8 . Sample Program
modules (e .g . procedures or functions) in the physi-
cal order in which they occur in the program . The
user can scroll horizontally or vertically .

Figure 8, Sample Program, shows the Pascal pro -
gram example used to generate the messages i n
Figure 7. As shown, the information is segmented by
the program modules .

STYLE also includes safeguards so that the user
cannot lose work ; such as in accidentally quitting
without saving the work file . This action causes a
Save As . . . dialogue to be displayed so that the use r
will have the option of saving the report to a file . Al l
menus have default file names and error checking t o
reduce the number of operating system errors whic h
might occur, as in trying to save a file with no name .

3 3

CONCLUSIO N

STYLE was implemented in LightSpeed PascalTM
for Apple MacintoshTM computers . The goal of this
prototype project was to test the feasibility of develop-
ing a user friendly programming style analyzer that
outputs meaningful non-technical comments abou t
the style of a program . In limited class testing stu -
dents gave STYLE high marks, because they felt i t
gave them useful comments about their program-
ming style .

The style tool will run on any Macintosh TM com-
puter with a minimum of 128K of memory, though
this will limit the user file to less than 5QK . For bes t
results, the style tool should be used on a Macintosh
Plus''' with 1 megabyte of memory .

When run on a larger screen, such as a Macintos h
II TM , the analysis window can be resized to fit the
larger screen, because STYLE does not limit the user
to the smaller Macintosh'T' screen size when a larger
screen work space is available .

S IG CS E Vol . 22 No . 3 Sept . 199 0BULLETIN

The printout procedure will work on any Local -
TalkTM -compatible network or dedicated printer .

For further information about STYLE: An Auto -
mated Program Style Analyzer for Pascal, write to the
authors at the address above or send e-mail to :

lake®mist . CS .ORST. EDU
or

cook®mist .CS.ORST.EDU

REFERENCES

[Ber85] R . E. Berry and B . A. E . Meekings, "A Style
Analysis of C Programs", Communications of the
ACM, vol . 28(1), Jan. 1986, pp . 80-88 .

[Ker78] B. W. Kernighan and P. J. Plauger . The
Elements ofProgramming Style . McGraw-Hill, New
York, 1978 .

[Led75] H . F. Ledgard . Programming Proverbs . Ha-
yden Book Company, Rochelle Park, New Jersey ,
1975 .

[Mee83] B . A. E. Meekings, "Style analysis of Pasca l
programs", ACMSIGPLAN Notices vol . 18(9), Sept .
1983, pp . 45-54 .

[0ma87] P . W. Oman and C . R. Cook, "A Paradigm for
Programming Style Research", Technical Repor t
87-60-7, Computer Science Department, Orego n
State University, 1987 .

[Par83] G . N. Parikh and G . N. Zvegintzov, Tutorial o n
Software Maintenance, IEEE Computer Society
Press, 1983, p, 2 .

[Rce82] M. J. Rees, Automatic Assessment Aids fo r

Pascal Programs, ACM SIGPLAN Notices, Vol 1 7
(10), Oct . 1982, pp . 33-42 .

[Ros83] D. Rosenthal, in correspondence from the
members, ACM SIGPLAN Notices Vol . 18 (3), Mar .
1983, pp . 4-5 .


