STYLE

R An Automated Program Style Analyzer for Pascal

Check for
Updates | .

Al Lake and Curtis Cook
Computer Science Department
Oregon State University
Corvallis, Oregon 97331

INTRODUCTION

Programming style plays an important role in
program understanding and maintenance. Studies
[Par83] have shown that as much as one-half of a
maintenance programmer’s time is spent in activities
related to understanding the program. Program
understanding is also important for testing and
debugging. Programming style embellishes thereada-
bility of a program and hence improves its under-
standability.

Little time is spent on programming style in pro-
gramming textbooks and in introductory program-
ming courses because they concentrate on teaching
the syntax of a particular programming language and
the use of that programming language in solving
problems. There is little space in textbooks and little
time in classes for other than a superficial treatment
of programming style. Programming assignments
are graded on how well the program solves the
problem; thatis, the cleverness or efficiency of the al-
gorithm. A small part, if any, of the program grade is
based on style and readability.

Difficulty, consistency, subjectivity, and time are
the major reasons programming style is not given
greater emphasis. To assist in this task, two types of
automated style grading programs have been devel-
oped. The first type gives a style score between O and
100. The style score is based on a set of style factors
and is a weighted sum of these factors. The factors,
the computation of the value for each factor, and the
weights of each factor are set by the developer based
on the developer's intuition and experience. The sec-
ond type of style grading program computes values
for a battery of measures and leaves their interpreta-
tion to the user. The measures in the battery are set
by the developer and no guidelines about the relative
contribution of the factors are given.

STYLE, the Pascal style analyzer described in this
paper, does not assign a style score to a program or
provide a battery of numbers. STYLE outputs mean-
ingful and nontechnical messages about the pro-
gramming style for each module. STYLE is modeled
after a writing teacher who writes constructive com-

SIGCSE . t. 1990
BULLETIN Vol, 22 HNo. 3 Sep

ments on a student composition. Hence, the goals of
STYLE are to assist a student In developing an aware-
ness of style and to improve his or her programming
style. STYLE analyzes a Pascal program and outputs
messages about any programming style deficiencies
found in the program. Comments from students who
have used STYLE have been very positive.

In the section entitled Programming Style Analyz-
ers we describe programming style analyzers and the
style principles on which STYLE was based. The
section entitled USER INTERFACE provides a de-
scription of the implementation of STYLE and ex-
amples of the user interface. Our conclusions and
references are located in the last section.

PROGRAMMING STYLE ANALYZERS

Programming style is an elusive yet intuitive quality
of a program. It is difficult to define programming
style and defining ‘good’ style that will produce read-
able programs is even more difficult. Even though
there is no clear definition of programming style, the
intent of programming style is to “produce code that
is clear and easily understood without sacrificing per-
formance” [Oma87]. Therefore, from a programmer’s
point-of-view, we define programming style as the ef-
fective structuring and arrangement of programs to
increase readability and maintainability without
degrading performance.

A common approach to programming style is to
formulate a set of principles or rules and use them as
ayardstick to measure the style of the program. How-
ever, the principles or rules are subjective and in
many instances difficult to quantify. A number of
books and articles present rules for good program-
ming style [Ker78, Led 75}, as well as rules for particu-
lar languages such as Pascal [Ree82, Mee83], FOR-
TRAN [Red86], and C [Ber85].

Several automated programming style analyzers/
graders have been developed that attempt to measure
style by calculating a single style score between 0 and
100. This score is a weighted sum of the counts of
various program characteristics.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101085.101095&domain=pdf&date_stamp=1990-08-01

Rees’ Pascal source code grader [Ree82] was based
on ten factors: average line length, comments, inden-
tation, blank lines, embedded spaces, modularity,
variety of reserved words, identifier length, variety of
identifier names, and the use of labels and GOTOs.
Each of the ten factors was quantified and assigned
aweight. A trigger-point scoring scheme was used to
quantify each factor. In this scheme an intervalis es-
tablished for each factor. If the factor is within the
interval then a linear interpolation scheme is used to
calculate its value. The value is zero if the factor is
outside the interval. The style factors were selected
on the basis of the programmer's intuftion and ex-
perience. The weights and trigger-points were se-
lected by adjusting them until the analyzer awarded
“A” grades Lo good programs. Rosenthal [Ros83] and
Meekings' [Mee83] published Pascal style checkers
based on the same style factors as Rees; however,
they calculated the factors differently and omitted the
“yariety of identifiers” factor.

