
AN ADVANCED OPERATING SYSTEMS

PROJECT USING CONCURRENC Y

Ronald J. Leach

Department of Systems & Computer Scienc e
School of Engineerin g

Howard University
Washington, D.C. 20059

3 9

ABSTRACT

Most courses in operating systems follo w
one of three patterns : high level discussion wit h
most programming done in a high leve l
language; building operating systems from dev-
ice driver level up ; and courses which use emu-
lator programs which emulate special architec-
tures. In this paper, we describe a course whic h
emphasizes the strong points of thes e
approaches. The course also emphasizes teach-
ing concurrency, introducing networking, an d
developing a deeper understanding of many o f
the system calls and system commands of th e
UNIX operating system. The major course pro-
ject is described in the paper .

1 . INTRODUCTION

The topic of concurrency is extremel y
difficult for students . It is so fundamental that i t
must be reinforced in the curriculum and no t
merely discussed in a single course . This paper
discusses a course taught at Howard Universit y
which emphasizes the nature of concurrency .
Shub [9] has commented that this topic is often
covered only at very high levels in a typica l
operating systems course The course w e
describe here is a second course in operatin g
systems. Primary goals of the course are the
reinforcement of topics learned in the firs t
course in operating systems, knowledge of con-
currency at both a theoretical and operationa l
level, use of a network for more sophisticated
purposes than electronic mail, evaluation of th e
performance and trade-offs made in operatin g
systems design, and development of a deepe r

SIGCSE
Vol . 22 No . 3 Sept . 199 0BULLETIN

understanding of the UNIX operating system
which provides the development environment .
The course project is to develop a simulation o f
a parallel computer architecture using processe s
to simulate processing nodes. Each of the simu-
lated processing nodes runs an interpreter tha t
executes both shell commands and commands to
send data to other processors . The communica -
tion between simulated processing nodes i s
implemented using both message passing an d
shared memory facilities available under AT&T
System V UNIX . Materials used in this course
include the texts [1], [5] and [7] .

The course is heavily based on the UNIX
operating system . It uses the shell both as a
command interpreter and as a means of per -
forming computations . Most operating system s
have command interpreters but few have th e
UNIX feature of allowing significant program-
ming using the command processor. We also
make extensive use of UNIX facilities for com-
munication between concurrently running
processes .

2 . BACKGROUND OF THE STUDENT S

The course described here is open to both
undergraduate and graduate students at Howard
University . The prerequisite is a first course i n
operating systems which has included a typica l
overview of the major concepts in operatin g
systems: device management, cpu scheduling ,
memory management, virtual memory, con -
currency, etc . The students have typically imple-
mented projects in device management, cp u
scheduling, and memory management, but not i n
concurrency . All of the students are proficien t
in C . Undergraduate students have taken a sur-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101085.101098&domain=pdf&date_stamp=1990-08-01

4 0

vey course in programming languages in whic h
C and Ada (among others) are taught . The struc-
ture of an "Ada virtual computer" [6,p493-494]
is taught and the students have completed a pro-
ject which requires tasks and some level of pro-
cess communication/control [3] . Undergraduate
students have used the C language for some o f
the projects in the first operating systems course .
Equivalent exposure is required of all graduat e
students; this is not a problem since most of
these graduate students are employees of AT& T
or Bell Communications Research attendin g
Howard on sponsored graduate fellowships .
Thus all of the students have seen concurrenc y
at least twice before they take this course .

In addition, the students also have a user' s
knowledge of the UNIX operating system a t
least at the level of editing, compiling, and exe-
cuting programs as well as the use of the elec-
tronic mail system on a single computer . The
students typically have no experience with use
of a network for anything other than electroni c
mail ; many students do not have even that
experience .

All students, graduate and undergraduate ,
do the same projects and take the same exami-
nations . Graduate students are also responsibl e
for written and oral research presentations tha t
are based on assignments given by the instructor
and are based on the current literature.

3, THE COMPUTING ENVIRONMENT

Howard students at this level do much o f
their work on a collection of AT&T 3B2 com-
puters running AT&T System V UNIX . The
computers are networked together via Etherne t
using TCP/IP which supports electronic mai l
and a limited amount of running commands o n
other UNIX based computers on the networ k
using remote file copy and remote login . There
are many nodes on the network; the relevan t
ones for this paper are a machine for program
development (labeled scsla in figure 1), a
machine for experimentation (scslx in' figure 1)
and a machine for sending reports via electroni c
mail (scs2 in figure 1) .