Berry and Meekings [Ber85] modified Meekings'
style analyzer for C. They added a count of the
included files and the “percentage of constant defini-
tions” and slightly modified the manner in which the
other factors were calculated.

Redish and Smyth [Red86] used 33 factors in their
FORTRAN77 style analyzer. Their 33 factors are
grouped into categories: commenting (4), indentation
(1), block sizes (2), statement labels and formats 7,
counts of names and statements (6), array declara-
tions (2), control flow and nesting measures (7), blank
lines (1), operator count (1), operand count (1), and
parametrization (1). Their AUTOMARK program uses
Rees' trigger-point scheme for each factor. The style
score Is the welghted sum of the factors.

All of these style graders compute a single style
score based on a weighted sum of subjectively se-
lected factors (e.g. program characteristics), factor
weights and trigger-points for each factor. With one
minor exception they provide no non-technical feed-
back, justification, or guidance to the user about the
style factors, weights, or trigger-points selected. The
one exception is the AUTOMARK and ASSESS pro-
grams [Red86] for FORTRAN. AUTOMARK output
includes a brief semi-technical description of each
factor. The ASSESS program provides a Low-Aver-
age-High evaluation for 10 factors and some specific
comments on indentation, commenting, and label
usage. It is interesting to note that although AUTO-
MARK uses 33 factors, their FORTRAN syntax checker
actually computes 376 measurements. The authors
state that they expect this set to evolve to about 100.
They also hope to “validate” varlous sets df factors in
the future.

Our programming style analyzer, STYLE, does not
assign a grade or give a battery of numerical metrics
to the user. Instead, it analyzes each module and
outputs descriptive non-technical messages about
any style deficiencies or one of several positive con-

glGCSE Vol. 22 No. 3 Sept. 1990

ULLETIN

30

gratulatory messages if there are no deficiencies. The
messages are provided to the user in a non-threaten-
ing manner, much like an English teacher writing
commnients on a student's paper. Hence, running our
style analyzer is like having an expert evaluate the
program code and provide comments about the style.

Our approach to quantifying program style was to
first formulate widely accepted and general principles
of style that include all of the commonly accepted pro-
gramming style guidelines found in the literature. We
adopted principles based on six “desirable qualities”
of style in Redish and Smyth [Red86]. The six quali-
ties are defined as:

1. Economy - the careful or thrifty measures taken
to provide the code in as concise a manner as
1s possible and practical.

2. Modularity - to regulate the standard struc-
tural component as a unit of measurement of
program source code.

3. Simplicity - the state or quality of being simple,
the absence of complexity, intricacy, or artifici-
ality.

4. Structure - the organization of elements, parts,
or constituents in a complex entity.

5. Documentation - supporting references ex-
plaining the process of the program, the degree
of self-descriptiveness of an application.

6. Layout - the arrangement, plan or formatting of
the program.

The next step was to reduce the guidelines to the
most basic level which are called "style
principles".These principles form the framework for
our programming style rules. Rather than grouping
all the program characteristics we could compute or
think of under the style principles, we listed all of the
applicable programming style rules from two books
on programming style [Ker78, Led75] under each
principle. These rules provide more detailed informa-
tion about the principles and the basis for the mean-
ingful comments output to the user.

The last step in our approach was to quantify each
of the style rules. Because of the nature of these rules
our measurements were rated as either accurately
quantified, estimated, or unable to quantify. For
example, one part of an accurate quantification of the
rule “Avoid superfluous actions or variables in the
program” [Ker78] is to determine whether every vari-
able declared is used in the program. The rule “Use
meaningful variables names” [Ker78] can be esti-
mated by average length of variable names. The rule
“ Use a simple or straightforward algoerithm” [Ker78]
cannot be quantified. Only those rules rated as
accurate or estimated were considered for implemen-
tation.

Through our approach we tried to be as objective
as possible. We did not want our selection of style
factors to be overly influenced by what program char-
acteristic measurements were easily obtainable from
the program. In addition, our style analyzer is based
on programming language independent concepts.