The development machine (scsla) contain s
the UNIX operating system with full compila -

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0
BULLETIN

figure 1 The development environmen t

Lion, debugging, networking, and editing facili-
ties. It is a moderately well-equipped UNI X
machine for editing, compiling, and genera l
computing with a heavy user load . Previous
experience with this course has shown that the
additional computational load on a general pur-
pose computer caused by the increased number
of processes and the need for inter-process com-
munication (IPC) is intolerable . In addition,
these new processes make the machine prone t o
crashes or periods in which little computatio n
can proceed because of the large number of run-
ning processes . For these reasons, all projects
for this course are run only on the experimenta l
machine scslx .

The machine for experimentation (scslx)
is an AT&T 3B2/310 with 2 MB memory, a
very small lard disk (31 MB), and limited com-
pilation facilities . This makes the machine
unusable for program development and forces
use of the network for sending files from the
development machine to the experimenta l
machine . It also encourages the use of the net -
work for the execution of programs. It i s
expected that students will frequently crash th e
underlying UNIX operating system on thi s
machine because of misuse of the IPC facilities .
The scslx computer has facilities to handle the
full range of IPC methods available in System
V UNIX such as semaphores, FIFO's and share d
memory . All these IPC methods are needed fo r
the projects in this course.

4 1

4. TIIE BASIC IDEA

The standard model of multiprocessing i s

shown in figure 2 .

PROCESS 1 PROCESS 2

®

	

1

COMPUTER

V

PROCESS 1 I/O PROCESS 2 I/O

figure 2 Vie standard multiprocessing mode l

Here COMPUTER refers to a system that may
have one or more cpu's . The model in figure 2
is replaced by the logical model in figure 3 .

PROCESS 2

PROCESS 1 I/O PROCESS 2 I/ O

figure 3 The logical multiprocessing mode l

Note that this logical model is close to realit y
under AT&T System V UNIX because of fork()
copying the data segments .

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0
BULLETIN

Students are required to write various por-
tions of an operating system for hypothetica l
computers of the types listed below. They are
required to use C and to make use of the acces-
sibility in C of the system clock and variou s
signals . Thus this course has the advantage o f
having small computers to write operating sys-
tems for as well as providing an opportunity t o
do advanced programming in C .

5. THE PROJECT S

Students are divided into groups of three
or four and are required to develop emulators
for various multiprocessor architectures . We
describe a typical project in detail in order to
indicate the type of tasks that students mus t
carry out . Other commonly chosen projects wil l
differ only slightly from the one described i n
this paper .

Students write a simulation of an eigh t
node hypercube computer . The nodes of the
computer are simulated by processes that are
dated by exec() . Each of the nodes executes a
process that is an emulation of a single node
computer. Therefore, each of these nodes i s
now a full processing element that has th e
power of the program that is executing withi n
the new process .

The program executes in three phases .
Phase 1 is a check to see if sufficient resources
are available in order to be able to create an d
execute the processes needed for the assign-
ment. Phase 2 is the actual creation of the
processes and their initialization, including the
attachment of shared memory regions to the
processes . Phase 3 is the interpretation and exe-
cution of the commands in an input file . The
three phases are described below in more detail .

The experimental machine (scslx) permits
a maximum of 10 semaphores, 10 share d
memory regions, and 10 FIFO's to be active i n
the system at any one time. In order to avoi d
depletion of these resources, each student pro -
gram must begin execution with the testing of
the existence of a specially named file
"/usr/tmp/opsys .lk" . Existence of this "lock file "
is tested by the creatO system call . The call to

PROCESS 1

4 2

crest() returns -1 if the file already exists and 0
if it does not . The code i s

if (crcat("/usr/Unp/opsys.lk",) == -1)
(fputs("Error --insufficient resources") ;
exit(0) ;

REST OF PROGRA M
unlink(" usr/tmp/opsys .lk") ;

This acts as a slow binary semaphore . It is
unsatisfactory for general IPC use but works
fine for a one time check. If no other group i s
using the machine scslx, then the
/usr/unp/opsys .lk file does not exist, creai()
returns 0, and the program can continue becaus e
resources are available . When the program
finishes execution, it releases resources an d
removes the file /usr/tmp/opsys .lk using the
unlink() system call to indicate that th e
resources are now available. If crest() returns
the value -1, then no resources are available an d
the program will exit gracefully .

Phase 2 involves the creation of th e
processes making up the processing element s
(PE's) and the scheduler . This involves fork()'s ,
exec()'s, and the attachment of shared memor y
regions to the processes using the system call s
shmget(), shmatO, shmdtO, etc .

Each of the processing elements gets its
input from an individual input file ; there are a s
many individual input files as there are process-
ing elements . The individual input files are
created by a separate scheduler process tha t
takes a large input file and separates it into th e
individual input files according to figure 4 .

INPUT FILE

FILE 0

	

FILE N

(for PE 0)

	

(for PE N)
figure 4 File processing diagram

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0
BULLETIN

The large input file contains informatio n
about commands that are to be executed , ho w
these commands are to be executed, and the
processing nodes that is to execute the com-
mand. A typical large file looks something like
this .

line 1

	

1 0
Iine 2

	

xv.3
line 3

	

y=5
line 4

	

z='expr $x + $y '
line 5

	

send z to 3
line 6

	

1 1
line 7

	

x=5
line 8

	

1 3
line 9

	

r2=7
line 10

	

receive z from 0
line 11

	

rO='expr $ace +$r2 '

Lines 2, 3, 4, 7, 9, and 11 are standard
UNIX shell commands . Line 1 contains th e
characters '10' which are a delimiter protoco l
indicating that everything until the next delim-
iter protocol is to be run on processor number 0 .
The send command on line 5 indicates that th e
value of a variable named 'z' is to be sent t o
processing element number 3 . This statement
implies that some form of IPC is to be used
between the processes . The receive statemen t
on line 10 is similar. However, any later state-
ments to be executed on processor number 3 are
blocked until the value of 'z' is actuall y
received .

Each processing element has the followin g
variables used for data: rO, rl, . . . r9 (represent-
ing registers 0 . . 9), ace (representing an accu-
mulator), x, y, z, a, and b .

The send and receive statements on lines
5 and 10 require that data be sent from one pro-
cess to another .

Students are formed into small group s
(usually three or four) and are responsible fo r
the development of protocols for message pass-
ing and for general communication between th e
various processing elements . The IPC method
used is FIFO's, with messages being sent and
received from these FIFO's . The structure of a
message i s

struct message tint rO, rl, r2, r2, r4, r5 ,
r6, r7, r8, r9, ace, x, y, z, a, b) rnsg ;

4 3

and the send and receive functions are similar t o

those presented in Rochkind [7] . To facilitate
programming, the entire message is sent even i f
only one of the fields is needed by the receiver .

Note that the values that are received ma y
be used in computations by the receiving pro-
cessing clement . Therefore a blocking mechan-
ism must be provided so the computations o n
the receiver are delayed until the sender's mes-
sage is received. This is done using signals .
Thus students need both FIFO's and signals t o
be able to implement this phase of the program .

An additional facility is available in th e
input file - the means of specifying IPC vi a
shared memory instead of FIFO's . The syntax
in the input files i s

send shared value to processor number

receive shared value from processor
number

This requires the students to use share d
memory. Shared memory normally unstructure d
and therefore students access shared memory
regions by overlaying the message structure
mentioned above on the shared memory region.
To simplify the programming, only one shared
memory region is used per program . Blocking
of concurrent reads and writes is done by using
semaphores .

The three phases of the project are typi-
cally grouped into five separate subprojects,
with each project buiding on the previous ones .
1. Creation of the individual processes, identify-
ing the process ID using the getpid() system cal l
and running a simple shell command such as
date in each PE. The creatO system call i s
used as a binary semaphore to insure that the
system's IPC resources are available. This
corresponds directly to phase 1 .

2. Implementation of the requirements of phase
2 is separated into two parts to be implemented
in this and the next step . The first step is send-
ing a message from each PE to ills neares t
neighbor via FIFO's .

3. The next step in phase 2 is sending a mes-
sage from any PE to any other using FIFO's .

SIGCSE

	

Vol . 22 No . 3 Sept . 1990
~U LLETIN

4. Phase 3 requires the creation of a parser to
use the protocol delimiters discussed previousl y
to break up the original Iarge input file into
individual files .

5. Shared memory IPC is implemented .

Thus many of the real world problems i n
software engineering are also reinforced by th e
course . Each of the groups and the design com-
tnittee is responsible for weekly reports indicat-
ing design decisions, goals and milestones . The
group leaders are also responsible for applyin g
various software metrics during th e
specification, design, and coding phases of the
project .