(& File Analysis “Help ')
About Analysis.. | Open %0 | Style %S Economy
Close % ¢ | Level %L | Modularity
DAS Simplicity
Save as ..

Print

Page Setup ...

Structure
Documentation
Layout
Miscellaneous
General

Figure 1 Style Desktop

USER INTERFACE

The user interface for STYLE is the desktop and
uses the Apple™ Macintosh™ menu bar. See Figure
1, which shows all of the menus of the application.

The About Analysis provides the author's name
and version number of STYLE, and is shown in Figure
2

{Uelcome to the Style Analyzer

i Programming Style Tool

Version 1.0
by Al Lake

— k

Figure 2. About Analysis...

File provides all of the file handling operations:
Open - displays all MacPascal™ and LightSpeed
Pascal™ files for selection.

Close - closes the current work file.

Save asg... - saves the style analysis output toa text

report file of TeachText format.

Page Setup - performs page setup.

Print - prints the style analysis report on the

selected printer.

Quit - quits operation of STYLE,

With the Analysis menu the user can set the skill
level (beginner, intermediate, or expert) for the analy-
sis or execute the analysis.

Style - Performs a style analysis of the selected

program file.

Level - Sets the user expertise level as either

beginning, intermediate, or advanced. The

SIGESE
BULLETIN Vol. 22 No. 3 Sept. 1990

Select level of programming expertise

Baginning

O Intermediate
O Advanced

Figure 3. Level of Programming
Expertise Dialog

level will determine the acceptable range of

values for measuring. The assumption is that
beginning programmers do not have program-
ming skills which are as well developed as
advanced programmers and cannot manage
the greater levels of nesting, complexity and
other problems associated with advanced pro-
gramming. As aresult, choosing the Beginning
level will generate more messages than choos-
ing the Advanced level.

Help provides a brief description of the six differ-

ent style qualities. All Help information is displayed
in a modal dialog. The Economy Help dialog screen,
shown in figure 4, is an example of the type of dialogs

Economy Help

The careful or thrifty measures
taken to provide the code in as
concise a manner as possible and
practical. Avoid superfluous
actions or variables in the
program.

Figure 4. Economy Help Dialog

used to provide the user with information about the
desirable qualities of style. These dialogs are meant
to provide some additional information to the user
about the analysis process and the methods used in
providing the output.

In all cases, the options available to the user atany
time are limited to those which can logically be exe-
cuted. For example, when the user begins execution
of the program only the Open, Quit, and Help func-
tions are available. When a file is opened the Open
option is disabled and the Close option is enabled,
since only one file can be open at a time. The Save
As... and Print options are not enabled until the
analysis is completed since no anaysis data can be
saved or printed prior to the input source program
being analyzed. The option, Page Setup, is always
avallable to modify the description of the printed
page.

To open a file for analysis, select from the Open
option the File menu. The open dialog, shown in
figure 5, will be displayed, filtering out all but the
MacPascal™ and LightSpeed Pascal™ files. No spe-
cial file names are necessary.

If the user selects Save As... or tries to exit the
program without saving the style analysis report, a
"save dialog" will be displayed, as in the following
figure, giving the user the option to name the file.

When the file is Opened the program is read into
a memory buffer, This allows the disk file to be closed
and the program to operate more efficiently.,

The program will automatically suffix the file
name with ".Report" to help keep track of the relation-
ship between the program file name and the style
analysis report file. Figure 7, Report Window, shows

[€3 Style Program |
D ALERT_Style > Mac HD
"0 ANALYSIS_Style :
D) CLOCK_Style
[y BIALOG_Style
[EVENT_Style [ive
D FILEStyle || s
0 GLOBAL_Style (_open)
D HELP_Style
O MAINstyte (Cancer)

Figure 5. Open Input File Dialog

[€3 Style Pragram]

{3 BNRLYSIS. Styie pas
0 CLBLK . Stylepas

0 BULBELStylapas

) EUENT. Stylapas

0 FHE Stylepas

i GLOBRL.Style.pas

Save as ...

[TEST_Style.pas. Report (Cancer)

Figure 6. Save Dialog for Saving an Analysis
Report File

an example of the report window. The information
displayed in the report window begins with the pro-
gram name followed by style messages for each of the

O

JIHIN

TEST_StuIeS.pﬂS _

File Namae:

Procedure Name: TES I_SHOW

be used in this module.