Some of the groups of students implemen t
emulations of other multiprocessor architectures .
Other architectures implemented are based o n
the topologies of dual bus hypercubes, stars, and
rings. Their experiences were similar to th e
hypercube groups in that mastery of con -
currency was essential for success of their pro -
grams .

Students were required to evaluate th e
performance of their programs which designe d
operating systems for their emulations . Evalua-
tion techniques ranged from simple use of the
system clock to more detailed timing analysis so
that various algorithms designed by variou s
groups were compared for both student gen-
erated and teacher generated test files .

6. EVALUATION OF THE COURSE

The goals of the course were reinforce-
ment of the topics learned in the first course ,
knowledge of concurrency at both a theoretica l
and operational level, evaluation of the perfor-
mance and trade-offs used in the design o f
operating systems and development of a deepe r
understanding of the UNIX operating system .
All of these goals were met in this course.

Reinforcement of the topics covered in the
first course is a by-product of the implementa-
tion of memory management and scheduling
algorithms . Students learned some of the detail s
of memory management by actually manipulat-
ing the amount of space attached to a UNIX

4 4

process . The effects of the scheduling algo-
rithm became apparent when the processes wer e
initially created .

The essential topic of concurrency was
discussed at a theoretical level using the abstrac t
concepts of fork and join, precedence graphs ,
parbegin - parend, precedence graphs, as wel l
as standard examples . Operational understand-
ing was obtained by use of the fork() and exec()
commands and the synchronization of variou s
processes using the devices of pipes, messages ,
and semaphores . Performance measures were
made using the built-in system clock, In som e
situations, more detailed profiles of progra m
performance were given . In future semesters ,
some of the students will also use Concurrent C
as an implementation language .

Actually deciding on the algorithms to be
used and their implementation gave the students
a deeper understanding of the trade-offs i n
operating system design . Students were force d
to use the UNIX operating system at a fairl y
sophisticated level . They had to use many sys-
tem calls and interpret signals correctly . Major
IPC methods were used . Embedding of the
hypothetical computer in the UNIX operatin g
system environment allowed access to signals ,
messages, semaphores, shared memory, the sys-
tem clock, UNIX file structure, etc . while
allowing the students to write in a higher leve l
language than assembly language ,

In addition, having one machine for pro -
gram development, one for reporting, and one
for program execution required significant use
of the network. The executable files were sen t
by rcp and were run under remote login . As a
bonus, students obtained considerable experi-
ence in experimentation and in general princi-
ples of software engineering .

Perhaps the most important feature of th e
course is that both high level and low level con-
cepts were taught and implemented while stu-
dents obtained a deeper understanding of the
UNIX operating system and networking . See
[2] for comments on integration of networking
into the curriculum .

This course has been taught for several
years using the format described in this paper .

SIGCSE

	

Vol . 22 No . 3 Sept . 199 0BULLETIN

It has been especially popular with our graduat e
students who have considerable exposure t o
UNIX such as in their previous work at AT&T
or Bell Communications Research.

7. SOME SUGGESTIONS FOR SIMILA R
COURSE S

Clearly a major feature of the course i s
the embedding of the emulator in the UNI X
operating system . This can be done using other
emulators and other operating systems as long
as a language which allows concurrent process-
ing is available . See [4] and [8] for examples.
Another feature of this course was the existence
of separate machines for development and for
execution . We suggest that projects such as thi s
not be done unless there are separate machine s
and a network available. Indeed, the students
often crashed the experimental machine by
overrunning the process table and such activitie s
are frowned upon by other users .

ACKNOWLEDGEMEN T

This research was partially supported b y
the Army Research Office under grant numbe r
DAAL 03-89-G-0100 and by the Maryland Pro-
curement Office .

REFERENCE S

1 . Bach, M.,The Design of the UNIX Operatin g
System,Prentice Hall, Englewood Cliffs ,
1987 .

2 . Cassel, L.N., Networking Elements in a File s
Course, SIGCSE Bulletin, vol 19, No 1 ,
Feb. 1987, 343-345 .

3 . Leach, R.J ., Experiences Teaching Con -
currency in Ada,, Ada Letters, vol . 7, no .
2 (1987) 40-41 .

4. Olagunju, A., and E. Borders, Using Emula-
tors as a Vehicle for Instruction in Sys-
tems Programming, SIGCSE Bulletin, vol
19, No 1, Feb, 1987, 132-135 .

5 . Peterson, J .L ., and A . Silberschatz, Operating
Systems Concepts, Alternate . ed.,, Addison
Wesley, Reading, MA, 1987 .

*** *
CONCURRENCY- continued on page 62

decides that a given device is to have
service, he will Jerk his foot, thus
sending an interrupt to Apple-server.
Apple-slave also is responsible for
informing Apple-server which interrupt
service routine is to be executed. This
situation is analogous to the use of a
support chip such as the Intel 8259
programmable interrupt controller in an
8086-based system.

Summary

We have tried the analogy described above
several times in our introductory computer
architecture/assembly language programming
classes. Each time it has been extended
and refined a bit. Student reaction has
varied from guarded amusement to an
enthusiastic "Gee whlz--that's the way it
works[" We think the analogy is a useful
tool in teaching this subject matter.

**

CONCURRENCY-- continued from page 44

6. Pratt, T.W., Programming Languages, Design
and Implementation, 2nd. ed., Prentice
Hall, Englewood Cliffs, N.J.,1984.

7. Rochkind, M., Advanced Unix Programming,
Prentice Hall, Englewood Cliffs, NJ.,
1985.

8. Shay, W.A.,A Project for Operating Systems
Simulation, SIGCSE Bulletin, vol 18, No
1, Feb. 1986, 289-295.

9. Shub, C., The Decline and Fall of Operating
Systems, SIGCSE Bulletin, vol 19, No 1,
Feb. 1987, 217-220.

10. Wolfe, J., Operating System Projects on two
Simulated Machines, SIGCSE Bulletin,
vol 19, No 1, Feb. 1987, 212-216.

*
COATROOM-- continued from page 46

Note that the "tag" will be a pointer to a node in the list.
Unless the list is bidirectionally connected (or a ring) there
will be problems with the implementation of claim. For
pedagogical reasons, I hand out a buggy implementation to
students of this simple case and have them find the problem
and correct it. This is a difficult problem for them and the
usual correction of having a tag point physically to the
predecessor of the node to which it logically refers will not work
correctly as that node may be a candidate for early removal. In
fact a simple sweeping garbage collection scheme that marks
nodes for removal at claim and then sweeps once per check or
once per claim is simple to implement and instructive. Note
that a node may be physically removed only when its successor
has been claimed.

Another instructive feature of this implementation relates
to the problem of copying tags and presenting them for a claim.
If such is possible then the implementation of claim is further
complicated. Discussion of this problem, and the disastrous
effect of ignoring it, is a natural way to introduce the ideas of
"capabilities" and verifying authorized use of a resource. The
idea of a capability is introduced by creating a tag which is a :
pair consisting of a pointer to a predecessor node and a unique
reference number assigned by the system. The reference
numbers are also stored with each coat. Now the claim
operation checks the reference number in the tag against the
reference number stored with the coat which the pointer
actually references. If they do not match it is because the coat
has been claimed and physically removed from the coatroom
list. Problems with copying of tags may also be used to
introduce the notions of reference counting garbage collection
schemes.

e) Hash table. Here the coat itself could be passed through a ,
hash function and the returned value, or hash bucket number,
could be returned as the tag. Again, care is needed to avoid'a
buggy implementation. If the buckets cannot be guaranteed to
be size one, there is not sufficient information in such a tag to
uniquely retrieve the coat. Note that this may not always be a
disadvantage. There are situations in statistical work where
there is a requirement of anonymity in retrievals from the
data. It is difficult to guarantee that a series of retrievals
cannot be used to compromise the anonymity of the subjects in
the database.

Conclusion: The coatroom is an example of an ADT which
has a simple and intuitive description, many possible
implementations, several subtle difficulties and a number of
deep extensions. It can be valuable to introduce it. early in a
course in data structures, refer to it often, and use it to introduce
additional topics such as garbage collection.

References:
(1) Goldberg and Robson, Smalltalk-80 The Language and.

Its Implementation, Addison-Wesley, 1983.
(2) Levy, Capability-Based Computer Systems, Digital

Press, 1984.
(3) Sedgewick, Algorithms, 2nd Edition, Addison-Wesley,

1988.

S I G C S E v o l 22 No. 3 Sep t . 1990
B U L L E T I N

62