Figure 7. Report Window

SIGCSE

BULLETIN U0 22

No. 3 Sept. 1990

TEST__Style3.pas
Program Name: TEST_StyleS.pas

This module contains too few lines of code. Consider combining
this module with another module.

Commenting not consistent. Both in-1ine and block comments should
There are {oo few blank lines per comments in the module, Use
blank tines 1o make comments more visihle.

There is no header comment in this module, Each module should
contain a header comment that describes what it does.

This module does not contain a block comment. Each modula should

32

JINTH}

E

TEST_Style.pas

program TEST_Style5;
type
y33 = str255]
procedure TES1_SHOW (X1 : y33);

begin

const
space = '';
var
%2 @ str255;
%3, x4 :integer;
%3 : boolean;
begin
%3 = true;
x4 1= length(X1);
x5 = 1;
while ((x5 < x4) and (x3)) do
begin
if (X1 [x5)] = space) or (ord(X1[x3)) = 9) then
x5 =x5+1
else
%3 = false;
end;
%2 = copyl(#l, x5, x4);
end;

Figure 8. Sample Program

modules (e.g. procedures or functions) in the physi-
cal order in which they occur in the program. The
user can scroll horizontally or vertically.

Figure 8, Sample Program, shows the Pascal pro-
gram example used to generate the messages in
Figure 7. As shown, the information is segmented by
the program modules.

STYLE also includes safeguards so that the user
cannot lose work; such as in accidentally quitting
without saving the work file. This action causes a
Save Ag,.. dialogue to be displayed so that the user
will have the option of saving the report to a file. All
menus have default file names and error checking to
reduce the number of operating system errors which
might accur, as in trying to save a file with no name.

CONCLUSION

STYLE was implemented in LightSpeed Pascal™
for Apple Macintosh™ computers. The goal of this
prototype project was to test the feasibility of develop-
ing a user friendly programming style analyzer that
outputs meaningful non-technical comments about
the style of a program. In limited class testing stu-
dents gave STYLE high marks, because they felt it
gave them useful comments about their program-
ming style.

The style tool will run on any Macintosh™ com-
puter with a minimum of 128K of memory, though
this will limit the user flle to less than 5QK. For best
results, the style tool should be used on a Macintosh
Plus™ with 1 megabyte of memory.

When run on a larger screen, such as a Macintosh
II™, the analysis window can be resized to fit the
larger screen, because STYLE does not limit the user
to the smaller Macintosh™ screen size when a larger
screen work space 1s available.

SIGCSE

BULLETIN Vo

22 No. 3 Sept. 1990

33

The printout procedure will work on any Local-

Talk™ -compatible network or dedicated printer.

For further information about STYLE: An Auto-
mated Program Style Analyzer for Pascal, write to the
authors at the address above or send e-mail to:

lake@mist.CS.ORST.EDU
or
c00k@mist.CS.ORST.EDU

REFERENCES

[Ber85] R. E. Berry and B. A, E. Meekings, “A Style
Analysis of C Programs”, Communications of the
ACM, vol. 28(1), Jan. 19886, pp. 80-88,

[Ker78] B. W, Kernighan and P. J. Plauger. The
Elements of Programming Style. McGraw-Hill, New
York, 1978,

[Led75] H. F. Ledgard. Programming Proverbs. Ha-
yden Book Company, Rochelle Park, New Jersey,
1975.

[Mee83] B, A. E. Meekings, "Style analysis of Pascal
programs”, ACM SIGPLAN Noticesvol. 18(9), Sept.

1983, pp. 45-54.

[Oma87]P. W. Oman and C. R. Cook, “A Paradigm for
Programming Style Research”, Technical Report
87-60-7, Computer Science Department, Oregon
State University, 1987.

[Par83] G. N. Parikh and G. N. Zvegintzov, Tuterial on
Software Maintenance, IEEE Computer Society
Press, 1983, p. 2.

[Ree82] M. J. Rees, Automatic Assessment Aids for
Pascal Programs, ACM SIGPLAN Notices, Vol 17
(10), Oct. 1982, pp. 33-42.

[Ros83] D. Rosenthal, in correspondence from the
members, ACM SIGPLAN Notices Vol. 18 (3), Mar,
1983, pp. 4-5.

